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Abstract

In this study, the nuclear matrix elements for the two-neutrino double beta decay (2νββ) of128,130 Te
isotopes have been calculated by using Tamm-Dancoff Approximation (TDA) with the theory of residues by
considering the charge-exchange spin-spin interactions in the particle-hole channel. Calculations have been
performed for the spherical case of the nuclei on the basis of single particle energies calculated in the Hartre
Fock Approximation with Sykrme-III forces. The evaluated results show that this type of single particle base
can be used as an alternative approximation for calculation of nuclear matrix elements of double beta decay.
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Özet

Bu çal›flmada,128,130 Te izotoplar›n›n iki-nötrinolu çift bozunumu (2νββ) için nükleer matris elemanlar›,
yük al›flveriflli etkileflmeyi parçac›k-deflik kanal›nda dikkate alarak, Tamm-Dancoff Yaklafl›m›’n›n (TDA)
rezidüler teoremiyle birlikte kullan›lmas›yla hesapland›. Hesaplamalar, küresel çekirdek durumunda, Hartre
Fock Yaklafl›m›’n› Sykrme-III kuvvetleri ile birlikte kullanarak elde edilen tek parçac›k enerjileri baz›nda
yap›ld›.. Elde edilen sonuçlar bu tip tek parçac›k baz›n›n çift beta bozunumu nükleer matris eleman›
hesab›nda alternatif bir yaklafl›m olarak kullan›labilece¤ini göstermektedir.

Anahtar Kelimeler: Hartree-Fock Yaklafl›m›; Sykrme Kuvvetleri; Keyfi Faz Yaklafl›m›; Tamm-Dancoff
Yaklafl›m›; Çift Beta Bozunumu
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1. Introduction

Nuclear double-beta decay (ββ) is one of the rarest processes in nature which is

observed between even-even nuclei. It can be observed only when the single β-decay is

strongly suppressed due to a large change of spin or forbidden energetically. Although

the main interest in (ββ)-decay is related to the neutrinoless mode (0νββ) in order to

bring different aspects to elementary particle physics beyond the standard model,

considerable efforts  are made to investigate the ordinary allowed second order weak

decay two neutrino mode (2νββ) (Moe et al 1994, Suhonen et al 1998, Faessler et al

1998). Accumulation of experimental information for  processes (transitions to the

ground and excited states), promotes a better understanding of nuclear part of  ββ-decay

and allows one to check theoretical schemes of nuclear matrix element calculations for

the two-neutrino mode. The reliable evaluation of the 2νββ-decay nuclear matrix

elements is necessary to gain confidence for calculation of 0νββ–decay nuclear matrix

element.

Over the past few years, the nuclear matrix element has been calculated mainly in

three types of models, namely Nuclear Shell Model (NSM) and its variants, the

Quasiparticle Random Phase Approximation (QRPA) and its extensions and the

alternative models. The details of these models have been discussed by Suhonen et al.,

(Suhonen et al., 1998) and Faessler et al., (Faessler et al 1998). NSM attempts to solve

the nuclear many body problem as exactly as possible. Hence, it is the best choice for

the calculation of the nuclear matrix elements. Despite of the advantages of calculation

techniques only a limited set of single particle states can be used in NSM. QRPA is the

nuclear much body method most widely used to deal with the nuclear structure aspects

of the double beta decay process. The QRPA has been found successful in explaining

the quenching of the 0νββ-decay nuclear matrix element and bring them into closer

agreement with experimental values. But despite this success the QRPA approach to

double beta decay has some shortcomings. The main problem is that results are

extremely sensitivity to the renormalization of the attractive particle-particle component

of residual interaction, which is large part responsible for suppressing calculated two-

neutrino decay rate. Including proton-neutron pairing, several alternations have been

made in QRPA. However, none of these alternations have changed the rapid variation

of calculated 2νββ-decay matrix element with the increasing strength of the particle-

particle interaction. Recently there have been made some corrections on quasi-boson

approximation (Suhonen et al 1998) leading to a violation of the Pauli Exclusion
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Principle. Alternative models, as the operator expansion method (OEM), the broken SU
(4) symmetry, two vacua RPA, the pseudo SU (3) and single state dominance hypothesis
(SSDH) have their own problems (Suhonen et al., 1998). Recently, deformation
structure in nuclei has been taken into account in calculation of nuclear matrix element
(Selam, et al., 2003 and Chandra et al., 2005). In present, the calculated matrix elements
are far away from the experimental results.

In calculations of nuclear matrix elements, the wave functions and the energy
eigenvalues of 1+ state in intermediate odd-odd nucleus should be considered. Since the
1+ state has a high density, in order to find the eigenvalues, it is necessary to solve
complex equations. The problem can be solved analytically by using the theory of
residues and counter integrals in Tamm-Dancoff Approximation (TDA) where the
quasiparticle correlations are neglected in the ground state. Balaev et al. calculated
nuclear matrix elements for selected nuclei in TDA using the theory of residues and
counter integrals (Balaev et al., 1990). One should consider that the TDA is a
rudimentary approximation because of neglecting quasiparticle correlations in ground
states, but it brings simplicity to calculate nuclear matrix element, and reliability of any
single particle energy basis can be tested. 

Bobyk and Kaminski showed that nuclear matrix element is strongly dependent on
the choice of single particle energy basis (Bobyk et al., 1985). The single particle
energies evaluated in the Hartree-Fock Approximation with Sykrme III Forces
(HF+SIII) have not been used so far in calculation of double beta decay matrix element.
Thus, in this work, it is aimed at testing the reliability of this single particle energy base
for calculation of M2v and calculations have been done for128,130  Te isotopes by using
the TDA with the theory of residues by considering the charge-exchange spin-spin
interaction among nucleons in the particle-hole channel. In the next section, we give the
theoretical description used in our analysis and then in section-3, we present our results
and compare them with the experimental findings. Finally, section-4 is devoted to our
conclusion.

2. Theory

The half-life of 2νββ decay mode for 0+ → 0+ transition can be written in the form
of (Haxton et al., 1984, Doi et al., 1985, Vergados et al., 1976) 

Hüseyin AYTEK‹N - Alaaddin YILMAZ - Eyüp TEL - ‹smail BOZTOSUN

21

g )
2

221
2/1 ][ GTMFT ,        (1) 



where F2v is the exactly calculable phase space integral containing the entire relevant
constant, and          is the nuclear matrix element (there is no Fermi part, due to isospin
conservation). This part is given by (Balaev et al., 1990)

where                           are the 0+ ground states of the final (initial) even-even nuclei,   

are the 1+ state in the intermediate odd-odd nucleus of energy ωn and W is the 2β-
decay  energy, and  are  the Pauli  spin  operator  and isospin operator
successively? Table 1 show the W and F2v values for                                           

transitions (Aliev, T.M., et al., 1989).

2.1. The Nuclear Model

Consider a system of nucleus in spherical symmetric mean field interacting via
pairing and effective charge-exchange spin-isospin interaction among the nucleons.
Hamiltonian of the system can be written as
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Here, Eq. (4) represents single particle Hamiltonian with the energy of   

are single particle creation and annihilation operators. The interaction, which causes
pairing superfluid correlations, is represented by Hpair given by Eq. (5). Here, G is the
pairing constant and takes different values for protons and neutrons. H0 describes the
average motion of nucleons. Since the quasiparticle operator coincides with the particle
(hole) operator for the states far above (below) the Fermi Level, one can express H0

using quasiparticle creation and annihilation operators as (Soloviev, V.G., 1976)

Here α+ (α) are the quasiparticle creation (annihilation) operators with spin and
parity 1+;  these operators are defined as 

Here, ujand vj coefficientsare given by

where εj is the quasiparticle energy which is the eigenvalue of Hamiltonian Hsqp and
given by

where ∆ denotes the energy gap parameter and is determined phenomenological from
odd-even mass differences through a symmetric five terms formula involving the
experimental binding energies (Möller, P. and Nix, J.R, 1992)

A similar expression is found for proton gap ∆p by changing N by Z and vice versa.
Ej is the single particle energy of nucleons and λ is Fermi energy and can be calculated
using the number equation, which is given by (Soloviev, V.G., 1976)
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In Eq. (3), Vστ is the charge-exchange Gamow-Teller interaction which is
responsible for the β-transitions in odd-odd nucleus in  the  particle-hole channel. Here,   

Pauli spin operator and isospin operator. The part of  Vστ which generates the
collective 1+ state in odd-odd nuclei given as (Aytekin, H., and Kuliev, A.A., 1996)

Here,                 are the bosonic operators representing the creation (annihilation) of
neutron-proton pairs. Here,                     is reduced matrix element and given by (Suhonen
et al., 1988)

Where αp and αn denote all the other quantum numbers except the angular
momentum quantum numbers.

2.2. QRPA and Collective 1+ States in Odd-Odd Nuclei

In the QRPA, collective 1+ state is built of a linear combination of two-quasiparticle
states. The wave function of this state is looked upon as one-phonon function and is
given in the form (Aytekin, H. and Kuliev, A.A., 1996)
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where         is  the  phonon  creation   operator,        is  the  phonon  vacuum  which
corresponds to the ground states of parent even-even nucleus. The two quasiparticle
amplitudes                    are normalized by 

Following the conventional procedure of RPA and solving the equation motion

we obtain the dispersion relation for the excitation energy ωn of 1+ state in odd-odd
nuclei as

where εnp = εn + εp is the two quasiparticle energy for neutron-proton pairs. 

Using the normalization form (20), we can easily obtain expressions for two
quasiparticles amplitudes      
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If we discard factors containing 1/(εnp + ωi) in (23)-(28), we obtain the formulas
corresponding to the Tamm-Dancoff Approximation (TDA). 

2.3. Nuclear Matrix Elements

In this study, the ground states of the parent and daughter nuclei are assumed to be
same, i.e.                             Matrix elements of beta transitions given in Eq. (2) take
the form of 

If we use (28) and (29), we find that the general expression for            given in (2),
in the form of

Now the basic theorem of residues allows us to write the expressions for (32)
(Balaev et al., 1990) in the following form:

Which is depended on the decay energy of W and the interaction constant χph.

3. Numerical Results and Discussions

The single-particle energies used in the numerical calculations were computed using
the Hartree-Fock Approximation with Skyrme-III forces described in the reference
(Negele et al., 1972). In this approximation, the wave functions of proton and neutron
for a given level have been calculated as equal to each other.We considered the 40Ca
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nucleus as core and took the same single-particle basis both for protons and neutrons
shown in Table 1. We have first calculated ∆n and ∆p using formula (12) with the aid of
experimental binding energies (Audi et al., 1993). Using these parameters λn and λp
are calculated by Eq. (13). Following the equations (11), (10), (18), (17, (25), (26) and
(33) in order,           is calculated.

In this study, 2ν2β decay nuclear matrix elements of 128Te and 130Te isotopes have
been calculated in TDA using the theory of residues and counter integrals. Since, Balaev
et al. (Balaev et al., 1990) used the same method for their calculation we present the
results of our analyses in table 2 in comparison with the results of Balaev et al., and
experimental results. The experimental data for 128Te →128Xe transition was measured
by Bernatowichz et al., (Bernatowichz et al., 1992) and for 130Te → 130Xe transition
the data was measured by Bernatowichz et al., (Bernatowichz et al., 1992) and Takaoka
et al (Takaoka et al., 1996). For 128,130Te → 128,130Xe transitions, our results obtained
by using the TDA are shown in the third row of table 3. The second row shows the
results of Balaev et al., (Balaev et al., 1990) obtained also for by using the wood-Saxon
potential in TDA. The last row in the same table shows the experimental results. Our
results approach to the experimental ones better than the results of Balaev et al. 

We also show the dependence of            on χph for 128,130Te isotopes in Figure 1.
We have taken χph = 0.15MeV n our analyses. When χph = 0 , the numerical values of  

correspond to the quasiparticle model. As χph increases, the quantity           declines
and for large quantities tends quadraticaly to the zero. 
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Table 2. Single-particle energies in units of MeV 
 

Shell 128
Te 130

Te 

 p n p n 

1f7/2 -21.298 -26.430 -21.9558 -26.394 

1f5/2 -18.090 -23.024 -18.717 -23.259 

2p3/2 -15.436 -20.725 -16.080 -20.710 

2p1/2 -14.144 -19.384 -14.798 -19.362 

1g9/2 -12.352 -17.470 -13.080 -17.459 

1g7/2 -7.141 -12.104 -7.878 -12.259 

2d5/2 -5.412 -11.015 -6.066 -11.069 

2d3/2 - 3.394 -8.738 -4.061 -8.797 

3s1/2 -2.696 -8.677 -3.315 -8.694 

1h11/2 -3.013 -8.189 -3.720 -8.219 

2

GTM  

2

GTM  2
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4. Conclusion

We have calculated          using TDA with the theory of residues at the single particle
energy base, which was evaluated in the Hartree-Fock approximation with Skyrme-III
forces. Our findings are better than that of Balaev et al. (Balaev et al 1990), which were
evaluated in the same method, but using the base of Wood-Saxon Potential. In the light
of our results, we may conclude that one can use the single particle energies, which is
evaluated in the Hartree-Fock Approximation with Skyrme-III forces, in realiability in
calculation for nuclear matrix elements of two-neutrino double beta decay in the
developed models described in section 1.
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Table 2. Nuclear Matrix Element 2

GTM (MeV
-1

) for 22  

Transitions XeTe 128128

 
XeTe 130130

 
(Balaev et al., 

1990) 

0.90 0.88 

This work 0.372 0.283 

Experiment 0.025  

Ref. 

(Bernatowichz et 

al., 1992) 

0.017;0.037 
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(Takaoka et al., 1996) 
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