On Curvature Identities For Para-Hermitian Manifolds

Mehmet TEKKOYUN*

Abstract

In this paper, firstly it is given the definitions and properties of paracomplex structures. Then using this differential geometric structures we obtain a partial paracomplex generalization of curvature identities for Hermitian manifolds and quasi -Kaehler manifolds known to be complex manifolds and studied by Gray in [2].

Key words: paracomplex structure, paracomplex, para-Hermitian and para-quasi Kaehler manifold, curvature.

Özet

Bu makalede, öncelikle para-kompleks yapıların tanımları ve özellikleri verildi. Daha sonra, bu diferensiyel geometrik yapılar kullanılarak, [2] de Gray tarafından çalışılan ve komplex manifoldlar olarak bilinen Hermit ve yarı-Kahler manifoldları için eğrilik özdeşliklerinin kısmi bir para-kompleks genellemesi elde edildi.

Anahtar Kelimeler: para-kompleks yapı; para-kompleks, para-Hermit ve para-yarı Kahler manifold; eğrilik.

1. Introduction and Notations:

In order to obtain a better understanding of the ideas and results in the survey, we shall now recall some general definitions concerning (almost) paracomplex and (almost) para-Hermitian. From now on, all the manifolds and geometric objects are C^{∞} and the sum is taken over repeated indices. Also, we denote by \mathbf{A} the set of paracomplex

[^0]numbers, by $\mathfrak{J}(M)$ the set of paracomplex functions on M, by $\chi(M)$ the set of paracomplex vector fields on M and by Λ_{1} the set of paracomplex 1-forms on M.

Definition 1.1: An almost product structure J on a manifold M is a $(1,1)$ tensor field on M such that $J^{2}=I$. The pair (M, J) is called an almost product manifold.

Definition 1.2: An almost paracomplex manifold is an almost product manifold (M, J) such that the two eigenbundles $T^{+} M$ and $T^{-} M$ associated to the eigenvalues +1 and -1 of J, respectively, have the same rank. (Note that the dimension of an almost paracomplex manifold is necessarily even) Equivalently, a splitting of the tangent bundle $T M$ of a manifold M, into the Whitney sum of two subbundles on $T^{ \pm} M$ of the same fiber dimension is called an almost paracomplex structure on M.

Definition 1.3: An almost paracomplex structure on a 2 m -dimensional manifold M may alternatively be defined as a G - structure on M with structural group $G L(n, R)$ x $G L(n, R)$. Let J_{0} be matrix representation of J structure. The group G can be described as the invarience group of the matrix J_{0}, that is, $\alpha \in G$ if and only if $\alpha \mathrm{J}_{0} \alpha^{-1}=J_{0}$. A paracomplex manifold is an almost paracomplex manifold (M, J) such that the Gstructure defined by the tensor field J is integrable [1].

Definition 1.4 : Let be a pseudo- Riemannian metric tensor g on paracomplex manifold M. Then g is called a para-Hermitian metric g on paracomplex manifold M if

$$
\begin{equation*}
g(J u, v)+g(u, J v)=0 \text { or } g(J u, J v)+g(u, v)=0 \text { for all } u, v \in T_{p}(M) . \tag{1.1}
\end{equation*}
$$

An almost para-Hermitian manifold (M, g, J) is a differentiable manifold M endowed with an almost product structure J and a pseudo- Riemannian metric g , compatible in the sense that

$$
\begin{equation*}
g(J X, Y)+g(X, J Y)=0 \text { or } g(J X, J Y)+g(X, Y)=0 \text { for all } X, Y \in \chi(M) . \tag{1.2}
\end{equation*}
$$

An almost para-Hermitian structure on a differentiable manifold M is G- structure on M whose structural group is the representation of the paraunitary group $U(n, \mathbf{A})$ given at the end of subsection (2.4) in [1].

Definition 1.5: A para-Hermitian manifold is a manifold with an integrable almost para-Hermitian structure (g, J).

Given an almost para-Hermitian manifold (M, g, J), we shall call para fundamental 2form (or para-Kaehlerian form) to the 2-covariant skew tensor field Φ defined by

$$
\begin{equation*}
\Phi(X, Y)=g(X, J Y) \text { or } \Phi(X, Y)=-g(J X, Y) \tag{1.3}
\end{equation*}
$$

Definition 1.6: An almost para-Hermitian manifold (M, g, J) such that $d \Phi=0$ shall be called an almost para-Kaehlerian manifold.

A para-Hermitian manifold (M, g, J) is said to be a para- Kaehlerian manifold if $d \Phi=0$, i.e., Φ is closed.

Definition 1.7: Let be a paracomplex manifold M.. Given by $\mathrm{X}, \mathrm{Y}, \mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$ vector fields, by f paraholomorfic function and by [,] Lie bracket on M. Then, N_{J} is called Nijenhuis tensor of paracomplex structure J defined by equation

$$
N_{J}(X, Y)=[X, Y]-J[J X, Y]-J[X, J Y]+[J X, J Y]
$$

and provided the properties
i) $N_{J}(X, Y)=-N_{J}(Y, X)$
ii) $N_{J}(f X, Y)=N_{J}(X, f Y)=f N_{J}(X, Y)$
iii) $N_{J}\left(X+X^{\prime}, Y\right)=N_{J}(X, Y)+N_{J}\left(X^{\prime}, Y\right), N_{J}\left(X, Y+Y^{\prime}\right)=N_{J}(X, Y)+N_{J}\left(X, Y^{\prime}\right)$.

2. Curvatures for Para-Hermitian Manifolds

Theorem 2.1: We denote by ∇_{X} covariant derivation, by Φ almost para-Kaehler form and by N_{J} Nijenhuis tensor on an almost para-Hermitian manifold M. Then, it is provided the equation

$$
\begin{equation*}
2 g\left(\left(\nabla_{X} J\right) Y, Z\right)+3 d \Phi(X, Y, Z)+3 d \Phi(X, J Y, J Z)+g\left(N_{J}(Y, Z), J X\right)=0 \tag{2.1}
\end{equation*}
$$

Proof: We have $2 g\left(\left(\nabla_{X} J\right) Y, Z\right)=2 g\left(\nabla_{X}(J Y), Z\right)+2 g\left(\nabla_{X} Y, J Z\right)$.
Then we obtain the equalities

$$
\begin{align*}
2 g\left(\nabla_{X}(J Y), Z\right) & =X g(J Y, Z)+J Y g(X, Z)-Z g(X, J Y) \\
& +g([X, J Y], Z)+g([Z, X], J Y)+g(X,[Z, J Y]) \tag{2.2}\\
2 g\left(\nabla_{X} Y, J Z\right) & =X g(Y, J Z)+Y g(X, J Z)-J Z g(X, Y) \\
& +g([X, Y], J Z)+g([J Z, X], Y)+g(X,[J Z, Y]) \tag{2.3}
\end{align*}
$$

In the other hand it is

$$
\begin{align*}
3 d \Phi(X, Y, Z) & =X \Phi(Y, Z)+Y \Phi(Z, X)+Z \Phi(X, Y) \\
& -\Phi([X, Y], Z)-\Phi([Y, Z], X)-\Phi([Z, X], Y) \tag{2.4}\\
3 d \Phi(X, J Y, J Z) & =X \Phi(J Y, J Z)+J Y \Phi(J Z, X)+J Z \Phi(X, J Y) \\
& -\Phi([X, J Y], J Z)-\Phi([J Z, J Y], X)-\Phi([J Z, X], J Y) \tag{2.5}
\end{align*}
$$

$$
\begin{equation*}
g\left(N_{J}(Y, Z), J X\right)=\Phi([Y, Z], X)-\Phi(J[J Y, Z], X)-\Phi(J[Y, J Z], X)+\Phi([J Y, J Z], X) . \tag{2.6}
\end{equation*}
$$

From (2.2), (2.3), (2.4), (2.5), and (2.6) equations, the proof is finished.
Lemma 2.1: Let be an almost para-Hermitian manifold M. Given by $\chi(M)$ Lie algebra and by N_{J} Nigenhuis tensor of almost paracomplex structure J on M . We call a paracomplex manifold if and only if

$$
\begin{equation*}
N_{J}(X, Y)=0 \text { for all } X, Y \in \chi(M) . \tag{2.7}
\end{equation*}
$$

Proof: Let be a paracomplex manifold M. In this case, it is $\left[\nabla_{J X}, J\right] Y=J\left[\nabla_{\mathrm{X}}, J\right] Y$. Hence we obtain that M is a paracomplex manifold \Leftrightarrow

$$
\begin{aligned}
N_{J}(X, Y)= & {[X, Y]-J[J X, Y]-J[X, J Y]+[J X, J Y] } \\
= & \nabla_{\mathrm{X}} Y-\nabla_{Y} X-J \nabla_{\mathrm{JX}} Y+J \nabla_{Y} J X \\
& -J \nabla_{\mathrm{X}} J Y+J \nabla_{J Y} X+\nabla_{\mathrm{JX}} J Y-\nabla_{J Y} J X \\
= & J\left(J \nabla_{\mathrm{X}}\right) Y-J\left(J \nabla_{Y}\right) X-\left(J \nabla_{\mathrm{JX}}\right) Y+J\left(\nabla_{Y} J\right) X \\
& -J\left(\nabla_{\mathrm{X}} J\right) Y+\left(J \nabla_{J Y}\right) X+\left(\nabla_{\mathrm{JX}} J\right) Y-\left(\nabla_{J Y} J\right) X \\
= & -J\left(\nabla_{\mathrm{X}} J-J \nabla_{\mathrm{X}}\right) Y+J\left(\nabla_{Y} J-J \nabla_{Y}\right) X \\
& +\left(\nabla_{\mathrm{JX}} J-J \nabla_{\mathrm{JX}}\right) Y-\left(\nabla_{\mathrm{JY}} J-J \nabla_{\mathrm{JY}}\right) X \\
= & -J\left[\nabla_{\mathrm{X}}, J\right] Y+J\left[\nabla_{\mathrm{Y}}, J\right] X+\left[\nabla_{\mathrm{JX}}, J\right] Y-\left[\nabla_{\mathrm{JY}}, J\right] X \\
= & -J\left[\nabla_{\mathrm{X}}, J\right] Y+J\left[\nabla_{\mathrm{Y}}, J\right] X+J\left[\nabla_{\mathrm{X}}, J\right] Y-J\left[\nabla_{\mathrm{Y}}, J\right] X \\
= & 0 .
\end{aligned}
$$

Lemma 2.2: Let be a paracomplex manifold M. Let $\varepsilon= \pm 1$, and assume that M has $\left[\nabla_{J X}, J\right]=\varepsilon J\left[\nabla_{X}, J\right]$ for all $X \in \chi(M)$. Then

$$
\begin{equation*}
\left[\nabla_{N_{J}(X, Y)}, J\right]-\left[R_{X Y}+R_{J X J Y}, J\right]+\varepsilon J\left[R_{J X Y}+R_{X J Y}, J\right]=0 \tag{2.8}
\end{equation*}
$$

for all $X, Y \in \chi(M)$.
Proof: The curvature operator $R_{X Y}$ is defined by $R_{X Y}=\nabla_{[X, Y]}-\left[\nabla_{X}, \nabla_{Y}\right]$ for all $\mathrm{X}, \mathrm{Y} \in \chi(M)$. Then we have

$$
\begin{align*}
{\left[\nabla_{N_{J}(X, Y)}, J\right]=} & {\left[\nabla_{[X, Y]-\varepsilon[J X, Y]-\varepsilon[X, J Y]+[J X, J]}, J\right] } \\
= & {\left[\nabla_{[X, Y]}, J\right]-\varepsilon J\left[\nabla_{[J X, Y]}, J\right]-\varepsilon J\left[\nabla_{[X, J Y]}, J\right]+\left[\nabla_{[J X, J Y]}, J\right] } \\
= & {\left[R_{X Y}+\left[\nabla_{X}, \nabla_{Y}\right], J\right]-\varepsilon J\left[R_{J X Y}+\left[\nabla_{J X}, \nabla_{Y}\right], J\right] } \\
& -\varepsilon J\left[R_{X J Y}+\left[\nabla_{X}, \nabla_{J Y}\right], J\right]+\left[R_{J X J Y}+\left[\nabla_{J X}, \nabla_{J Y}\right], J\right] \tag{2.9}\\
= & {\left[R_{X Y}, J\right]+\left[\left[\nabla_{X}, \nabla_{Y}\right], J\right]-\varepsilon J\left[R_{J X Y}, J\right]-\varepsilon J\left[\left[\nabla_{J X}, \nabla_{Y}\right], J\right] } \\
& -\varepsilon J\left[R_{X J Y}, J\right]-\varepsilon J\left[\left[\nabla_{X}, \nabla_{J Y}\right], J\right]+\left[R_{J X Y Y}, J\right]+\left[\left[\nabla_{J X}, \nabla_{J Y}\right], J\right] \\
= & {\left[R_{X Y}+R_{J X Y Y}, J\right]-\varepsilon J\left[R_{J X Y}+R_{X J Y}, J\right] } \\
& +\left[\left[\nabla_{X}, \nabla_{Y}\right]+\left[\nabla_{J X}, \nabla_{J Y}\right], J\right]-\varepsilon J\left[\left[\nabla_{J X}, \nabla_{Y}\right]+\left[\nabla_{X}, \nabla_{J Y}\right], J\right] .
\end{align*}
$$

If we hold the equation given by (2.9), we obtain

$$
\begin{array}{r}
{\left[\nabla_{N_{J}(X, Y)}, J\right]-\left[R_{X Y}+R_{J X J Y}, J\right]+\varepsilon J\left[R_{J X Y}+R_{X J Y}, J\right]=\left[\left[\nabla_{X}, \nabla_{Y}\right]+\left[\nabla_{J X}, \nabla_{J Y}\right], J\right]} \\
-\varepsilon J\left[\left[\left[\nabla_{J X}, \nabla_{Y}\right]+\left[\nabla_{X}, \nabla_{J Y}\right], J\right] .\right. \tag{2.10}
\end{array}
$$

Now, using Jacobi identity on each of terms on the right hand side of (2.10), and put $\left[\nabla_{J X}, J\right]=\varepsilon J\left[\nabla_{X}, J\right]$, we get

$$
\begin{aligned}
{\left[\left[\nabla_{X},\right.\right.} & \left.\left.\nabla_{Y}\right]+\left[\nabla_{J X}, \nabla_{J Y}\right], J\right]-\varepsilon J\left[\left[\nabla_{J X}, \nabla_{Y}\right]+\left[\nabla_{X}, \nabla_{J Y}\right], J\right] \\
& =\left[\left[\nabla_{X}, \nabla_{Y}\right], J\right]+\left[\left[\nabla_{J X}, \nabla_{J Y}\right], J\right]-\varepsilon J\left[\left[\nabla_{J X}, \nabla_{Y}\right], J\right]-\varepsilon J\left[\left[\nabla_{X}, \nabla_{J Y}\right], J\right] \\
& =-\left[\left[\nabla_{Y}, J\right], \nabla_{X}\right]-\left[\left[J, \nabla_{X}\right], \nabla_{Y}\right]-\left[\left[\nabla_{J Y}, J\right], \nabla_{J X}\right]-\left[\left[J, \nabla_{J X}\right], \nabla_{J Y}\right] \\
& \left.+\varepsilon J\left[\nabla_{Y}, J\right], \nabla_{J X}\right]+\varepsilon J\left[\left[J, \nabla_{J X}\right], \nabla_{Y}\right]+\varepsilon J\left[\left[\nabla_{J Y}, J\right], \nabla_{X}\right]+\varepsilon J\left[\left[J, \nabla_{X}\right], \nabla_{J Y}\right] \\
& \left.=-\left[\left[\nabla_{Y}, J\right], \nabla_{X}\right]+\left[\left[\nabla_{X}, J\right], \nabla_{Y}\right]-\varepsilon J\left[\left[\nabla_{Y}, J\right], \nabla_{J X}\right]+\varepsilon J\left[\nabla_{X}, J\right], \nabla_{J Y}\right] \\
& \left.+\varepsilon J\left[\left[\nabla_{Y}, J\right], \nabla_{J X}\right]-\left[\nabla_{X}, J\right], \nabla_{Y}\right]+\left[\left[\nabla_{Y}, J\right], \nabla_{X}\right]-\varepsilon J\left[\left[\nabla_{X}, J\right], \nabla_{J Y}\right] .
\end{aligned}
$$

Hence it follows

$$
\begin{equation*}
\left[\left[\nabla_{X}, \nabla_{Y}\right]+\left[\nabla_{J X}, \nabla_{J Y}\right], J\right]-\varepsilon J\left[\left[\nabla_{J X}, \nabla_{Y}\right]+\left[\nabla_{X}, \nabla_{J Y}\right], J\right]=0 \tag{2.11}
\end{equation*}
$$

Finally, this finishes the proof of Lemma 2.2.
Theorem 2.2: Let be an para-Hermitian manifold M. Then it is satisfied the equation

$$
\begin{equation*}
\left[R_{X Y}, J\right]-J\left[R_{J X Y}, J\right]-J\left[R_{X J Y}, J\right]+\left[R_{J X J Y}, J\right]=0, \text { for } X, Y \in \chi(M) \tag{2.12}
\end{equation*}
$$

Proof: In Lemma 2.2, taking $\varepsilon=1$, we have equations

$$
\begin{align*}
& {\left[R_{X Y}, J\right]=\left[\nabla_{[X, Y]}-\left[\nabla_{X}, \nabla_{Y}\right], J\right]=\left[\nabla_{[X, Y]}, J\right]-\left[\left[\nabla_{X}, \nabla_{Y}\right], J\right]} \\
& =\left[\nabla_{[X, Y]}, J\right]+\left[\left[\nabla_{Y}, J\right], \nabla_{X}\right]+\left[\left[J, \nabla_{X}\right], \nabla_{Y}\right] \tag{2.13}\\
& =\left[\nabla_{[X, Y]}, J\right]+\left[\left[\nabla_{Y}, J\right], \nabla_{X}\right]-\left[\left[\nabla_{X}, J\right], \nabla_{Y}\right] \\
& J\left[R_{X X Y}, J\right]=J\left[\nabla_{[X X, Y]}-\left[\nabla_{J X}, \nabla_{Y}\right], J\right]=J\left[\nabla_{[X, Y]}, J\right]-J\left[\left[\nabla_{J X}, \nabla_{Y}\right], J\right] \\
& =J\left[\nabla_{[x, Y]}, J\right]+J\left[\left[\nabla_{\gamma}, J\right], \nabla_{J X}\right]+J\left[\left[J, \nabla_{J X}\right], \nabla_{Y}\right] \tag{2.14}\\
& \left.=J\left[\nabla_{[x, y]}, J\right]_{+} J\left[\left[\nabla_{r}, J\right] \nabla_{J x}\right]-\left[\nabla_{x}, J\right], \nabla_{\gamma}\right] \\
& \left.\left.J\left[R_{X Y}, J\right]=J \mid \nabla_{[X, J J]}-\left[\nabla_{X}, \nabla_{J Y}\right], J\right]=J\left[\nabla_{[X, J T]}, J\right]-J\left[\nabla_{X}, \nabla_{J Y}\right], J\right] \\
& \left.=J\left[\nabla_{[x, y]}, J\right]+J\left[\left[\nabla_{J r}, J\right], \nabla_{X}\right]+J\left[J, \nabla_{X}\right], \nabla_{J r}\right] \tag{2.15}\\
& \left.=J\left[\nabla_{[X, J \mid]}, J\right]+\left[\left[\nabla_{\gamma}, J\right], \nabla_{X}\right]-J\left[\nabla_{X}, J\right], \nabla_{J \gamma}\right] \\
& \left.\left[R_{J X Y}, J\right]=\left[\nabla_{[X, F, J]}-\left[\nabla_{J X}, \nabla_{J H}\right], J\right]=\left[\nabla_{[J X, J]}\right], J\right]+\left[\left[\nabla_{J X}, \nabla_{J Y}\right], J\right] \\
& \left.=\left[\nabla_{[J X, J]}, J\right]+\left[\nabla_{J Y}, J\right] \nabla_{J X}\right]+\left[J_{\left.\left.J, \nabla_{J X}\right], \nabla_{J X}\right]}\right] \tag{2.16}\\
& \left.=\left[\nabla_{[J, J]]}, J\right]_{+J} J\left[\nabla_{r}, J\right], \nabla_{J X}\right]-J\left[\left[\nabla_{X}, J\right], \nabla_{J Y}\right] .
\end{align*}
$$

If we take into consideration equations (2.13), (2.14), (2.15) and (2.16), we find

$$
\begin{align*}
{\left[R_{X Y}, J\right]-J\left[R_{J X Y}, J\right]-J\left[R_{X X Y}, J\right]+[} & {\left[R_{J X Y}, J\right]=\left[\nabla_{[X, Y]}, J\right]+\left[\left[\nabla_{Y}, J\right], \nabla_{X}\right]-\left[\left[\nabla_{X}, J\right], \nabla_{Y}\right] } \\
& -J\left[\nabla_{[J X, Y]}, J\right]-J\left[\left[\nabla_{Y}, J\right], \nabla_{J X}\right]+\left[\left[\nabla_{X}, J\right], \nabla_{Y}\right] \tag{2.17}\\
& -J\left[\nabla_{[X, J Y]}, J\right]-\left[\left[\nabla_{Y}, J\right], \nabla_{X}\right]+J\left[\left[\nabla_{X}, J\right], \nabla_{J Y}\right] \\
& +\left[\nabla_{[J X, J]}, J\right]+J\left[\left[\nabla_{Y}, J\right], \nabla_{J X}\right]-J\left[\left[\nabla_{X}, J\right], \nabla_{J Y}\right] .
\end{align*}
$$

The right hand side of (2.17) is equal, we write

$$
\begin{equation*}
\left[R_{X Y}, J\right]-J\left[R_{J X Y}, J\right]-J\left[R_{X J Y}, J\right]+\left[R_{J X J Y}, J\right]=\left\lfloor\nabla_{N_{J}(X, Y)}, J\right] . \tag{2.18}
\end{equation*}
$$

Thus, from Lemma 1.2, i.e., M is paracomplex manifold if and only if $(X, Y)=0$, the proof is finished.

Let us put in

$$
\begin{equation*}
R_{W X Y Z}=<R_{W X} Y, Z>\text { for } X, Y, Z, W \in \chi(M) . \tag{2.19}
\end{equation*}
$$

Then the sectional curvature of M is defined by equation

$$
\begin{equation*}
K_{W X}=R_{W X W X}\left\{\|W\|^{2}\|X\|^{2}-<W, X>^{2}\right\}^{-1} \tag{2.20}
\end{equation*}
$$

Now, we may give the following corollary from Theorem 2.2.

Corollary 1.1: Let M be a para-Hermitian manifold. Then there exist the equalities
a) $R_{W X Y Z}+R_{J W J X J Y J Z}+R_{J W J X Y Z}+R_{J W X J Y Z}+R_{J W X Y J Z}+R_{W J X J Y Z}+R_{W J X Y J Z}+R_{W X Y Y J Z}=0$, such that $W, X, Y, Z \in \chi(M)$.
b) $K_{W X}+K_{J W J X} \pm K_{W J X} \mp K_{J W X}=R_{W X W X}+R_{J W J X J W J X}$
for $\|\mathrm{W}\|=\|\mathrm{X}\|=1$ and $\langle W, X>=0$, such that $W, X, Y, Z \in \chi(M)$.
Proof: a) By (2.19), we write equations
$R_{W X J Y J Z}=\left\langle R_{W X} J Y, J Z\right\rangle=\left\langle J R_{W X} Y, J Z\right\rangle=-\left\langle R_{W X} Y, J^{2} Z\right\rangle=-\left\langle R_{W X} Y, Z\right\rangle=-R_{W X Y Z} .(2.21)$
Similarly, we see that

$$
\begin{equation*}
R_{J W J X J Y J Z}=-R_{J W J X Y Z}, R_{J W X J Y Z}=-R_{J W X Y J Z}, R_{W J X J Y Z}=-R_{W J X Y J Z} . \tag{2.22}
\end{equation*}
$$

Taking into consideration (2.21) and (2.22) equalities, the proof is completed.
b) From (2.20), we obtain the following equalities:

$$
\begin{align*}
K_{W X} & =R_{W X W X}\left\{\|W\|^{2}\|X\|^{2}-<W, X>^{2}\right\}^{-1}=R_{W X W X} \\
K_{J W J X} & =R_{J W J X J J X}\left\{\|J W\|^{2}\|J X\|^{2}-<J W, J X>^{2}\right\}^{-1}=R_{J W J X J W J X} \\
K_{W J X} & =R_{W J X W J X}\left\{\|W\|^{2}\|J X\|^{2}-<W, J X>^{2}\right\}^{-1}=R_{W J X W J X}\left\{-1-<W, J X>^{2}\right\}^{-1} \tag{2.23}\\
K_{J W X} & =R_{J W X J W X}\left\{\|J W\|^{2}\|X\|^{2}-<J W, X>^{2}\right\}^{-1}=R_{J W X J W X}\left\{-1-<W, J X>^{2}\right\}^{-1}
\end{align*}
$$

Using hypothesis and (2.23), we see that

$$
K_{W X}+K_{J W J X} \pm K_{W J X} \mp K_{J W X}=R_{W X W X}+R_{J W J X J W J X}
$$

Thus, the proof is completed.
Analogously Hermitian manifold conformally equlivalent to \mathbf{C}^{n} are considered, para- Hermitian manifolds conformally equivalent to $\mathbf{A}^{\boldsymbol{n}}$ may be considered. Then, In
particular new examples of manifold with constant paraholomorphic sectional curvature δ are written. Now, we may put as follows:

Theorem 2.3: Given by M para-Hermitian manifold and by δ constant paraholomorphic sectional curvature. Then

$$
R_{W X W X}+R_{J W J X J W J X}+R_{W J X W J X}+R_{J W X J W J X}=2 \delta\left\{<W, X>^{2}+\left\langle J W, X>^{2}\right\} \text {, for } W, X \in \chi(M)\right.
$$

Proof: Put in the relation between curvature tensor and sectional curvature as follows:

$$
\begin{align*}
& R(X, U, X, U)=\frac{\delta}{4}\left\{\langle X, X\rangle\langle U, U\rangle-\langle X, U\rangle^{2}+3\langle J X, U\rangle^{2}\right\} \tag{2.24}\\
&+\frac{5}{8} \lambda(X, U, X, U)+\frac{1}{8} \lambda(X, J U, X, J U) .
\end{align*}
$$

Then, we have

$$
\begin{align*}
& \lambda(X, U, X, U)=R(X, U, X, U)+R(X, U, J X, J U)=0 \\
& \lambda(X, J U, X, J U)=R(X, J U, X, J U)+R(X, J U, J X, U)=0 \tag{2.25}
\end{align*}
$$

Using (2.24 and (2.25) we obtain

$$
\begin{equation*}
\left.R(X, U, X, U)=\frac{\delta}{4}\{<X, X\rangle\langle U, U\rangle-\langle X, U\rangle^{2}+3\langle J X, U\rangle^{2}\right\} . \tag{2.26}
\end{equation*}
$$

So, with respect to (2.26) it follows the following equations:

$$
\begin{align*}
& R_{W X W X}=\frac{\delta}{4}\left\{<W, W><X, X>-<W, X>^{2}+3<J X, W>^{2}\right\} \\
& R_{J W J X J W J X}=\frac{\delta}{4}\left\{<J W, J W><J X, J X>-<J W, J X>^{2}+3<X, J W>^{2}\right\} \\
& R_{W J X W J X}=\frac{\delta}{4}\left\{<W, W><J X, J X>-<W, J X>^{2}+3<X, W>^{2}\right\} \tag{2.27}\\
& R_{J W X J W X}=\frac{\delta}{4}\left\{<J W, J W><X, X>-<J W, X>^{2}+3<J X, J W>^{2}\right\}
\end{align*}
$$

From (2.27), we have

$$
\begin{aligned}
R_{W X W X}+R_{J W J X J W J X}+R_{W J X W J X}+R_{J W X J W X} & =\frac{\delta}{4}\left\{\begin{array}{l}
\|W\|^{2}\|X\|^{2}-\left\langle W, X>^{2}+3<J W, X>^{2}\right. \\
\|W\|^{2}\|X\|^{2}-\left\langle W, X>^{2}+3<J W, X>^{2}\right. \\
-\|W\|^{2}\|X\|^{2}-<J W, X>^{2}+3<W, X>^{2} \\
-\|W\|^{2}\|X\|^{2}-<J W, X>^{2}+3<W, X>^{2}
\end{array}\right\} \\
& =\frac{\delta}{4}\left\{4<W, X>^{2}+4<J W, X>^{2}\right\} \\
& =\delta\left\{\left\{\left\langle W, X>^{2}+\left\langle J W, X>^{2}\right\}\right\} .\right.\right.
\end{aligned}
$$

Finally, the proof finishes.

Theorem 2.4: Let be a para-quasi Kaehler manifold M. Then it is satisfied the equation

$$
\left[R_{X Y}+R_{J X J Y}, J\right]-J\left[R_{J X Y}+R_{X J Y}, J\right]=2 J\left[\nabla_{\left[\nabla_{X}, J\right] Y}, J\right]-2 J\left[\nabla_{\left[\nabla_{Y}, J\right] X}, J\right] \text {, for } X, Y \in \chi(M) \text {. }
$$

Proof: Using the properties that M is para-quasi Kaehler manifold $\Leftrightarrow\left[\nabla_{J X}, J\right]=-J\left[\nabla_{X}, J\right]$. Then we calculate that

$$
\begin{align*}
N_{J}(X, Y)= & {[X, Y]-J[J X, Y]_{-} J[X, J Y]+[J X, J Y] } \\
= & \nabla_{\mathrm{X}} Y-\nabla_{Y} X-J \nabla_{\mathrm{JX}} Y+J \nabla_{Y} J X \\
& -J \nabla_{\mathrm{X}} J Y+J \nabla_{J Y} X+\nabla_{\mathrm{JX}} J Y-\nabla_{J Y} J X \\
= & J\left(J \nabla_{\mathrm{X}}\right) Y-J\left(J \nabla_{Y}\right) X-\left(J \nabla_{\mathrm{JX}}\right) Y+J\left(\nabla_{Y} J\right) X \\
& -J\left(\nabla_{\mathrm{X}} J\right) Y+\left(J \nabla_{J Y}\right) X+\left(\nabla_{\mathrm{JX}} J\right) Y-\left(\nabla_{J Y} J\right) X \\
= & J\left(\nabla_{\mathrm{X}} J-J \nabla_{\mathrm{X}}\right) Y-J\left(\nabla_{Y} J-J \nabla_{Y}\right) X \\
& -\left(\nabla_{\mathrm{JX}} J-J \nabla_{\mathrm{JX}}\right) Y+\left(\nabla_{\mathrm{JY}} J-J \nabla_{\mathrm{JY}}\right) X \\
= & J\left[\nabla_{\mathrm{X}}, J\right] Y-J\left[\nabla_{\mathrm{Y}}, J\right] X-\left[\nabla_{\mathrm{JX}}, J\right] Y+\left[\nabla_{\mathrm{JY}}, J\right] X \tag{2.28}\\
= & J\left[\nabla_{\mathrm{X}}, J\right] Y-J\left[\nabla_{\mathrm{Y}}, J\right] X+J\left[\nabla_{\mathrm{X}}, J\right] Y-J\left[\nabla_{\mathrm{Y}}, J\right] X \\
= & 2 J\left[\nabla_{\mathrm{X}}, J\right] Y-2 J\left[\nabla_{\mathrm{Y}}, J\right] X=2 J\left\{\left[\nabla_{\mathrm{X}}, J\right] Y-\left[\nabla_{\mathrm{Y}}, J\right] X\right\}
\end{align*}
$$

In Lemma 2.2, for $\varepsilon=-1$, we have equality

$$
\begin{equation*}
\left[R_{X Y}+R_{J X J Y}, J\right]-J\left[R_{J X Y}+R_{X J Y}, J\right]=\left\lfloor\nabla_{N_{J}(X, Y)}, J\right] . \tag{2.29}
\end{equation*}
$$

From (2.28) and (2.29), the proof is completed.

REFERENCES

[1] Cruceanu V., Gadea P.M., Muños Masqué J., Para-Hermitian and Para- Kaehler Manifolds, Supported by the commission of the European Communities' Action for Cooperation in Sciences and Technology with Central Eastern European Countries n. ERB3510PL920841.
[2] Gray A., Curvature Identites For Hermitian and Almost Hermitian Manifolds, Tô hoku Math. Journ., 28(1976) S 601-612.
[3] Naveira A.M., Vanhecke L., Two Problems For Almost Hermitian Manifolds, Demonstratio Mathematica, Vol.X,No:1,(1977) S189-203.
[4] P Mileva, On a curvature tensor of Kaehler type in an almost Hermitian and almost para-Hermitian manifold, МАТЕМАТИчкИ ВЕСНИк, 50 (1998), 57-64.

[^0]: * Pamukkale University, Faculty of Science \& Art, Department of Mathematics, 20070 Denizli-Turkey; tekkoyun@pamukkale edu.tr

