
Çankaya Üniversitesi Fen-Edebiyat Fakültesi,
Journal of Arts and Sciences  Say›: 4 / Aral›k 2005

On Curvature Identities For Para-Hermitian 

Manifolds

Mehmet TEKKOYUN*

Abstract

In this paper, firstly it is given the definitions and properties of paracomplex structures. Then using this
differential geometric structures we obtain a partial paracomplex generalization of curvature identities for
Hermitian manifolds and quasi -Kaehler manifolds  known to be complex manifolds and studied by Gray in [2]. 
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Özet

Bu makalede, öncelikle para-kompleks yap›lar›n tan›mlar› ve özellikleri verildi. Daha sonra, bu
diferensiyel geometrik yap›lar kullan›larak, [2] de Gray taraf›ndan çal›fl›lan ve komplex manifoldlar olarak
bilinen Hermit ve yar›-Kahler manifoldlar› için e¤rilik özdeflliklerinin k›smi bir para-kompleks genellemesi
elde edildi.

Anahtar Kelimeler: para-kompleks yap›; para-kompleks, para-Hermit ve para-yar› Kahler manifold;
e¤rilik.

1. Introduction and Notations:

In order to obtain a better understanding of the ideas and results in the survey, we
shall now recall some general definitions concerning (almost) paracomplex and
(almost) para-Hermitian. From now on, all the manifolds and geometric objects are C∞

and the sum is taken over repeated indices. Also, we denote by A the set of paracomplex
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numbers, by ℑ (M) the set of paracomplex functions on M, by χ(M)the set of
paracomplex vector fields on M and by Λ1 the set of paracomplex 1-forms on M.

Definition 1.1: An almost product structure J on a manifold M is a (1,1) tensor field
on M such that J2=I. The pair (M,J) is called an almost product manifold. 

Definition 1.2: An almost paracomplex manifold is an almost product manifold
(M,J)  such that the two eigenbundles T+M and T–M associated to the eigenvalues +1
and -1 of J, respectively, have the same rank. (Note that the dimension of an almost
paracomplex manifold is necessarily even) Equivalently, a splitting of the tangent
bundle TM of a manifold  M, into the Whitney sum of two subbundles on T±M of the
same fiber dimension is called an almost paracomplex structure on M.

Definition 1.3: An almost paracomplex structure on a 2m-dimensional manifold M
may alternatively be defined as a G- structure on M with structural group GL(n,R)x
GL(n,R). Let J0 be matrix representation of J structure. The group G can be described
as the invarience group of the matrix J0, that is, α∈ G if and only if αJ0α-1= J0. A
paracomplex manifold is an almost paracomplex manifold (M,J) such that the G-
structure defined by the tensor field J is integrable [1].

Definition 1.4 : Let be a pseudo- Riemannian metric  tensor g on paracomplex
manifold M. Then g is  called a para-Hermitian metric g on paracomplex manifold M if

An almost para-Hermitian manifold (M , g, J) is a differentiable manifold M endowed
with an almost product structure J and a pseudo- Riemannian metric g, compatible in
the sense that 

g(JX,Y)+g(X,JY)=0 or g(JX,JY)+g(X,Y)=0  for all X,Y∈ χ (M) .                        (1.2)

An almost para-Hermitian structure on a differentiable manifold M is G- structure
on M whose structural group is the representation of the paraunitary group U(n,A) given
at the end of subsection (2.4) in [1].

Definition 1.5: A para-Hermitian manifold is a manifold with an integrable almost
para-Hermitian structure (g,J).

Given an almost para-Hermitian manifold (M,g,J), we shall call para fundamental 2-
form (or para-Kaehlerian form) to the 2-covariant skew tensor field Φ defined by
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0),( ),( JvugvJug  or 0),( ),( vugJvJug  for all ).(, MTvu p            (1.1)     

),(),( JYXgYX or .),(),( YJXgYX                                           (1.3) 



Definition 1.6: An almost para-Hermitian manifold (M,g,J)  such that dΦ=0 shall
be called an  almost para-Kaehlerian manifold.

A para-Hermitian  manifold  (M,g,J) is said to be a para- Kaehlerian manifold  if
dΦ=0, i.e., Φ is closed. 

Definition 1.7: Let be a paracomplex manifold M.. Given by X,Y,X´,Y´ vector
fields, by f paraholomorfic function and by [,] Lie bracket on M. Then, NJ is called
Nijenhuis tensor of paracomplex structure J defined by equation

and provided the properties

2. Curvatures for Para-Hermitian Manifolds

Theorem 2.1: We denote by ∇ X covariant derivation, by Φ almost para-Kaehler
form and by NJ Nijenhuis tensor on  an almost para-Hermitian manifold M. Then, it is
provided the equation 

Proof: We have 

Then we obtain the  equalities

In the other hand it is 
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From (2.2), (2.3), (2.4), (2.5), and (2.6) equations, the proof is finished.

Lemma 2.1: Let be an almost para-Hermitian manifold M. Given by χ(M) Lie
algebra and by NJ Nigenhuis tensor of almost paracomplex structure J on M. We call a
paracomplex manifold if and only if  

Proof: Let be a paracomplex manifold M. In this case, it is 

Hence we obtain that M is a paracomplex manifold⇔

Lemma 2.2: Let be a paracomplex manifold M. Let ε = ±1, and assume that  M has 

Proof:  The curvature operator RXY is defined by 

for all X,Y ∈ χ(M). Then  we have
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JX XJ J J, ,  for all ).(MX  Then  
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for all ).(, MYX   

(2.8)

YXYXXYR ,,  



If we hold the equation given by (2.9), we obtain

Now, using Jacobi identity on each of terms on the right hand side of (2.10),

and put we get

Hence it follows

Finally, this finishes the proof of Lemma 2.2.  

Theorem 2.2: Let be an para-Hermitian manifold M. Then it is satisfied the equation
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0,,,,,, JJJ JYXYJXJYJXYX .                            (2.11) 

0,,,, JRJRJJRJJR JXJYXJYJXYXY , for ).(, MYX               (2.12) 



Proof: In Lemma 2.2, taking ε=1, we have equations

If we take into consideration equations (2.13), (2.14), (2.15) and (2.16), we find       

The right hand side of (2.17) is equal, we write

Thus, from Lemma 1.2, i.e., M is paracomplex manifold if and only if  (X,Y)=0,

the proof is finished. ❇

Let us put in
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 WXYZR =< ZYRWX , > for . )(,,, MWZYX                            (2.19) 



Then the sectional curvature of M is defined by  equation

Now, we may give the following corollary from Theorem 2.2.

Corollary 1.1: Let M be a para-Hermitian manifold. Then there exist the equalities

Proof: a) By (2.19), we write equations

Similarly, we see that

Taking into consideration (2.21) and (2.22) equalities, the proof is completed.     ❇

b) From (2.20), we obtain the following equalities:

Using hypothesis and (2.23), we see that

Thus, the proof is completed. ❇

Analogously Hermitian manifold conformally equlivalent to Cn are considered,
para- Hermitian manifolds conformally equivalent to An may be considered. Then, In
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particular new examples of manifold with constant paraholomorphic sectional curvature
δ are written. Now, we may put  as follows:

Theorem 2.3: Given by M para-Hermitian manifold and  by δ constant
paraholomorphic  sectional curvature. Then

Proof: Put in the relation between curvature tensor and sectional curvature as
follows:

Then, we have

Using (2.24 and (2.25) we obtain 

So,  with respect to (2.26) it follows the following equations:
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From (2.27), we have

Theorem 2.4: Let be a para-quasi Kaehler manifold M. Then it is satisfied the equation

Proof:    Using    the   properties   that   M  is    para-quasi   Kaehler    manifold     

Then we calculate that

In Lemma 2.2, for ε = –1, we have equality 

From (2.28) and (2.29), the proof is completed.                                            ❇
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