ON GENERALIZED DUALS OF SOME SEQUENCE SPACES

AHMET ŞAHİNER

ABSTRACT: In this paper the sequence space $\Delta l_{\infty}(p,q)$ is defined. Also generalized duals of some new defined sequence spaces are given.

1. INTRODUCTION

Let X be a complex (or real) linear space with the zero element θ , and Let X = (X,q) be a seminormed space with the seminorm q. By S(X), we denote the X -valued sequences space. S(X) is a linear space with the following operations:

$$x + y = (x_k + y_k)$$
$$\lambda(x) = (\lambda x_k)$$

where $x = (x_k)$ and $y = (y_k)$ are in X and λ is a scalar.

We let $p = (p_k)$ be a sequence satisfying $0 < p_k \le \sup p_k = H$ for any $k \in N$.

The sequence space is defined as follows:

$$\Delta l_{\infty}(p,q) = \left\{ x \in S(X) : \sup_{k} [q(\Delta x_{k})]^{p_{k}} < \infty \right\}$$

where $\Delta x_k = x_k - x_{k+1}$.

If we choose X=C and q=|.| we get $\Delta l_{\infty}(p)$ as in [6].

2. MAIN RESULTS

Theorem 1. $\Delta l_{\infty}(p,q)$ is a linear space.

Proof. Since S(X) is a linear space and $\Delta l_{\infty}(p,q) \subseteq S(X)$, it is sufficient to show that $\lambda x + \mu y \in \Delta l_{\infty}(p,q)$ for any $x, y \in \Delta l_{\infty}(p,q)$ and scalars λ, μ . We will use the following well-known inequality: for any complex numbers a_k , b_k ,

¹⁹⁹¹ Mathemathics Subject Classification. Primary 46A45, Secondary 05A15, 15A18.

Key words and phrases. Sequence spaces, modulus function, paranormed spaces, generalized duals.