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Abstract 
This research uses deep reinforcement learning techniques, notably the AlphaZero algorithm, to construct an artificial 

intelligence system that can play Pawn Dama at a level that surpasses human players. Pawn dama, a simplified variant of 

Dama, is a perfect platform to explore AI's ability to think strategically and make decisions. The primary goal is to develop an 

AI that can use self-play to develop sophisticated strategies and comprehend the game's dynamics and regulations. The 

project incorporates MCTS to improve decision-making during games and uses a Convolutional Neural Network (CNN) to 

enhance the AI's learning capabilities. Creating an intuitive graphical user interface, putting the reinforcement learning 

algorithm into practice, and testing the system against real players are steps in the development process. The 

accomplishment of this project will contribute to the field of strategic game AI research by providing insights that may be 

applied to other domains and spurring further advancements in AI-driven game strategies. 

Keywords: Deep Reinforcement Learning, Deep Learning, AlphaZero Algorithm, Pawn Dama, Monte Carlo Tree Search 
(MCTS), Convolutional Neural Network (CNN)

 

 

I. INTRODUCTION 
Board games provide a good platform for AI research due to their controlled settings, which facilitate examining 

strategic thinking. AlphaZero algorithm, introduced by Deepmind in 2017, has profoundly transformed AI’s 

approach to board games. In contrast to the previous approaches, the AlphaZero algorithm achieved a high level 

of competence in playing pawn dama without prior domain knowledge, relying solely on self-play and general-

purpose learning. Its success showcased the potential of reinforcement learning combined with neural networks 

and Monte Carlo Tree Search, setting a new standard for AI in strategic decision-making and game theory. 

This project aims to adapt the AlphaZero algorithm to Pawn Dama, a simplified version of Turkish Dama. The 

rules for Pawn Dama are given in the Appendix. The AI will learn the rules and strategies of Pawn Dama through 

self-play and extensive training, ultimately reaching a high level of competence in playing Pawn Dama. For this 

purpose, it is necessary to rewrite the two core components of the AlphaZero algorithm, neural networks, and the 

Monte Carlo Tree Search (MCTS) for Pawn Dama. A snapshot of the game is given in Figure 1 and Figure 2. 
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Figure 1. View of the Game 

 

 
Figure 2. View of the Game 

 

1.1. Aims of the Project 

This research has two primary objectives: To develop a 

simple framework for applying the AlphaZero 

algorithm tailored to limited computational budgets and 

to lay the groundwork for the eventual full 

implementation of Turkish Dama.  

 

By accomplishing these objectives, the project also 

aims to contribute to the broader area of AI research by 

showcasing the use of modern AI methods in culturally 

significant games and encouraging further 

advancements in AI-driven strategic gaming.  

 

The main technical contributions of this article can be 

collected under two headings: 

• The adaptation of the CNN to pawn dama and 

the design of its action space (Sect. 3.1.3). 

• Developing an MCTS algorithm for pawn 

dama. (Sect. 3.1.1) 

In summary, the inclusion of a new game in 

AlphaZero's repertoire enhances its coverage and 

applicability. This game presents a complexity level 

that is intermediate between simple games like Tic-

Tac-Toe or Connect Four and computationally 

demanding games such as Chess or Go  thus filling a 

gap in the spectrum of games suitable for training. 
 

II. RELATED WORK 

 

2.1 Standard Reinforcement Learning Algorithm  
AlphaZero uses a modified version of the 

Reinforcement Learning algorithm (RL), a key method 

to train an agent in decision-making within a given 

environment. An environment is composed of 

numerous states, and at every moment, the agent takes 

actions based on the environmental factors. The quality 

of each action is determined by the reward it generates, 

prompting the agent to adjust its strategy to maximize 

cumulative rewards. One classical RL algorithm is Q-

learning, which relies on creating a Q-table. The rows 

of this table represent possible environmental states, 

while the columns reflect potential actions and the 

rewards they produce. As the agent interacts with its 

environment, it updates the Q-table with reward values. 

Eventually, the agent can use the completed table to 

choose actions that maximize its rewards in any given 

scenario. However, despite its effectiveness in specific 

scenarios, Q-learning has limitations when applied to 

more complex environments. For example, in chess, the 

number of possible positions is approximately 10¹²⁰. 

Completing and storing a Q-table for such a vast 

number of states is impractical. The development of 

deep reinforcement learning algorithms, such as 

AlphaZero, overcame the limitations of classical 

reinforcement learning and enabled superhuman 

performance in chess. 

 

2.2 Deep Reinforcement Learning on Strategy 

Games 

Until the advent of deep RL learning, board game-

playing algorithms were mainly based on minimax 

algorithms enhanced by alpha-beta pruning [1, 2]. This 

approach peaked in Deep Blue for chess [3] and in 

Chinook for checkers [4], which achieved superhuman 

performance by successfully defeating the reigning 

world champions.  

 

Starting in 1990, Reinforcement Learning [27] made its 

appearance in board game-playing algorithms with 

algorithms like TD-Gammon [5, 6].  

 

The introduction of MCTS revolutionized bard game-

playing algorithms by using random simulations to 

estimate the potential outcomes of moves. [7, 8] This 

method balanced exploration and exploitation without 

exhaustive search and was applied to Go within a year 

of its development [9] and then to Kriegspiel in 2010 

[10]. For a survey of the applications of MCTS for 

game playing, see [11].  

 

Finally, in 2016, a synergy between MCTS-based RL 

methods and neural network-based deep learning 

methods was achieved in the Alphago algorithm by 

Deepmind. [12].  The game of Go, long considered a 

formidable challenge to AI, was first conquered by 

Alphago, making it the first program to beat a 

professional Go player.   

https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.k5w7lhe923ag
https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.4t99i7d5yie7
https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.ld71polcvie0
https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.77m1fe93k31q
https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.728o22ljpp4d
https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.7tv8kbir2o4h
https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.7ax6v539swtd
https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.yjkeohnte94x
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AlphaGo initially trained its neural network on a large 

dataset of games played by human experts. After this 

supervised learning phase, AlphaGo trained its neural 

net further through self-play. 

 

The following algorithm from DeepMind, AlphaGo 

Zero (2017) [13], eliminated the use of human 

knowledge and trained its neural network solely 

through self-play, therefore learning strategies and 

tactics from first principles. 

 

Alphago Zero was explicitly developed for the game of 

Go. The next algorithm of Deepmind, Alphazero 

(2017) [14], was a more generalized version of Alphago 

zero. It was capable of mastering multiple games (e.g., 

Go, chess, shogi) without any domain-specific 

modifications, thus demonstrating that the same 

algorithm can achieve superhuman performance across 

different environments.  

 

Deepmind published two more algorithms: Alphastar 

(2019) [15] and Muzero (2020) [16]. Alphastar was 

developed for real-time strategy games like StarCraft II 

and achieved superhuman performance. MuZero is a 

deep reinforcement learning algorithm that combines a 

model-based approach with policy and value networks, 

learning both a model of the environment and optimal 

strategies without relying on prior knowledge of the 

environment’s dynamics. Alphastar and Muzero are not 

directly relevant to our research and are mentioned here 

solely for the purpose of completeness. For more recent 

developments, see [23-26] 

 

III. METHOD 
The primary approach employed in developing an 

algorithm capable of playing pawn dama involved 

tailoring the AlphaZero algorithm specifically to this 

game. AlphaZero algorithm combines reinforcement 

learning with Monte Carlo Tree Search (MCTS) and 

neural networks to excel in strategic games such as 

Chess, Go, and Shogi. Unlike traditional engines, it 

learns solely through self-play, starting without pre-

existing game knowledge. AlphaZero algorithm has 

two components: (1) A neural network embedded 

within the AlphaZero evaluates board positions and 

predicts optimal moves, while (2) MCTS efficiently 

explores possible outcomes by simulating future states 

of the game. As AlphaZero plays, its strategies are 

continuously improved by adjusting its neural network 

parameters based on game results. In the end, it 

achieves superhuman performance. 

 

3.1 Alpha-Zero on Pawn Dama 

In the following sections, we detail the modifications 

we have made to the AlphaZero algorithm to adapt it to 

pawn dama. As previously noted, the AlphaZero 

algorithm comprises two key components: Monte Carlo 

Tree Search (MCTS) and a neural network. We will 

briefly describe the functionality of these components 

and outline the adjustments necessary to tailor them for 

pawn dama. 

 

3.1.1. Monte Carlo Tree Search (MCTS) 
In its classical form, Monte Carlo Tree Search (MCTS), 

is an artificial intelligence algorithm designed to 

determine the optimal move based on the current game 

state without incorporating any learning mechanisms. 

It operates through four fundamental steps in each 

simulation iteration: 

 

a) Selection: Starting from the root node, the algorithm 

traverses the tree by selecting child nodes based on a 

selection policy, often the Upper Confidence Bound 

(UCB) formula.   

𝑈𝐶𝐵(𝑖) =
𝑊𝑖

𝑁𝑖
+ 𝐶√

𝑙𝑛 𝑁𝑝

𝑁𝑖
,                              

where 𝑁𝑖 is the visit count of the node i, 𝑁𝑝 is the visit 

count of its parent, and 𝑊𝑖 is the total reward 

accumulated in node i at the backpropagation steps. C 

is a hyperparameter that balances exploration with 

exploitation. When traversing down the tree, the child 

node with the highest UCB score is selected. 

 
b) Expansion: Once a promising node is selected, the 

algorithm checks if it has unexplored child nodes. If so, 

it expands the tree by adding one or more child nodes 

to represent possible moves. 

 
c) Simulation: From the newly expanded node, the 

algorithm plays a simulation (also called a "playout") 

by performing random moves until the game reaches a 

terminal state (e.g., a win, loss, or draw). 

 
d) Backpropagation: The simulation result is 

propagated back through the path of nodes leading to 

the root. [8]  

 
 

The four steps of MCTS are illustrated in Figure 3. 

 
 

 
 

Figure 3. MCTS Structure, from [10] 

 

These four steps are repeated for a predefined number 

of iterations or until a computational budget (e.g., time 

or resource limit) is reached, after which the algorithm 

determines the best move to make from the root node 

based on the data collected during the search. 
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AlphaZero makes two key differences from the 

classical MCTS algorithm described in Figure 3: 

● It does away with step 3 (simulation), 

replacing the value returned from the 

simulation with the value vector of the neural 

network. With this update, rather than 

simulating the game randomly, the value 

vector of the CNN model is used to predict the 

actual result of the game. 

 

● Another update is applied to the UCB formula, 

where an additional factor is introduced: the 

winning probability 𝑃(𝑖) for node i. This new 

factor serves as a multiplier in the UCB 

formula, helping the algorithm make better 

decisions when selecting moves. 

 
𝑊𝑖

𝑁𝑖
+ 𝐶𝑃(𝑖)

√𝑁𝑝

1+𝑁𝑖
  

P(ı) is ith component of the policy vector of 

the ith node’s parent. In our work, the constant 

C, which balances exploration with 

exploitation, is taken as 1. 

Policy and value vectors of a neural network will be 

explained in the next section. 

 

In this study, we adapted the Monte Carlo Tree Search 

(MCTS) algorithm as it is used by AlphaZero to the 

specific rules of pawn dama. This adaptation was 

straightforward because pawn dama lacks repetition, as 

each move produces a unique board configuration; 

otherwise, additional measures would have been 

necessary.   

 

3.1.2. Convolutional Neural Network (CNN)  

The algorithm uses a convolutional neural network 

(CNN) [20]. It takes 3 layers of information as  input: 

board size, whose turn it is, and a representation of the 

game board. It produces two outputs: a policy and a 

value vector, which are used in MCTS. For an 𝑁𝑥𝑁 
input board, the policy vector, output by the policy 

head, describes the winning probability of each 

possible legal move in the space of all possible legal 

moves, the action space. If the CNN generates 

probabilities for some illegal moves, we mask them by 

clearing their corresponding probabilities, ensuring that 

only legal moves are considered in the decision-making 

process. The representation chosen for the action space 

is critical and will be explained in detail in the next 

subsection. The value vector is a prediction of the 

outcome of the given game board. Once the model 

training is complete, the algorithm returns a value of 1, 

0, or -1, indicating a loss, draw, or win. The 

Convolutional Network (CNN) structure used is 

illustrated in Figure 4. 

 

 

 
Figure 4. Two-headed Convolutional Neural Network 

(CNN)  Architecture, from [18] 

 

Table 1. Layer details of CNN used 

 
 

Below are key notations used in Table 

- B: Batch size (64) 

- C: Number of channels (512) 

- X, Y: Board dimensions 

 

We applied ReLU activation and dropout with a rate 

of 0.3 after each BatchNorm.  Finally policy vector is 

transformed by log_softmax function and value 

prediction is scaled using tanh activation. 

 

3.1.3. Action Space 

Action space is the set of all possible actions (moves) 

that can be taken in a given state of the game. It is a 

fundamental concept of reinforcement learning, and its 

design defines CNN's policy vector.  
 

The rules of Pawn Dama allow each piece to have three 

possible moves after it has already moved and  

four possible moves during its first move.  

 

Consequently, for an 𝑁𝑥𝑁 board, an action space of 

dimension 4 ∗ 2𝑁 + 3(𝑁 − 2)2 would be sufficient to 

describe all possible moves. However, after some 

consideration, it was decided to use an action space of 

dimension 𝑁4 = 𝑁2 ∗ 𝑁2 instead.  

 

In this design, the first 𝑁2 represents the piece's initial 

position, and the second 𝑁2 is the target position. A 

move is thus depicted as (𝑥1, 𝑦1) → (𝑥2, 𝑦2), meaning 

there are four indices in total to specify each action. 

This description of the action space, while having 

higher dimensionality, provides the flexibility to 

incorporate pieces with arbitrary movement rules in 

future versions of the algorithm without significantly 

changing the structure of CNN, thereby increasing its 

adaptability.  
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After discussing the dimensionality of the action space, 

it becomes evident that the policy vector is a single 

vector of dimension 𝑁4. Each potential move (𝑥1,
𝑦1) → (𝑥2, 𝑦2), on the board is represented by a single  

element of this vector determined by the following 

index: 

  

𝑥1 + (𝑦1 ∗ 𝑁) + (𝑥2 ∗ 𝑁2) + (𝑦2 ∗ 𝑁3) 

The output of the CNN stores the winning probability 

of the corresponding move into this element. 

 

3.1.4. Self-Play and Training 

After these modifications to MCTS and CNN 

components of the AlphaZero algorithm are made, the 

training process begins. Initially, the CNN is initialized 

with random weights. The algorithm then engages in 

100 MCTS self-play games, experiencing wins, losses, 

and draws. During this competition, every position 

encountered is recorded. The recorded data consists of 

a triplet: board position, which move is made, and 

which side eventually won the game. This accumulated 

data is then used to train the CNN model for 100 

epochs. Once training is completed, the process moves 

to the arena phase, where each new model plays 30 

games against the previous model. If the new model's 

win threshold fraction is 60% higher than the previous 

one, it is accepted; otherwise, it is rejected. These three 

stages (MCTS, CNN training, and Arena play) are 

called an iteration. Numerous iterations were carried 

out in a loop. The algorithm is set up to run for 300 

iterations. But during a run, we follow the loss value 

and stop the algorithm manually when it stabilizes 

around zero. Figure 5 is the flowchart of the AlphaZero 

algorithm. 

 

     
Figure 5. Flow of self-play based on the game rules 

 

IV. EXPERIMENTS 

 
4.1. Overview 
We evaluated the performance of our algorithm using 

three different methods. First, we tracked the loss 

values at the end of each epoch during the training 

process. At the conclusion of the training, we visualized 

these values in a graph to analyze the model's learning 

progress and overall development. Second, at the end 

of each iteration, we tested the newly trained model 

against the previous version in 30 matches. We 

observed how the model improved over iterations by 

analyzing the number of wins, losses, and draws. 

Finally, we tested the trained model against 

approximately 100 human players through an 

interactive interface. Remarkably, no human player 

(some of them competitive chess players) managed to 

defeat the model. These three approaches provided a 

comprehensive understanding of our algorithm's 

training process and performance in real-world 

scenarios. 

 

4.2 Decrease in Training Error 

To evaluate our model's learning progression, we 

analyzed the training errors for two different board 

sizes: 5x5 and 6x6. We tracked each configuration's 

policy vector and value losses throughout the training 

process. The training was conducted on NVIDIA A100 

and NVIDIA GeForce RTX 3050 GPUs, with losses 

recorded at the end of each epoch. The following 

subsections present detailed analyses for each board 

size. 

 

4.2.1. 5x5 Board Experiments and Results 

 

 
Figure 6. 5x5 Board Policy Vector Losses 

 

Figure 6 shows the decrease in the loss of the policy 

network over 175 epochs in a 5x5 board. This graph 

was essential for understanding the learning process of 

the AlphaZero algorithm when applied to our Pawn 

Dama game. The plot indicates that the training process 

for the policy network was successful. The rapid initial 

decrease in training losses, followed by a gradual and 

stable convergence, shows that the model effectively  

learned to make policy predictions. The overall 

performance suggests that the model was well-trained 

and capable of generalizing its learned strategies to new 

game scenarios. 
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Figure 7. 5x5 Board Value Losses 

 

Figure 7 shows the decrease in the loss of the value 

network over 175 epochs for a 5x5 board. Looking at 

the graph, we can tell that the training process was 

successful for the value network. We saw a sharp 

decrease in training loss at the beginning, followed by 

a steady and stable drop, which suggests that the model 

learned to make good value predictions.  

 

The spikes in the loss function of both graphs indicate 

points at which one iteration finishes and a new 

iteration starts (See 3.1.4). Each iteration brings its own 

training set, and we can assume that these new training 

sets bring some new information (i.e., previously 

unseen game situations) that is not contained in the old 

training sets. At that point, the neural net, solely trained 

by the old training sets, struggles to handle this new 

information, hence the sudden jump in error. However, 

in time, it absorbs this new information into its weights 

via backpropagation, and the errors drop. Also note that 

as the game progresses, it becomes harder to surprise 

neural networks, and the size of the spikes decreases. 

 

 
Figure 8. 5x5 Board Policy Vector and Value Losses 

 
As shown in Figure 8, we display both the policy vector 

and value losses on a single graph for the 5x5 board. 

This side-by-side presentation helps visualize the 

learning progress of the policy and value networks 

simultaneously. The training was conducted on an 

NVIDIA A100 GPU, a high-performance computing 

unit known for handling complex deep-learning tasks. 

The model was trained for approximately 18 hours, 

allowing it to reach an effective level of performance. 

This training duration was sufficient to capture the 

essential patterns and nuances of the game while 

ensuring the model had enough time to refine its 

learning. 

 
4.2.2. 6x6 Board Experiments and Results 

 
Figure 9. 6x6 Board Policy Vector Losses 

 
Figure 9 shows the policy loss for a 6x6 board, helping 

us understand how the model learns to select moves in 

the pawn game. Here, the convergence is slower than 

on the 5x5 board. The loss values were relatively high 

initially but dropped quickly during the first 100 

epochs. By reaching 600 epochs, the loss had settled at 

its minimum level and remained steady. The reasons for 

the spikes are the same as discussed for the 5x5 board. 

The consistent decline and eventual stabilization of the 

loss values indicate that the model successfully learned 

the key strategies of the game.  

 

Figure 10. 6x6 Board Value Losses 

 
In Figure 10, the value loss curve shows how the model 

improved its ability to evaluate positions in the 6x6 

pawn game. Again, the loss was high initially but 

dropped quickly during the first 100 epochs. This rapid 

decrease tells us that the model learned the basics of 

position evaluation early in the training. After this 

point, the loss continued to decline more gradually, 

showing that the model was fine-tuning its 

understanding of more complex situations. 

 

By the 1000th epoch, the loss reached a stable and low 

value, staying consistent for the rest of the training. 

Unlike the policy loss, we do not see any significant 

spikes here, which shows that the training process for 

the value network was smooth and reliable. 
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The final result confirms that the model successfully 

learned to evaluate positions accurately, predicting 

game outcomes with confidence. This stability tells us 

that once the core ideas of position evaluation were 

understood, the model could consistently apply them to 

new scenarios, showing a clear understanding of pawn 

structures and their impact on gameplay. 
 

 
Figure 11. 6x6 Board Policy and Value Vector Losses 

 
 

Figure 11 presents the policy vector and value losses 

for the 6x6 board. By displaying both losses 

simultaneously, we can assess the model's performance 

in both areas more efficiently. The training process 

required significant computational power, and we used 

an NVIDIA A100 GPU for this task. The training for 

the 6x6 board took approximately 48 hours. This 

extended training period allowed the model to learn 

more complex strategies and game dynamics 

effectively. 

 

4.3 Self-Play Results 

In this section, we discuss the results obtained from the 

self-play games, a critical step in the training process of 

our model. Self-play allowed the model to improve 

iteratively by competing against itself, refining its 

strategies, and correcting mistakes over time. The 

model was set to play 40 matches throughout training 

at the end of each iteration, where the newly trained 

version competed against the model from the previous 

iteration. The new model consistently improved and 

outperformed its predecessor as the training 

progressed. However, in the later stages, the matches 

between iterations consistently resulted mostly in 

draws, suggesting that the model had achieved its 

maximum potential and was operating at an optimal 

level, unable to further improve against itself. These 

findings highlight the model's ability to reach a high 

level of performance autonomously through self-play. 

This iterative process not only ensured strategic 

improvement but also validated the robustness of the 

training methodology. 

 

4.4 Playing Against Humans 

To evaluate our model's performance in real-world 

scenarios, we conducted tests by allowing humans to 

play directly against the trained AI. Using the 

interactive interface we developed, over 100 games 

were played against various individuals with varying 

experience levels, including skillful players who 

frequently play chess at well-known online platforms 

such as lichess or chess.com. Impressively, the AI 

model remained undefeated throughout these matches, 

consistently demonstrating its ability to adapt to human 

strategies. This experience highlighted the AI's 

strategic depth and robustness, as it effectively handled 

diverse human gameplay styles. Additionally, feedback 

from the participants revealed that the AI not only 

played competently but also provided a challenging and 

engaging experience. These results confirmed the 

strength of the model and its capability to perform 

reliably outside of controlled testing environments, 

marking a significant milestone in its development. 

 

V. CONCLUSIONS 
In this study, we ran AlphaZero on a new game that had 

never been explored. By integrating Monte Carlo Tree 

Search (MCTS) with neural networks, we adapted 

AlphaZero to this novel environment. The updates to 

the MCTS algorithm, particularly in the simulation 

phase and UCB formula, allowed for more effective 

data generation and evaluation. Leveraging the CNN 

model to predict game outcomes and optimize move 

selection, the algorithm improved iteratively, achieving 

superior performance. The self-play and evaluation 

process ensured that only models with significant 

improvements were accepted. This showcases the 

strength of combining MCTS and deep learning, as 

AlphaZero successfully adapted to our custom game 

and demonstrated advanced strategic decision-making. 

This study is the first step toward fully implementing 

Turkish Dama in the AlphaZero algorithm. 

 

VI. APPENDIX 
 

6.1 Rules of Pawn Dama 

1. The board must have at least four rows. Other than 

this, they can be of any side. 

 

2. At the start of the game, white pawns occupy the first 

two rows of the board. Black pawns occupy the last two 

rows of the board. 

 

3. Pawns can move one square forward if that square is 

not occupied. 

 

4. If this is their first move, pawns have the option to 

move two squares forward if both squares are 

unoccupied. 

 

5. Pawns capture diagonally. 

 

6. The side whose pawn reaches the opposite end of the 

board first wins. 
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VII. CODE AVAILABILITY 
Our project's complete source code implementation  

is available as open-source at: 

https://github.com/erdemphl/solving-pawn-dama-

with-alphazero. Our code builds upon and extends the 

code presented in [18]. 
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