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Abstract

In this paper, firstly it is given the definitions and properties of paracomplex structures. Then using this
differential geometric structures we obtain a partial paracomplex generalization of curvature identities for
Hermitian manifolds and quasi -Kaehler manifolds known to be complex manifolds and studied by Gray in [2].
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Ozet

Bu makalede, oncelikle para-kompleks yapilarin tanimlari ve Ozellikleri verildi. Daha sonra, bu
diferensiyel geometrik yapilar kullanilarak, [2] de Gray tarafindan ¢aligilan ve komplex manifoldlar olarak
bilinen Hermit ve yari-Kahler manifoldlar icin egrilik 6zdesliklerinin kismi bir para-kompleks genellemesi
elde edildi.

Anahtar Kelimeler: para-kompleks yapi; para-kompleks, para-Hermit ve para-yar1 Kahler manifold;
egrilik.

1. Introduction and Notations:

In order to obtain a better understanding of the ideas and results in the survey, we
shall now recall some general definitions concerning (almost) paracomplex and
(almost) para-Hermitian. From now on, all the manifolds and geometric objects are C®
and the sum is taken over repeated indices. Also, we denote by A the set of paracomplex
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numbers, by [fM) the set of paracomplex functions on M, by Xx(M)the set of
paracomplex vector fields on M and by A the set of paracomplex 1-forms on M.

Definition 1.1: An almost product structure J on a manifold M is a (1,1) tensor field
on M such that J2=/. The pair (M,J) is called an almost product manifold.

Definition 1.2: An almost paracomplex manifold is an almost product manifold
(M,J) such that the two eigenbundles T*M and T"M associated to the eigenvalues +1
and -1 of J, respectively, have the same rank. (Note that the dimension of an almost
paracomplex manifold is necessarily even) Equivalently, a splitting of the tangent
bundle TM of a manifold M, into the Whitney sum of two subbundles on T*M of the
same fiber dimension is called an almost paracomplex structure on M.

Definition 1.3: An almost paracomplex structure on a 2m-dimensional manifold M
may alternatively be defined as a G- structure on M with structural group GL(n,R)x
GL(n,R). Let J, be matrix representation of J structure. The group G can be described
as the invarience group of the matrix J, that is, alJG if and only if aJyorl= J,. A
paracomplex manifold is an almost paracomplex manifold (M,/) such that the G-
structure defined by the tensor field J is integrable [1].

Definition 1.4 : Let be a pseudo- Riemannian metric tensor g on paracomplex

manifold M. Then g is called a para-Hermitian metric g on paracomplex manifold M if
g(Ju,v)+ g(u,Jv)=0 or g(Ju,Jv)+ g(u,v)=0 forall u,veT, (M). (1.1

An almost para-Hermitian manifold (M , g, J) is a differentiable manifold M endowed
with an almost product structure J and a pseudo- Riemannian metric g, compatible in
the sense that

SUX,Y)+g(X JY)=0 or g(JXJY)+g(X,Y)=0 for all X,YOx (M) . (1.2)

An almost para-Hermitian structure on a differentiable manifold M is G- structure
on M whose structural group is the representation of the paraunitary group U(n,A) given
at the end of subsection (2.4) in [1].

Definition 1.5: A para-Hermitian manifold is a manifold with an integrable almost

para-Hermitian structure (g,J).

Given an almost para-Hermitian manifold (M,g,J), we shall call para fundamental 2-

form (or para-Kaehlerian form) to the 2-covariant skew tensor field ® defined by

D(X,Y) = g(X,JY)or O(X,Y)=—-g(JX,Y). (1.3)
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Definition 1.6: An almost para-Hermitian manifold (M,g,J) such that d®=0 shall
be called an almost para-Kaehlerian manifold.

A para-Hermitian manifold (M,g,J) is said to be a para- Kaehlerian manifold if
dP=0, i.e., P is closed.

Definition 1.7: Let be a paracomplex manifold M.. Given by X,Y,X",Y" vector
fields, by f paraholomorfic function and by [,] Lie bracket on M. Then, N, is called
Nijenhuis tensor of paracomplex structure J defined by equation

N,(X,Y)=[X,Y]-J[ux,Y]-J[X,J7]+[0x,J7]
and provided the properties

DN, (X, Y)==N,(Y,X)

i) N, (X, Y) = N, (X, fY) = /N, (X.Y)
i) N, (X +X',Y)=N,(X,Y)+ N, (X',Y),N,(X,Y +Y') = N,(X,Y)+ N, (X,Y").

2. Curvatures for Para-Hermitian Manifolds

Theorem 2.1: We denote by Uy covariant derivation, by ® almost para-Kaehler
form and by N; Nijenhuis tensor on an almost para-Hermitian manifold M. Then, it is
provided the equation

28((V )Y, Z)+3d®(X,Y,Z) +3dD(X,JY,JZ)+ g(N,(Y,Z),JX)=0.  (2.1)

Proof: We have 2g((V,J)Y,Z)=2g(V ,(JY),Z)+2g(V ,Y,JZ).

Then we obtain the equalities

2g(V,(JY),Z2)=Xg(JY,Z)+JYg(X,Z)—Zg(X,JY)

+g((x, 07} 2)+ gz, X ]JY) + g(X.[Z,JY)) 22)
2g(V Y, JZ) = Xg(Y,JZ)+Yg(X,JZ) - JZg(X,Y) )3
+g((x.Y}uz)+g(Vz, x] V) + g(x,[JZ,Y)). 2:3)
In the other hand it is
3dD(X,Y,Z) = XD(Y,Z)+ YDO(Z,X) + ZO(X,Y) 24
~o(x, v} 2)- oy, zLx) - oz, x]1) @9
3dD(X,JY,JZ) = XD(JY,JZ) + JYD(JZ, X))+ JZD(X,JY) 25)

—~o(x,Jr]JZ2)-0(JZ,0Y] X)-0(JZ,X] JY)
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g(N,(Y,2),JX)=d([Y,Z], X) - DJ[JY,Z] X) - dJ[Y,JZ], X) + D([JY,)Z] X). (2.6)

From (2.2), (2.3), (2.4), (2.5), and (2.6) equations, the proof is finished.
Lemma 2.1: Let be an almost para-Hermitian manifold M. Given by x(M) Lie

algebra and by N; Nigenhuis tensor of almost paracomplex structure / on M. We call a

paracomplex manifold if and only if

N X, Y)=0forall X,Yey(M). 2.7

Proof: Let be a paracomplex manifold M. In this case, it is [V jx.J]Y = J[Vx,J]Y.

Hence we obtain that M is a paracomplex manifold <

N,(X,Y)=[x,Y]-J[ux,Y]-J[X,JY]+[JX, Y]
=V,Y -V, X -JV, Y +JV,JX
~ IV JY+IV X +V  JY =V, JX
=JUV)Y ~JIV )X~V )Y +J(V, )X
—J(Vx DY +(JV ) )X + (VY = (V , )X
=—J(VJ =V +J(V,J-JIV)X
+(VJX"]—JVJX)Y_(VJYJ_JVJY)X
= IV I+ IV INX [V I [V, )X
= JV I+ IV IX + IV I -V, )X
=0. O
Lemma 2.2: Let be a paracomplex manifold M. Let € = £1, and assume that M has
[Vx.J]=eJ[Vyx,J] forall X e y(M). Then
2.
[VNJ(X,Y)’JJ_ [RXY +RJXJY’J]+ EI[RJXY + R)UY’J]: 0 ( 8)

forall X,Y € y(M).

Proof: The curvature operator Ryy is defined by Ry, =V, ;- V,.V,]
for all X,Y 0O x(M). Then we have
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lvNJ(X,Y) ’JJ = lv[X,Y]—a][JX,Y]—&/[X,JY]+[JX,JY]"]J
= [V[X,Y]’J]_ g][V[JX,Y]aJ]_ &][V[X,JY]’J]+ [V[JX,JY]’J]
= [RXY + [VX’VY]“]]_&][RJXY + [VJX’VY]"]]
_3][RXJY +[VX’VJY] ] [RJXJY +[V1Xavjy] J]
:[RXY’J]+[[VX’V ]J] g][ s ] [[VJX’V ]J]
_a][RXJY’J]_a][[VX’vJY]’J]+[ JXJY’J]+ [[ijavjy]a']]
= [RXY +RJX/Y’J]_SJ[RJXY +RXJY=J]
+[[VX>VY]+ [VJX’VJY]’J]_a][[vJXsVY]"' [VX’VJY]’J]'

(2.9)

If we hold the equation given by (2.9), we obtain

[VNJ(X,Y)’JJ_ [RXY +RJXJY’J]+ a][RJXY +RXJY’J] :[[VX’VY]+ [VJX7V./Y ]’J]

_8][[VJX7VY]+[VX’VJY]7J]‘ (2'10)

Now, using Jacobi identity on each of terms on the right hand side of (2.10),
and put [V jy,J]=¢eJ[V x.,J], we get

[V Vi 1+ [V oV oy b 1= sf[[ w4V .V L]

=V v, 1V 0V -1V 0V L= 21V 40 1]
) O AN O ]] Vo JIV s -V 5 1V ]
o

+81[[VY,J1V,X]+81[[J Vol Vi l+ &V 1V ]+ e[V, 1V, ]
=V, 1V [+ V)V, ]-allV I L allv )y, ]
+ e[V IV -V 1V 1+ 1V 1V o ] 1V 2]V ]
Hence it follows
[[VX’VY]+[VJX’VJY]’J] a][[VJX,V ] [VX,VJY],J]ZO. (2.11)
Finally, this finishes the proof of Lemma 2.2.
Theorem 2.2: Let be an para-Hermitian manifold M. Then it is satisfied the equation

[Ryy, T~ J[R ys T ] J[Ryy o I |+ [R iy, J]= 0, for X,Y € y(M). (2.12)
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Proof: In Lemma 2.2, taking €=1, we have equations

[Ryy.J]= [V[X’Y] —[VX,VY],J] = [V[X,Y],J]—[[VX,VY],J]
[V |y LV ]+ (1.9 5 ]9 ] 2.13)
_ [V[x,y] ,J]+[[Vy,J],VX]—[[VX,J],VY]

J[RJXY"]]= ‘]|_V[JX‘Y] _[VJX’VY]“]JZ JlV[JX,Y]’JJ_J[[VJX’VY]’J]

= J[V[JX,Y]’J]+J[[VY’J]’VJX]+J[[J'»'VJX]’VY] (2.14)
= J[V[JX,Y]’J]+J[[VY'»'J]’VJX]_[[VX'»'J]’VY]

J[RX/Y7J]= JlV[X,JY] —[VX,VJY],JJ= JlV[X,Jy]vJJ_J[[VXsVJY]’J]
= J[V[X,JY]’J]+ J[[VJ}"J]’VX]+J[[J9vx]sv./y (2-15)
= J[V[X,JY]7J]+ [[vy7‘]]’v)(]_J[[VX’J]’VJY]

[RJXJY’J]: |.V[JX,JY] - [VJX’VJY]’JJ: [V[JX,JY]’JJ+ [[VJXﬂijlJ]
= [V[JX,JY]’J]+ [[VJY’leJX]+ [[J’VJX ]’VJY] (2.16)
= [V[JX,JY]ﬂJ]+‘][[VY’J:LVJX]_J[[VX’J]’VJY]'

If we take into consideration equations (2.13), (2.14), (2.15) and (2.16), we find
[Riy s T1= IRy s 1= TRy T 14 Ry oI 1=V 1, [+ 19,719 J- [V 4071, ]
IV IV IV 4 V9DV, ] @17
~ IV |19,V S+ IV, IV ) ]
Vi I IV, 19 -9 IV, )

The right hand side of (2.17) is equal, we write

[RXY’J]_J[RJXY’J]_J[RX./Y"]]+ [RJXJY’J]:lVNJ(X,Y)5JJ . (2.18)
Thus, from Lemma 1.2, i.e., M is paracomplex manifold if and only if (X,Y)=0,
the proof is finished. ]

Let us put in

Ry, =<RyY,Z>for X,Y,Z,W e y(M). (2.19)
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Then the sectional curvature of M is defined by equation
2 2 5 !
Ky = Ry WX <. 52 (2.20)

Now, we may give the following corollary from Theorem 2.2.

Corollary 1.1: Let M be a para-Hermitian manifold. Then there exist the equalities

a) RWXYZ + RJWJXJYJZ + RJWJXYZ + RJWXJYZ + RJWXYJZ + RWJXJYZ + RWJXYJZ + RWXJYJZ = 0 >

such that W, X,Y,Z € y(M).
b) KWX +KJWJX i1<WJ)( iKJWX:RWXWX +RJWJXJWJX
for [W[ =[X|=1 and < W, X >=0,such that W,X,Y,Z € y(M).

Proof: a) By (2.19), we write equations

Ryy =< Ry JY,JZ >=< JR,, Y, JZ >=—< R, Y,J*Z >= =< R, Y,Z >=—R,,,, (2.21)

Similarly, we see that

Rz = =Rz Rowxrvz = —Rowxvszs Rwuvz = —Rywvsz - (2.22)

Taking into consideration (2.21) and (2.22) equalities, the proof is completed. [ ]
b) From (2.20), we obtain the following equalities:

Ko = Ry PP = <17, 5 = Ry
L P (Vs Y SR S L .
Ky = Ry {HWHZHJXHZ— <W,JX > }'1 Ry 1o < >
Ky = Ry {HJWH2 |X|* <o, x > }'1 = Ry i 1= < W, Jx 52
Using hypothesis and (2.23), we see that
KWX + KJWJX x KWJX + KJWX = RWXWX + RJWJXJWJX .
Thus, the proof is completed. ]

Analogously Hermitian manifold conformally equlivalent to C” are considered,
para- Hermitian manifolds conformally equivalent to A” may be considered. Then, In
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particular new examples of manifold with constant paraholomorphic sectional curvature

0 are written. Now, we may put as follows:

Theorem 2.3: Given by M para-Hermitian manifold and by O constant
paraholomorphic sectional curvature. Then

Ry + R + Ry + R = 201 W, X 5> 4 < JW, X 5>}, for W, X e y(M).

Proof: Put in the relation between curvature tensor and sectional curvature as

follows:

RGUX,U) =2 XX 5<UU > — < X,U > 13 <JX,U >*)
4 5 1 (2.24)
S AXUXU)+ AKX U X JU).

Then, we have

AX,U,X,U)=R(X,U,X,U)+R(X,U,JX,JU)=0

2.25
A(X,JU,X,JU)=R(X,JU,X,JU)+R(X,JU,JX,U) =0 2:25)

Using (2.24 and (2.25) we obtain

R(X,U, X,U) =§{< X, X ><U,U>-<X,U>" 43<JX,U>"} (2.26)

So, with respect to (2.26) it follows the following equations:

Ry =§{< WW><X,X>-<W,X>+3<JX,W >2}

:g{ JW,JW >< JX,JX >—< JW,JX >* +3< X,JW >2}

R JWIXIWIX

(2.27)

=§{ W W ><JX,JX >—<W,JX >* +3<X,W>2}

R WIXWIX

R oy =g{< JW,IW >< X, X >—<JW, X >* +3<JX,IJW >2}
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From (2.27), we have

W |x]"—<w, X >* +3<gw, X >?
s IPIIX] - <w.x > +3<aw, x >

JWXIWX T

4

R

WXWwX + R./WJ)CIWJX + RWJXWJX +R

||’ x| - <Iw, x >* 3 <, x >?

|| |X]7 - <o, x > +3<w, X >?

=§{4<W,X>2 +4<JW, X >

=oflew, x> +<aw, x>}
Finally, the proof finishes. [

Theorem 2.4: Let be a para-quasi Kaehler manifold M. Then it is satisfied the equation

[Ryy + Ry s 1= IRy + Ry J)= 20|V oI |- 20|V g, sy ], for X,Y € 2(M).

Proof: Using the properties that M is para-quasi Kaehler

manifold
= [VJX,J] = —J[VX,J]. Then we calculate that

N,(X.Y)=[Xx,Y]-J[Jx.Y]-J[X,JY]+[JX,JY]
=V, Y-V, X =JV Y +JV,JX
— IV JY + IV, X +V ( JY =V, JX
=J(IV)Y = J(IV,)X (V)Y +J(V, )X
—J(V DY +(IV )X + (Vi Y =(V ), HX
=J(VyJ =V )Y =J(V,J =JV,)X
~(VixJ =V )Y + (Vi J = JV )X
=J[V I =J[V I =V T+ [V T X (2.28)
=J[V I IV I X+ IV I —J[V,. )X
=2J[Vy,J Y =27V, J|X =2J{V,,JJY -[V,.J]x}

In Lemma 2.2, for € = -1, we have equality

[RXY + RJXJY"]]_‘][RJXY + RXJY’J] = [VN_,(X,Y)’JJ' (2.29)
From (2.28) and (2.29), the proof is completed. ]
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