
Int. J. Adv. Eng. Pure Sci. 2025, 37(1): <27-35>

DOI: 10.7240/jeps.1620319

Corresponding Author: MEHMET KADİR BARAN, Tel: : +90 532 243 85 49 , E-mail: crom.baran@gmail.com

Submitted: 15.01.2025, Revised: 14.02.2025, Accepted: 20.02.2025

RESEARCH ARTICLE / ARAŞTIRMA MAKALESİ

Adapting the AlphaZero Algorithm to Pawn Dama:

Implementation, Training, and Performance Evaluation

Erdem PEHLİVANLAR 1 , Alperen GÖNÜL 1 , Cem GÜLEÇ 1 , Muhammet ŞERAMET 1 ,

Mehmet Kadir BARAN 1

1Marmara University, Faculty of Engineering, Computer Science Departmant, İstanbul, Turkey

Abstract
This research uses deep reinforcement learning techniques, notably the AlphaZero algorithm, to construct an artificial

intelligence system that can play Pawn Dama at a level that surpasses human players. Pawn dama, a simplified variant of

Dama, is a perfect platform to explore AI's ability to think strategically and make decisions. The primary goal is to develop an

AI that can use self-play to develop sophisticated strategies and comprehend the game's dynamics and regulations. The

project incorporates MCTS to improve decision-making during games and uses a Convolutional Neural Network (CNN) to

enhance the AI's learning capabilities. Creating an intuitive graphical user interface, putting the reinforcement learning

algorithm into practice, and testing the system against real players are steps in the development process. The

accomplishment of this project will contribute to the field of strategic game AI research by providing insights that may be

applied to other domains and spurring further advancements in AI-driven game strategies.

Keywords: Deep Reinforcement Learning, Deep Learning, AlphaZero Algorithm, Pawn Dama, Monte Carlo Tree Search
(MCTS), Convolutional Neural Network (CNN)

I. INTRODUCTION
Board games provide a good platform for AI research due to their controlled settings, which facilitate examining

strategic thinking. AlphaZero algorithm, introduced by Deepmind in 2017, has profoundly transformed AI’s

approach to board games. In contrast to the previous approaches, the AlphaZero algorithm achieved a high level

of competence in playing pawn dama without prior domain knowledge, relying solely on self-play and general-

purpose learning. Its success showcased the potential of reinforcement learning combined with neural networks

and Monte Carlo Tree Search, setting a new standard for AI in strategic decision-making and game theory.

This project aims to adapt the AlphaZero algorithm to Pawn Dama, a simplified version of Turkish Dama. The

rules for Pawn Dama are given in the Appendix. The AI will learn the rules and strategies of Pawn Dama through

self-play and extensive training, ultimately reaching a high level of competence in playing Pawn Dama. For this

purpose, it is necessary to rewrite the two core components of the AlphaZero algorithm, neural networks, and the

Monte Carlo Tree Search (MCTS) for Pawn Dama. A snapshot of the game is given in Figure 1 and Figure 2.

https://orcid.org/0009-0009-7438-1647
https://orcid.org/0009-0003-9066-1418
https://orcid.org/0000-0003-0285-2795
https://orcid.org/0009-0005-9343-6202
https://orcid.org/0000-0002-7973-2794

Int. J. Adv. Eng. Pure Sci. 2025, 37(1): <27-35> Solving Pawn Dama with AlphaZero

28

Figure 1. View of the Game

Figure 2. View of the Game

1.1. Aims of the Project

This research has two primary objectives: To develop a

simple framework for applying the AlphaZero

algorithm tailored to limited computational budgets and

to lay the groundwork for the eventual full

implementation of Turkish Dama.

By accomplishing these objectives, the project also

aims to contribute to the broader area of AI research by

showcasing the use of modern AI methods in culturally

significant games and encouraging further

advancements in AI-driven strategic gaming.

The main technical contributions of this article can be

collected under two headings:

• The adaptation of the CNN to pawn dama and

the design of its action space (Sect. 3.1.3).

• Developing an MCTS algorithm for pawn

dama. (Sect. 3.1.1)

In summary, the inclusion of a new game in

AlphaZero's repertoire enhances its coverage and

applicability. This game presents a complexity level

that is intermediate between simple games like Tic-

Tac-Toe or Connect Four and computationally

demanding games such as Chess or Go thus filling a

gap in the spectrum of games suitable for training.

II. RELATED WORK

2.1 Standard Reinforcement Learning Algorithm
AlphaZero uses a modified version of the

Reinforcement Learning algorithm (RL), a key method

to train an agent in decision-making within a given

environment. An environment is composed of

numerous states, and at every moment, the agent takes

actions based on the environmental factors. The quality

of each action is determined by the reward it generates,

prompting the agent to adjust its strategy to maximize

cumulative rewards. One classical RL algorithm is Q-

learning, which relies on creating a Q-table. The rows

of this table represent possible environmental states,

while the columns reflect potential actions and the

rewards they produce. As the agent interacts with its

environment, it updates the Q-table with reward values.

Eventually, the agent can use the completed table to

choose actions that maximize its rewards in any given

scenario. However, despite its effectiveness in specific

scenarios, Q-learning has limitations when applied to

more complex environments. For example, in chess, the

number of possible positions is approximately 10¹²⁰.

Completing and storing a Q-table for such a vast

number of states is impractical. The development of

deep reinforcement learning algorithms, such as

AlphaZero, overcame the limitations of classical

reinforcement learning and enabled superhuman

performance in chess.

2.2 Deep Reinforcement Learning on Strategy

Games

Until the advent of deep RL learning, board game-

playing algorithms were mainly based on minimax

algorithms enhanced by alpha-beta pruning [1, 2]. This

approach peaked in Deep Blue for chess [3] and in

Chinook for checkers [4], which achieved superhuman

performance by successfully defeating the reigning

world champions.

Starting in 1990, Reinforcement Learning [27] made its

appearance in board game-playing algorithms with

algorithms like TD-Gammon [5, 6].

The introduction of MCTS revolutionized bard game-

playing algorithms by using random simulations to

estimate the potential outcomes of moves. [7, 8] This

method balanced exploration and exploitation without

exhaustive search and was applied to Go within a year

of its development [9] and then to Kriegspiel in 2010

[10]. For a survey of the applications of MCTS for

game playing, see [11].

Finally, in 2016, a synergy between MCTS-based RL

methods and neural network-based deep learning

methods was achieved in the Alphago algorithm by

Deepmind. [12]. The game of Go, long considered a

formidable challenge to AI, was first conquered by

Alphago, making it the first program to beat a

professional Go player.

https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.k5w7lhe923ag
https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.4t99i7d5yie7
https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.ld71polcvie0
https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.77m1fe93k31q
https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.728o22ljpp4d
https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.7tv8kbir2o4h
https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.7ax6v539swtd
https://docs.google.com/document/d/1JhHi-a8MS9xL4IUyJdHw34qSssaiQ5E92xaMFU8MZWY/edit?pli=1&tab=t.0#bookmark=kix.yjkeohnte94x

Solving Pawn Dama with AlphaZero Int. J. Adv. Eng. Pure Sci. 2025, 37(1): <27-35>

29

AlphaGo initially trained its neural network on a large

dataset of games played by human experts. After this

supervised learning phase, AlphaGo trained its neural

net further through self-play.

The following algorithm from DeepMind, AlphaGo

Zero (2017) [13], eliminated the use of human

knowledge and trained its neural network solely

through self-play, therefore learning strategies and

tactics from first principles.

Alphago Zero was explicitly developed for the game of

Go. The next algorithm of Deepmind, Alphazero

(2017) [14], was a more generalized version of Alphago

zero. It was capable of mastering multiple games (e.g.,

Go, chess, shogi) without any domain-specific

modifications, thus demonstrating that the same

algorithm can achieve superhuman performance across

different environments.

Deepmind published two more algorithms: Alphastar

(2019) [15] and Muzero (2020) [16]. Alphastar was

developed for real-time strategy games like StarCraft II

and achieved superhuman performance. MuZero is a

deep reinforcement learning algorithm that combines a

model-based approach with policy and value networks,

learning both a model of the environment and optimal

strategies without relying on prior knowledge of the

environment’s dynamics. Alphastar and Muzero are not

directly relevant to our research and are mentioned here

solely for the purpose of completeness. For more recent

developments, see [23-26]

III. METHOD
The primary approach employed in developing an

algorithm capable of playing pawn dama involved

tailoring the AlphaZero algorithm specifically to this

game. AlphaZero algorithm combines reinforcement

learning with Monte Carlo Tree Search (MCTS) and

neural networks to excel in strategic games such as

Chess, Go, and Shogi. Unlike traditional engines, it

learns solely through self-play, starting without pre-

existing game knowledge. AlphaZero algorithm has

two components: (1) A neural network embedded

within the AlphaZero evaluates board positions and

predicts optimal moves, while (2) MCTS efficiently

explores possible outcomes by simulating future states

of the game. As AlphaZero plays, its strategies are

continuously improved by adjusting its neural network

parameters based on game results. In the end, it

achieves superhuman performance.

3.1 Alpha-Zero on Pawn Dama

In the following sections, we detail the modifications

we have made to the AlphaZero algorithm to adapt it to

pawn dama. As previously noted, the AlphaZero

algorithm comprises two key components: Monte Carlo

Tree Search (MCTS) and a neural network. We will

briefly describe the functionality of these components

and outline the adjustments necessary to tailor them for

pawn dama.

3.1.1. Monte Carlo Tree Search (MCTS)
In its classical form, Monte Carlo Tree Search (MCTS),

is an artificial intelligence algorithm designed to

determine the optimal move based on the current game

state without incorporating any learning mechanisms.

It operates through four fundamental steps in each

simulation iteration:

a) Selection: Starting from the root node, the algorithm

traverses the tree by selecting child nodes based on a

selection policy, often the Upper Confidence Bound

(UCB) formula.

𝑈𝐶𝐵(𝑖) =
𝑊𝑖

𝑁𝑖
+ 𝐶√

𝑙𝑛 𝑁𝑝

𝑁𝑖
,

where 𝑁𝑖 is the visit count of the node i, 𝑁𝑝 is the visit

count of its parent, and 𝑊𝑖 is the total reward

accumulated in node i at the backpropagation steps. C

is a hyperparameter that balances exploration with

exploitation. When traversing down the tree, the child

node with the highest UCB score is selected.

b) Expansion: Once a promising node is selected, the

algorithm checks if it has unexplored child nodes. If so,

it expands the tree by adding one or more child nodes

to represent possible moves.

c) Simulation: From the newly expanded node, the

algorithm plays a simulation (also called a "playout")

by performing random moves until the game reaches a

terminal state (e.g., a win, loss, or draw).

d) Backpropagation: The simulation result is

propagated back through the path of nodes leading to

the root. [8]

The four steps of MCTS are illustrated in Figure 3.

Figure 3. MCTS Structure, from [10]

These four steps are repeated for a predefined number

of iterations or until a computational budget (e.g., time

or resource limit) is reached, after which the algorithm

determines the best move to make from the root node

based on the data collected during the search.

Int. J. Adv. Eng. Pure Sci. 2025, 37(1): <27-35> Solving Pawn Dama with AlphaZero

30

AlphaZero makes two key differences from the

classical MCTS algorithm described in Figure 3:

● It does away with step 3 (simulation),

replacing the value returned from the

simulation with the value vector of the neural

network. With this update, rather than

simulating the game randomly, the value

vector of the CNN model is used to predict the

actual result of the game.

● Another update is applied to the UCB formula,

where an additional factor is introduced: the

winning probability 𝑃(𝑖) for node i. This new

factor serves as a multiplier in the UCB

formula, helping the algorithm make better

decisions when selecting moves.

𝑊𝑖

𝑁𝑖
+ 𝐶𝑃(𝑖)

√𝑁𝑝

1+𝑁𝑖

P(ı) is ith component of the policy vector of

the ith node’s parent. In our work, the constant

C, which balances exploration with

exploitation, is taken as 1.

Policy and value vectors of a neural network will be

explained in the next section.

In this study, we adapted the Monte Carlo Tree Search

(MCTS) algorithm as it is used by AlphaZero to the

specific rules of pawn dama. This adaptation was

straightforward because pawn dama lacks repetition, as

each move produces a unique board configuration;

otherwise, additional measures would have been

necessary.

3.1.2. Convolutional Neural Network (CNN)

The algorithm uses a convolutional neural network

(CNN) [20]. It takes 3 layers of information as input:

board size, whose turn it is, and a representation of the

game board. It produces two outputs: a policy and a

value vector, which are used in MCTS. For an 𝑁𝑥𝑁
input board, the policy vector, output by the policy

head, describes the winning probability of each

possible legal move in the space of all possible legal

moves, the action space. If the CNN generates

probabilities for some illegal moves, we mask them by

clearing their corresponding probabilities, ensuring that

only legal moves are considered in the decision-making

process. The representation chosen for the action space

is critical and will be explained in detail in the next

subsection. The value vector is a prediction of the

outcome of the given game board. Once the model

training is complete, the algorithm returns a value of 1,

0, or -1, indicating a loss, draw, or win. The

Convolutional Network (CNN) structure used is

illustrated in Figure 4.

Figure 4. Two-headed Convolutional Neural Network

(CNN) Architecture, from [18]

Table 1. Layer details of CNN used

Below are key notations used in Table

- B: Batch size (64)

- C: Number of channels (512)

- X, Y: Board dimensions

We applied ReLU activation and dropout with a rate

of 0.3 after each BatchNorm. Finally policy vector is

transformed by log_softmax function and value

prediction is scaled using tanh activation.

3.1.3. Action Space

Action space is the set of all possible actions (moves)

that can be taken in a given state of the game. It is a

fundamental concept of reinforcement learning, and its

design defines CNN's policy vector.

The rules of Pawn Dama allow each piece to have three

possible moves after it has already moved and

four possible moves during its first move.

Consequently, for an 𝑁𝑥𝑁 board, an action space of

dimension 4 ∗ 2𝑁 + 3(𝑁 − 2)2 would be sufficient to

describe all possible moves. However, after some

consideration, it was decided to use an action space of

dimension 𝑁4 = 𝑁2 ∗ 𝑁2 instead.

In this design, the first 𝑁2 represents the piece's initial

position, and the second 𝑁2 is the target position. A

move is thus depicted as (𝑥1, 𝑦1) → (𝑥2, 𝑦2), meaning

there are four indices in total to specify each action.

This description of the action space, while having

higher dimensionality, provides the flexibility to

incorporate pieces with arbitrary movement rules in

future versions of the algorithm without significantly

changing the structure of CNN, thereby increasing its

adaptability.

Solving Pawn Dama with AlphaZero Int. J. Adv. Eng. Pure Sci. 2025, 37(1): <27-35>

31

After discussing the dimensionality of the action space,

it becomes evident that the policy vector is a single

vector of dimension 𝑁4. Each potential move (𝑥1,
𝑦1) → (𝑥2, 𝑦2), on the board is represented by a single

element of this vector determined by the following

index:

𝑥1 + (𝑦1 ∗ 𝑁) + (𝑥2 ∗ 𝑁2) + (𝑦2 ∗ 𝑁3)

The output of the CNN stores the winning probability

of the corresponding move into this element.

3.1.4. Self-Play and Training

After these modifications to MCTS and CNN

components of the AlphaZero algorithm are made, the

training process begins. Initially, the CNN is initialized

with random weights. The algorithm then engages in

100 MCTS self-play games, experiencing wins, losses,

and draws. During this competition, every position

encountered is recorded. The recorded data consists of

a triplet: board position, which move is made, and

which side eventually won the game. This accumulated

data is then used to train the CNN model for 100

epochs. Once training is completed, the process moves

to the arena phase, where each new model plays 30

games against the previous model. If the new model's

win threshold fraction is 60% higher than the previous

one, it is accepted; otherwise, it is rejected. These three

stages (MCTS, CNN training, and Arena play) are

called an iteration. Numerous iterations were carried

out in a loop. The algorithm is set up to run for 300

iterations. But during a run, we follow the loss value

and stop the algorithm manually when it stabilizes

around zero. Figure 5 is the flowchart of the AlphaZero

algorithm.

Figure 5. Flow of self-play based on the game rules

IV. EXPERIMENTS

4.1. Overview
We evaluated the performance of our algorithm using

three different methods. First, we tracked the loss

values at the end of each epoch during the training

process. At the conclusion of the training, we visualized

these values in a graph to analyze the model's learning

progress and overall development. Second, at the end

of each iteration, we tested the newly trained model

against the previous version in 30 matches. We

observed how the model improved over iterations by

analyzing the number of wins, losses, and draws.

Finally, we tested the trained model against

approximately 100 human players through an

interactive interface. Remarkably, no human player

(some of them competitive chess players) managed to

defeat the model. These three approaches provided a

comprehensive understanding of our algorithm's

training process and performance in real-world

scenarios.

4.2 Decrease in Training Error

To evaluate our model's learning progression, we

analyzed the training errors for two different board

sizes: 5x5 and 6x6. We tracked each configuration's

policy vector and value losses throughout the training

process. The training was conducted on NVIDIA A100

and NVIDIA GeForce RTX 3050 GPUs, with losses

recorded at the end of each epoch. The following

subsections present detailed analyses for each board

size.

4.2.1. 5x5 Board Experiments and Results

Figure 6. 5x5 Board Policy Vector Losses

Figure 6 shows the decrease in the loss of the policy

network over 175 epochs in a 5x5 board. This graph

was essential for understanding the learning process of

the AlphaZero algorithm when applied to our Pawn

Dama game. The plot indicates that the training process

for the policy network was successful. The rapid initial

decrease in training losses, followed by a gradual and

stable convergence, shows that the model effectively

learned to make policy predictions. The overall

performance suggests that the model was well-trained

and capable of generalizing its learned strategies to new

game scenarios.

Int. J. Adv. Eng. Pure Sci. 2025, 37(1): <27-35> Solving Pawn Dama with AlphaZero

32

Figure 7. 5x5 Board Value Losses

Figure 7 shows the decrease in the loss of the value

network over 175 epochs for a 5x5 board. Looking at

the graph, we can tell that the training process was

successful for the value network. We saw a sharp

decrease in training loss at the beginning, followed by

a steady and stable drop, which suggests that the model

learned to make good value predictions.

The spikes in the loss function of both graphs indicate

points at which one iteration finishes and a new

iteration starts (See 3.1.4). Each iteration brings its own

training set, and we can assume that these new training

sets bring some new information (i.e., previously

unseen game situations) that is not contained in the old

training sets. At that point, the neural net, solely trained

by the old training sets, struggles to handle this new

information, hence the sudden jump in error. However,

in time, it absorbs this new information into its weights

via backpropagation, and the errors drop. Also note that

as the game progresses, it becomes harder to surprise

neural networks, and the size of the spikes decreases.

Figure 8. 5x5 Board Policy Vector and Value Losses

As shown in Figure 8, we display both the policy vector

and value losses on a single graph for the 5x5 board.

This side-by-side presentation helps visualize the

learning progress of the policy and value networks

simultaneously. The training was conducted on an

NVIDIA A100 GPU, a high-performance computing

unit known for handling complex deep-learning tasks.

The model was trained for approximately 18 hours,

allowing it to reach an effective level of performance.

This training duration was sufficient to capture the

essential patterns and nuances of the game while

ensuring the model had enough time to refine its

learning.

4.2.2. 6x6 Board Experiments and Results

Figure 9. 6x6 Board Policy Vector Losses

Figure 9 shows the policy loss for a 6x6 board, helping

us understand how the model learns to select moves in

the pawn game. Here, the convergence is slower than

on the 5x5 board. The loss values were relatively high

initially but dropped quickly during the first 100

epochs. By reaching 600 epochs, the loss had settled at

its minimum level and remained steady. The reasons for

the spikes are the same as discussed for the 5x5 board.

The consistent decline and eventual stabilization of the

loss values indicate that the model successfully learned

the key strategies of the game.

Figure 10. 6x6 Board Value Losses

In Figure 10, the value loss curve shows how the model

improved its ability to evaluate positions in the 6x6

pawn game. Again, the loss was high initially but

dropped quickly during the first 100 epochs. This rapid

decrease tells us that the model learned the basics of

position evaluation early in the training. After this

point, the loss continued to decline more gradually,

showing that the model was fine-tuning its

understanding of more complex situations.

By the 1000th epoch, the loss reached a stable and low

value, staying consistent for the rest of the training.

Unlike the policy loss, we do not see any significant

spikes here, which shows that the training process for

the value network was smooth and reliable.

Solving Pawn Dama with AlphaZero Int. J. Adv. Eng. Pure Sci. 2025, 37(1): <27-35>

33

The final result confirms that the model successfully

learned to evaluate positions accurately, predicting

game outcomes with confidence. This stability tells us

that once the core ideas of position evaluation were

understood, the model could consistently apply them to

new scenarios, showing a clear understanding of pawn

structures and their impact on gameplay.

Figure 11. 6x6 Board Policy and Value Vector Losses

Figure 11 presents the policy vector and value losses

for the 6x6 board. By displaying both losses

simultaneously, we can assess the model's performance

in both areas more efficiently. The training process

required significant computational power, and we used

an NVIDIA A100 GPU for this task. The training for

the 6x6 board took approximately 48 hours. This

extended training period allowed the model to learn

more complex strategies and game dynamics

effectively.

4.3 Self-Play Results

In this section, we discuss the results obtained from the

self-play games, a critical step in the training process of

our model. Self-play allowed the model to improve

iteratively by competing against itself, refining its

strategies, and correcting mistakes over time. The

model was set to play 40 matches throughout training

at the end of each iteration, where the newly trained

version competed against the model from the previous

iteration. The new model consistently improved and

outperformed its predecessor as the training

progressed. However, in the later stages, the matches

between iterations consistently resulted mostly in

draws, suggesting that the model had achieved its

maximum potential and was operating at an optimal

level, unable to further improve against itself. These

findings highlight the model's ability to reach a high

level of performance autonomously through self-play.

This iterative process not only ensured strategic

improvement but also validated the robustness of the

training methodology.

4.4 Playing Against Humans

To evaluate our model's performance in real-world

scenarios, we conducted tests by allowing humans to

play directly against the trained AI. Using the

interactive interface we developed, over 100 games

were played against various individuals with varying

experience levels, including skillful players who

frequently play chess at well-known online platforms

such as lichess or chess.com. Impressively, the AI

model remained undefeated throughout these matches,

consistently demonstrating its ability to adapt to human

strategies. This experience highlighted the AI's

strategic depth and robustness, as it effectively handled

diverse human gameplay styles. Additionally, feedback

from the participants revealed that the AI not only

played competently but also provided a challenging and

engaging experience. These results confirmed the

strength of the model and its capability to perform

reliably outside of controlled testing environments,

marking a significant milestone in its development.

V. CONCLUSIONS
In this study, we ran AlphaZero on a new game that had

never been explored. By integrating Monte Carlo Tree

Search (MCTS) with neural networks, we adapted

AlphaZero to this novel environment. The updates to

the MCTS algorithm, particularly in the simulation

phase and UCB formula, allowed for more effective

data generation and evaluation. Leveraging the CNN

model to predict game outcomes and optimize move

selection, the algorithm improved iteratively, achieving

superior performance. The self-play and evaluation

process ensured that only models with significant

improvements were accepted. This showcases the

strength of combining MCTS and deep learning, as

AlphaZero successfully adapted to our custom game

and demonstrated advanced strategic decision-making.

This study is the first step toward fully implementing

Turkish Dama in the AlphaZero algorithm.

VI. APPENDIX

6.1 Rules of Pawn Dama

1. The board must have at least four rows. Other than

this, they can be of any side.

2. At the start of the game, white pawns occupy the first

two rows of the board. Black pawns occupy the last two

rows of the board.

3. Pawns can move one square forward if that square is

not occupied.

4. If this is their first move, pawns have the option to

move two squares forward if both squares are

unoccupied.

5. Pawns capture diagonally.

6. The side whose pawn reaches the opposite end of the

board first wins.

Int. J. Adv. Eng. Pure Sci. 2025, 37(1): <27-35> Solving Pawn Dama with AlphaZero

34

VII. CODE AVAILABILITY
Our project's complete source code implementation

is available as open-source at:

https://github.com/erdemphl/solving-pawn-dama-

with-alphazero. Our code builds upon and extends the

code presented in [18].

REFERENCES
[1] Shannon, C.E. (1950). Programming a

Computer for Playing Chess. Philosophical

Magazine, 41(314), 256-275.

[2] Knuth, D.E., & Moore, R.W. (1975). An

Analysis of Alpha-Beta Pruning. Artificial

Intelligence, 6(4), 293-326.

[3] Newborn, M. (1997). Kasparov versus Deep

Blue: Computer Chess Comes of Age. Springer.

[4] Schaeffer, J. (1997). One Jump Ahead:

Challenging Human Supremacy in Checkers.

Springer-Verlag.

[5] Tesauro, G. (1995). Temporal Difference

Learning and TD-Gammon. Communications of

the ACM, 38(3), 58-68.

[6] Samuel, A.L. (1959). Some studies in machine

learning using the game of checkers. IBM Journal

of Research and Development, 3(3), 210-229.

[7] Coulom, R. (2006). Efficient Selectivity and

Backup Operators in Monte-Carlo Tree Search. In

Proceedings of the 5th International Conference on

Computers and Games (pp. 72-83).

[8] Kocsis, L., & Szepesvári, C. (2006). Bandit

Based Monte-Carlo Planning. Machine Learning,

282, 282-293.

[9] Gelly, S., & Silver, D. (2007). Combining

Online and Offline Knowledge in UCT. In

Proceedings of the 24th International Conference

on Machine Learning (273-280).

[10] Ciancarini, P., & Favini, G.P. (2010). Monte Carlo

tree search in Kriegspiel. Artificial Intelligence,

174, 670-684.

[11] Browne, C.B., Powley, E., Whitehouse, D., Lucas,

S.M., Cowling, P.I., Rohlfshagen, P., Tavener, S.,

Perez, D., Samothrakis, S., & Colton, S. (2012). A

Survey of Monte Carlo Tree Search Methods.

Artificial Intelligence Review, 34(1), 1-49.

[12] Silver, D., Huang, A., Maddison, C.J., Guez, A.,

Sifre, L., Van Den Driessche, G., Schrittwieser, J.,

Antonoglou, I., Panneershelvam, V., & Lanctot,

M. (2016). Mastering the game of Go with deep

neural networks and tree search. Nature,

529(7587), 484-489.

[13] Silver, D., Schrittwieser, J., Simonyan, K.,

Antonoglou, I., Huang, A., Guez, A., Hubert, T.,

Baker, L., Lai, M., Bolton, A., & Hassabis, D.

(2017). Mastering the game of Go without human

knowledge. Nature, 550(7676), 354-359.

[14] Silver, D., Schrittwieser, J., Simonyan, K.,

Antonoglou, I., Huang, A., Guez, A., & Hassabis,

D. (2018). A general reinforcement learning

algorithm that masters chess, shogi, and Go

through self-play. Science, 362(6419), 1140-1144.

[15] Vinyals, O., Babuschkin, I., Czarnecki, W.M.,

Mathieu, M., Dudzik, A., Chung, J., Choi, D.,

Powell, R., Ewalds, T., Georgiev, P., & Silver, D.

(2019). Grandmaster level in StarCraft II using

multi-agent reinforcement learning. Nature,

575(7782), 350-354.

[16] Schrittwieser, J., Antonoglou, I., Hubert, T.,

Simonyan, K., Sifre, L., Schmitt, S., Guez, A.,

Lockhart, E., Hassabis, D., Graepel, T., & Silver,

D. (2020). Mastering Atari, Go, Chess and Shogi

by Planning with a Learned Model. Nature,

588(7839), 604-609.

[17] Dong, H., Ding, Z., & Zhang, S. (2020).

Fundamentals, Research and Applications. In

Deep Reinforcement Learning (pp. 391-414).

[18] Thakoor, S., Nair, S., & Jhunjhunwala, M. (2016).

Learning to play othello without human

knowledge. Stanford University.

[19] Hassabis, D. (2017). Mastering Chess and Shogi

by Self-Play with a General Reinforcement

Learning Algorithm. ArXiv.

Retrieved from https://arxiv.org/abs/1712.01815

[20] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.

(1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE,

86(11), 2278-2324.

[21] Ioffe, S., & Szegedy, C. (2015). Batch

normalization: Accelerating deep network training

by reducing internal covariate shift. In Proceedings

of the International Conference on Machine

Learning.

[22] Srivastava, N., Hinton, G., Krizhevsky, A.,

Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: A simple way to prevent neural networks

from overfitting. Journal of Machine Learning

Research, 15(1), 1929-1958.

[23] Nair, V., & Hinton, G.E. (2010). Rectified linear

units improve restricted boltzmann machines. In

Proceedings of the International Conference on

Machine Learning.

https://github.com/erdemphl/solving-pawn-dama-with-alphazero
https://github.com/erdemphl/solving-pawn-dama-with-alphazero
https://arxiv.org/abs/1712.01815

Solving Pawn Dama with AlphaZero Int. J. Adv. Eng. Pure Sci. 2025, 37(1): <27-35>

35

[24] Tomašev, N., Paquet, U., Hassabis, D., &

Kramnik, V. (2020). Assessing game balance with

AlphaZero: Exploring alternative rule sets in

chess. arXiv preprint arXiv:2009.04374.

https://arxiv.org/abs/2009.04374

[25] Ye, W., Liu, S., Kurutach, T., Abbeel, P., & Gao,

Y. (2021). Mastering Atari games with limited

data. Advances in Neural Information Processing

Systems, 34, 14917–14929.

[26] Schmid, M., Moravčík, M., Burch, N., Kadlec, R.,

Davidson, J., Waugh, K., Bard, N., Timbers, F.,

Lanctot, M., Holland, G. Z., Davoodi, E.,

Christianson, A., & Bowling, M. (2023). Student

of Games: A unified learning algorithm for both

perfect and imperfect information games. Science

Advances, 9(45), eadg3256.

https://doi.org/10.1126/sciadv.adg3256

[27] Sutton, R. S., & Barto, A. G. (2018).

Reinforcement learning: An introduction (2nd ed.).

MIT Press.

https://arxiv.org/abs/2009.04374
https://doi.org/10.1126/sciadv.adg3256

