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Abstract− This study focuses on an inverse problem for the quantum kinetic equations, the
cornerstone of quantum mechanics. These equations describe the evolution of elementary
particles under strong interactions. They are fundamental to understanding the behavior
of quantum systems and play a pivotal role in describing nanostructure processes and
nanodiagnostics. The main target of the problem is to determine the unknown source
function on the right-hand side of the equation. This paper obtains a pointwise Carleman
estimate. It then uses the Carleman estimate to show the uniqueness of the problem’s
solution.
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1. Introduction

Quantum kinetic equations play a pivotal role in understanding the fundamental dynamics of particles
and systems under quantum mechanical frameworks. These equations, derived from quantum mechanics
principles, provide detailed descriptions of non-equilibrium processes and the transport properties of
particles. Quantum kinetic equations are foundational in exploring inverse problems, which aim to
determine the cause from observed effects, especially in applications involving nanostructures and
nanotechnology [1,2]. Their mathematical framework has proven essential for investigating stability
and uniqueness in quantum systems, allowing for precise control and monitoring in applied physics.

Furthermore, applying quantum kinetic equations extends to modern challenges, such as renewable
energy and information technology [3]. In high-energy physics and astrophysics, quantum kinetic theory
offers insights into phenomena such as chiral transport and spin polarization, which are crucial for
understanding the dynamics of quark-gluon plasmas in relativistic heavy-ion collisions. The development
of such models provides theoretical insights and aids in practical applications like material science
and energy systems [4, 5]. Recent studies highlight the importance of quantum kinetic equations in
nanotechnology, including applications in modeling nanostructure dynamics, development of nanoscale
diagnostic tools, and addressing inverse problems to design and control nanodevices.
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In this study, we deal with the quantum kinetic equation
i

(2π)n

∫
R2n

[ϕ(x− y) − ϕ(x+ y)] exp[i(p− p′)]ω(x, p′, t)dp′dy= ∂tω(x, p, t) − µ(t)λ(x, p)

+
n∑
j=1

pj∂xjω(x, p, t) + σ(x)ω(x, p, t)
(1.1)

with the following conditions
ω(x, p, t)|x1≤0 = ω1(x, p, t) (1.2)

and
ω(x, p, 0) = ω0(x, p) (1.3)

in the domain Q = {(x, p, t) : x1 > 0, x ∈ Ω, p ∈ Rn, t ∈ R}. Here, Ω ⊂ Rn, x = (x1, x) ∈ Rn,
x = (x2, ..., xn) ∈ Rn−1. In this paper, the following notations are used: For all 1 ≤ j ≤ n,

∂tω = ∂ω

∂t
, ∂xjω = ∂ω

∂xj
, ∂xj∂yjω = ∂2ω

∂xj∂yj
, ∂2

ηj
ω = ∂2ω

∂η2
j

, and ∆ηω =
n∑
j=1

∂2
ηj
ω

In physical applications, ω(x, p, t) is the quantum distribution function, ϕ is the mean potential, σ(x) is
the absorption, and λ(x, p) is the unknown function. The functions ϕ(x) and σ(x) satisfy

∣∣∣Dβ
xϕ(x)

∣∣∣ < M

and
∣∣∣Dβ

xσ(x)
∣∣∣ < M where 0 ≤ β ≤ 2.

By applying the Fourier transform to (1.1) with respect to p,

∂tω̂(x, y, t) + i
n∑
j=1

∂xj∂yj ω̂(x, y, t) + σ(x)ω̂(x, y, t) − i[ϕ(x− y) − ϕ(x+ y)]ω̂(x, y, t) = µ(t)λ̂(x, y) (1.4)

where i =
√

−1 is the parameter of the Fourier transform. From (1.2) and (1.3),

ω̂(x, y, t)|x1≤0 = ω̂1(x, y, t) (1.5)

and
ω̂(x, y, 0) = ω̂0(x, y) (1.6)

Changing the variables as x−y = ζ and x+y = τ and introducing the function w(ζ, τ, t) = ω̂( ζ+τ
2 , τ−ζ

2 , t),
σ(ζ, τ) = σ( ζ+τ

2 ), and g(ζ, τ) = λ̂( ζ+τ
2 , τ−ζ

2 ) in (1.4),

∂tw(ζ, τ, t) + i(∆τ − ∆ζ)w(ζ, τ, t) + i[ϕ(ζ) − ϕ(τ)w(ζ, τ, t)] + σ(ζ, τ)w(ζ, τ, t) = µ(t)g(ζ, τ) (1.7)

By (1.5) and (1.6),
w(ζ, τ, t)|ζ1+τ1≤0 = w1 and w(ζ, τ) = w0

Consider the set
W =

{
w ∈ C2(Q) ∩H2(Q) : w = 0 for x1 − y1 ≥ ζ0

}
and assume that the Fourier transform of w concerning t is finite. We suppose that f ∈ C2(R) ∩H2(R).
(1.7) is known as an ultrahyperbolic Schrödinger equation. To obtain a pointwise Carleman estimate,
we consider the following equation

∂tw(ζ, τ, t) + i(∆τ − b−2∆ζ)w(ζ, τ, t) + i[ϕ(τ) − ϕ(ζ)]w(ζ, τ, t) + σ(ζ, τ)w(ζ, τ, t) = µ(t)g(ζ, τ) (1.8)

where b ∈ C1(Ω) and b > 0. By w = 0, for x1 − y1 ≥ ζ0,

w(ζ, ζ0,
′
τ, t) = ∂τ1w(ζ, ζ0,

′
τ, t) = 0 (1.9)
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and
w(ζ, τ, 0) = w(ζ, τ) (1.10)

where τ = (τ1, ..., τ2).

We consider an inverse problem of determining w(ζ, τ, t) and g(ζ, τ) in (1.8) from the Cauchy data
(1.9) and additional data (1.10). We study the uniqueness of the solution of the inverse problem. Using
(1.8) and the condition w(ζ, τ, 0) = w0(ζ, τ) = 0,

g(ζ, τ) = i

µ(0)

∫
R

ξŵ(ζ, τ, ξ)dξ

and

∂tw(ζ, τ, t)+ i(∆τ −b−2∆ζ)w(ζ, τ, t)+ i[ϕ(τ)−ϕ(ζ)]w(ζ, τ, t)+σ(ζ, τ)w(ζ, τ, t) = iµ(t)
µ(0)

∫
R

ξŵ(ζ, τ, ξ)dξ

The solvability of some inverse problems for the quantum kinetic equations was considered in [1,2,6–9].
Anikonov [1] discussed multidimensional inverse and ill-posed problems for differential equations,
including hyperbolic, parabolic, and quantum kinetic equations. The existence, uniqueness, and
stability of solutions to these problems are investigated. Moreover, some methods of constructing
a solution are given. Anikonov and Neshchadim [2] obtained an inequality for the quantum kinetic
equation, and based on this identity, the uniqueness of the inverse problem of determining the solution
and unknown right-hand side was proved by using the boundary and initial data. Anikonov [7]
considered inverse problems in kinetic theory, particularly those associated with integral geometry
and transport equations. The author presents new methods for solving inverse problems for kinetic
equations. Different types of inverse problems for elliptic, hyperbolic, parabolic, and fractional parabolic
equations were considered in [10–14]. Moreover, for ultrahyperbolic equations, see [8,15,16] and for
ultrahyperbolic Schödinger equations, see [17–19]. Besides, some recent works of inverse problems
involving kinetic equations can be seen in [20, 21] for other types of equations. In [20], an inverse
source problem for the kinetic equation was studied in an unbounded domain with Cauchy data. The
uniqueness of the solution was proved by means of a pointwise Carleman estimate. In [21], an inverse
source problem for the kinetic equation was considered, and a numerical solution to the problem was
obtained using a hybrid method composed of finite difference approximation and Lagrange’s polynomial
interpolation.

The remaining organization of this paper is as follows: Section 2 presents a pointwise Carleman
estimate. Section 3 is devoted to the proof of Theorem 3.1. The last section discusses the need for
further research.

2. A Pointwise Carleman Estimate

Carleman estimates were first introduced by Carleman in 1939 to prove the uniqueness of ill-posed
Cauchy problems. This method has been applied to inverse problems for partial differential equations
since 1981. The works of Bukhgeim and Klibanov demonstrated that Carleman estimates are a powerful
tool for providing global uniqueness of multidimensional inverse problems. Additionally, this tool has
been effective in obtaining Hölder and Lipschitz stability estimates as well as in developing numerical
methods [22,23].

This section presents a Carleman estimate for the quantum kinetic equation used for the proof of
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Theorem 3.1. Let
A0wk = ∆τwk + b−2 |s|2wk, k ∈ {1, 2}

We introduce the function

ψ(τ) = δτ1 + 1
2

n∑
j=2

(τj − τ0
j )2 + α0, α0 > 0

and the set

Q0 =

(s, τ) : s ∈ Rn, τ ∈ Rn, τ1 > 0, 0 < δτ1 < κ−
n∑
j=2

(τj − τ0
j )2


Here, the parameters δ, τ , and v are positive numbers, 0 < κ < 1, δ > 1, τ0 = (τ0

1 , ..., τ
0
n), and

κ+ α0 = m < 1. We define a weight function

φ = eγψ
−ν

We have τ0 ∈ Q0 and Q0 ⊂ Q, for sufficiently small κ > 0. The proof of Theorem 3.1 is based on the
following proposition, proved in [20] for a different equation with a similar principle part.

Proposition 2.1. Let b ∈ C1(Ω), b > 0, ∂τ1
b > 0 on Ω, and δ > δ0. Then, the following Carleman

estimate is valid for all wk ∈ C2(Q):

ψν+1(A0wk)2φ2 − 2nγvwk(A0wk)φ2 ≥ 2γ3v3ψ−2ν−2w2
kφ

2 + 2γvb−2 |s|2w2
kφ

2

+2γv |∇τwk|2 φ2 − 2nγvd1 (wk) + d2 (wk)
(2.1)

where γ and ν are large parameters,

d1 (wk) =
n∑
j=1

∂τj

((
wk∂τjwk + ψ−ν−1γv∂τjψw

2
k

)
φ2

)
and d2 (wk) =

5∑
j=1

d2j (wk)

such that

d21 (wk) = 4γν
n∑

j,r=1
∂τr

(
∂τj

ψ
(
∂τj

wk − γνψ−ν−1∂τj
ψwk

) (
∂τr

wk − γνψ−ν−1∂τr
ψwk

)
φ2)

= −2γν
n∑

j,r=1
∂τj

(
∂τj

ψ
(
∂τr

wk − γνψ−ν−1∂τr
ψwk

)2
φ2

)
+ 2γ2ν2ψ−ν−1 (n− 1)

n∑
j=1

∂τj

(
∂τj

ψw2
kφ

2)

d22 (wk) = 2γ3v3ψ−2ν−2∂τj

|∇τψ|2w2
kφ

2
n∑
j=1

∂τjψ


d23 (wk) = −2γ2ν2 (v + 1)ψ−ν−2

n∑
j=1

∂τj

(
∂τjψ |∇τψ|2w2

kφ
2
)

d24 (wk) = 2γ2ν2 (n− 1)ψ−ν−1
n∑
j=1

∂τj

(
∂τjψw

2
kφ

2
)

and
d25 (wk) = 2γν |s|2

n∑
j=1

∂τj

(
∂τjψb

−2φ2w2
k

)
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3. Main Results

This section proposes a theorem regarding the uniqueness of the solution to the considered inverse
problem.

Theorem 3.1. There exists at most one solution (w, g) ∈ W ×L1(R2n) of the inverse problem provided
that ∂τ1b > 0 and µ(0) ̸= 0.

Applying the Fourier transform with respect to (ζ, t) to (1.8)-(1.10),

−ξŵ − ∆τ ŵ − b−2 |s|2 ŵ − ϕ̂(τ)ŵ − ϕ̂(ζ) ∗ ŵ + σ̂(ζ, τ) ∗ ŵ = − µ̂(ξ)
µ(0)

∫
R

ξŵ(s, τ, ξ)dξ (3.1)

and
ŵ(s, 0,′ τ, ξ) = ∂τ1ŵ(s, 0,′ τ, ξ) = 0 (3.2)

where ∗ is the convolution with respect to ξ.

Proof. In order to prove Theorem 3.1, we employ the Fredholm alternative; therefore, we treat the
homogeneous version of the problem. We demonstrate that this problem has only zero solution, which
confirms the uniqueness. We write ŵ = w1 + iw2 and µ = µ1 + iµ2 in (3.1), and we get the following
system of equations:

∆τwk + b−2 |s|2wk = ρk, k ∈ {1, 2} (3.3)

where

ρ1 = 1
µ(0)

µ1

∫
R

ξw1 dξ − µ2

∫
R

ξw2 dξ

 − ξw1 − Re(ϕ̂(τ)w) − Re(ϕ̂(ζ) ∗ w) − Re(σ̂(ζ, τ) ∗ w)

and

ρ2 = 1
µ(0)

µ1

∫
R

ξw2 dξ + µ2

∫
R

ξw1 dξ

 − ξw2 − Im(ϕ̂(τ)w) − Im(ϕ̂(ζ) ∗ w) − Im(σ̂(ζ, τ) ∗ w)

From (3.2),

w1(s, 0, τ, ξ) = 0, ∂τ1(w1)(s, 0, τ, ξ) = 0, w2(s, 0, τ, ξ) = 0, and ∂τ1(w2)(s, 0, τ, ξ) = 0

By (3.3),

(ρ1)2 + (ρ2)2 ≤ 6(µ2
1 + µ2

2)
µ2(0) C1

∫
R

(1 + ξ2)2(w2
1 + w2

2)dξ + 6ξ2(w2
1 + w2

2)

+6
∣∣∣ϕ̂(τ)w

∣∣∣2 + 6
∣∣∣ϕ̂(ζ) ∗ w

∣∣∣2 + 6 |σ̂(ζ, τ) ∗ w|2
(3.4)

where ∫
R

ξwkdξ

2

≤ C1

∫
R

(1 + ξ2)2w2
kdξ and C1 =

∫
R

(1 + ξ2)−1dξ

By (2.1),

((ρk)2 + γ2ν2n2w2
k)φ2 + ψν+1(A0wk)2φ2 ≥ −2γνnwk(A0wk)φ2 + ψν+1(A0wk)2φ2

≥ 2γ3ν3ψ−2ν−2w2
kφ

2 + 2γνb−2 |s|2w2
kφ

2

+2γν |∇τwk|2 φ2 − 2γνnd1(wk) + d2(wk)

(3.5)
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for k ∈ {1, 2}. From (3.4) and (3.5) and the equalities w2
1 + w2

2 = |ŵ|2 and µ2
1 + µ2

2 = |µ|2,

2γ3ν3ψ−2ν−2 |ŵ|2 φ2 + 2γνb−2 |s|2 |ŵ|2 φ2 + 2γν |∇τ ŵ|2 φ2 +
2∑

k=1
(d2(wk) − 2γνnd1(wk))

≤ φ2
(

6 |µ|2

µ2(0)C1
∫
R

(1 + ξ2)2 |ŵ|2 dξ + 6ξ2 |ŵ|2 + 6
∣∣∣ϕ̂(τ)ŵ

∣∣∣2
+ 6

∣∣∣ϕ̂(ζ) ∗ ŵ
∣∣∣2

+ 6 |σ̂(ζ, τ) ∗ ŵ|2
) (3.6)

Multiplying (3.6) by (1 + ξ2)2 and integrating with respect to ξ over R,∫
R
φ2(|ŵ|2 (2γ3ν3ψ−2ν−2 + 2γνb−2 |s|2) + 2γν |∇τ ŵ|2)(1 + ξ2)2dξ

≤ (6µ0C2φ
2 ∫
R

((1 + ξ2)2 |ŵ|2)dξ + 6φ2 ∫
R

((1 + ξ2)2ξ2 |ŵ|2)dξ) + 6
∫
R

(1 + ξ2)2
∣∣∣ϕ̂(τ)ŵ

∣∣∣2
dξ

+6
∫
R

(1 + ξ2)2
∣∣∣ϕ̂(ζ) ∗ ŵ

∣∣∣2
dξ + 6

∫
R

(1 + ξ2)2 |σ̂(ζ, τ) ∗ ŵ|2)dξ −
2∑

k=1

∫
R

(1 + ξ2)2(d2(wk) − 2γνnd1(wk))dξ

(3.7)

where µ0 = max
τ∈Ω

{
C1
µ2(0)

}
and C2 =

∫
R

(1 + ξ2)2 |µ|2 dξ. In (3.7), the big parameter γ can be chosen as

the first five terms on the right-hand side can be absorbed by the terms on the left-hand side. Thus,

γ3ν3
∫
R

|ŵ|2 φ2dξ ≤ −div(ŵ)

where

div(ŵ) =
2∑

k=1

∫
R

(1 + ξ2)2(d2(wk) − 2γνnd1(wk))dξ

Since φ2 > 1 on Q0, then ∫
R

|ŵ|2 dξ ≤
∫
R

|ŵ|2 φ2dξ ≤ − 1
γ3ν3div(ŵ) (3.8)

Integrating (3.8) over Q0, ∫
Q0

∫
R

|ŵ|2 dξdsdτ ≤ 0

as γ → ∞, which implies that ŵ = 0. Hence, it can be observed that w = 0. Consequently, from (1.8),
we have g = 0 and this completes the proof of Theorem 3.1.

4. Conclusion

In this work, we prove the uniqueness of the solution to the inverse problem of determining the source
function in quantum kinetic equations. The key tool is a Carleman estimate, an essential inequality in
proving the solvability of Cauchy and inverse problems for partial differential equations. Quantum
kinetic equations remain a cornerstone of mathematical physics, bridging the gap between theoretical
constructions and real-world applications in advanced technology and energy solutions. Therefore, it is
important to investigate the solutions of inverse problems for quantum kinetic equations that occur in
various areas of science and engineering.
In future studies, the well-posedness of the inverse problems for quantum kinetic equations under
different potential functions and boundary conditions can be investigated, thus developing methods
applicable to more general physical systems. Further research can explore various theoretical, com-
putational, and experimental directions to enhance understanding of these problems. The following
studies can be carried out on numerical solutions to inverse problems, and the theoretical knowledge
obtained can be applied to different differential operators and systems with variable coefficients. In
addition, the findings of this study can be further substantiated by presenting current life problems
and graphical representations.
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