
39

Çankaya Üniversitesi Fen-Edebiyat Fakültesi,

Journal of Arts and Sciences Say›: 5, May›s 2006

Abstract

The work presented in this paper introduces a set of metrics for component oriented software

systems. The work focuses mainly on the complexity that results mainly from factors related to system

structure and connectivity. Also, a new set of properties that a component-oriented complexity metric

must possess are defined. The metrics have been evaluated using the properties defined in this paper.

A case study has been conducted to detect the power of complexity metrics in predicting integration

and maintenance efforts. The results of the study revealed that component oriented complexity metrics

can be of great value in predicting both integration and maintenance efforts.

1. INTRODUCTION

Use of Abstraction, as the key to the identification of system building blocks or

components has been one of the most significant and critical issues to attract interest

from programming language designers, methodologists, and software developers

since the early days of software development. The earliest work started with process

abstraction, which was not powerful enough to support the building of large and

complex programs. Then appeared the data processing view, emphasizing function

abstraction that receives inputs when called, does processing in its body and yields

a value as output (Watt, Findlay, and Hughes, 1990), (Sebesta, 2002). Later, and

particularly during the 1980’s, the object-oriented (OO) approach arrived and

introduced a different unit of abstraction which encapsulates both data and

functions. The fundamental building block in the OO approach is “the class” which

Complexity Metrics AS Predictors of
Maintainability and Integrability of
Software components

Nael SALMAN*

* Çankaya University, Department of Computer Engineering, Ankara, email: nsalman@cankaya.edu.tr

40

Complexity Metrics AS Predictors of Maintainability and Integrability of Software Components

is a collection of objects, and has the power to hide information from its clients. The

class abstraction allows the building of large and complex systems as hierarchies of

objects (Sebesta, 2002). Most recently, the component oriented (CO) system

development approach emerged with software components as its principal building

block.

Component-Oriented Software Engineering (COSE) is likely to become the main

and preferred stream for software development (Ravichandran, and Rothenberer,

2003). The CO paradigm focuses on developing large software systems by

integrating prefabricated software components (Dogru and Tanik, 2003). It

facilitates the process of software development (Vitharana, Zahedi, Jain, 2003) and

solves many adaptation and maintenance problems (Basili and Boehm, 2001). It is

quite clear that in the last few years research has focused on methods and

approaches that work towards developing software systems by integrating already

developed components.

In contrast, very little effort has been devoted for metrics and measures that can

be used to evaluate design complexities, integration complexities, and overall

system complexities for systems that are developed using COSE methods. Also,

theoretical foundations for measuring and validating measurements have not

emerged yet. The customizability and reliability of prefabricated components is a

critical issue, requiringnew metrics to measure these attributes. Cost estimation,

productivity estimation, reliability, and maintainability measurements are still open

research fields for COSE (Vitharana, Zahedi, and Jain, 2003). The main issues in

COTS metrics are capturing integration complexity; and complex interfaces tend to

complicate the testing process of the system (Sedigh-Ali, Ghafoor, and Paul, 2001).

Measuring the degree of structuredness in software systems is an important issue

since system organization will necessarily have an impact on maintainability

(Visaggio, 1997). Productivity is still significantly affected by personnel skills in

COTS systems so guidelines should be introduced to help developers in increasing

productivity in COTS based systems (Basili and Boehm, 2001).

The research reported here introduces a set of metrics that is intended to measure

the new features related to the introduction of the CO approach. We only focus on

metrics that can be collected during early stages of system development, particularly

from system design documents. A metrics validation approach for component

oriented systems is also introduced.

The rest of the paper is organized as follows: In section 2 preliminary definitions

of the key concepts that are used in this article are introduced, in section 3 CO

structural complexity and a set of metrics characterizing it are defined. In section 4

41

Nael SALMAN

a set of properties that a CO complexity metric must possess are described. In

section 5 metrics evaluation validation approach is performed. In section 6 we

derive our conclusions, directions for future work and probable extensions to this

paper.

2. PRELIMINARY DEFINITIONS

Before presenting component-oriented software complexity or introducing our

metrics validation approach, we will introduce our perception of the concepts

related to the subject. Our aim in introducing these definitions is to avoid any

confusion that may arise.

Component Oriented Software System: this is a software system that is modeled

and designed to be developed by integrating components of independent

deployment. It is also necessary to point out that the system is totally modeled using

component oriented software engineering modeling language (e.g. COSEML which

is a dedicated modeling language for component oriented software modeling (Dogru

and Tanik, 2003)). In order to familiarize the reader with this and to clarify any

possible ambiguity, we present a COSEML model for a simplified university

information system in Figure 1.

Software Component: Many definitions of this term can be found in different

sources. The definition that combines most of the important features that appear in

other definitions and seems to be widely accepted is the one given in (Szyperski,

Gruntz, and Murer, 2002). They define a software component as:

Coupling Between Components: Two components are coupled if there is a link

between them, where a link means a request for a service. The direction of the link

indicates which component requests the service or is dependent on the other. Hence,

coupling is considered as a measure of inter-component dependency. It is widely

accepted that excessive coupling is not a good design practice and usually results in

complex systems that are difficult to maintain and upgrade.

42

Complexity Metrics AS Predictors of Maintainability and Integrability of Software Components

Figure 1. Simplified University System Modeled Using COSEML

CO System Structure: Software system structure is defined as the way through

which system building elements are organized in relation to each other and their

environment (Gorla and Ramakrishnan, 1997). It deals with methods that can be

applied to achieve maximized reusability and reliability (Clements, 1995),

(Clements et al., 1995). From these two views of system structure we can conclude

that it is a design decision. Two or more different design alternatives may result in

StudentDepartment Faculty RegistrationCourse

University

Student Table

update
View

Personal Ops.

Student Table

View grades
Add course
Drop course

Academic Ops.

Course Table

add
remove
view

Course Ops. Grading Ops.

Grade Table
Course Table

set grade
update course
View grade

Student
Table

Academic
Operations

Personal
Operations

Course
Table

Grading
Opera tions

Course
Opera tions

Grade
Table

Register
TableStudent

Academic Ops.
Personal Ops

Course

Course Ops.
Grading Ops

43

Nael SALMAN

different structures. Intuitively, different structures of the same system will

certainly lead to different values of structural complexity.

Structural Complexity: This term has been defined and interpreted in many

different ways. While some view complexity as a factor mostly related to size and

functionality, others relate complexity to the degree of mental effort required to

understand (Zuse, 1993). Tian and Zelkowitz (1995) considered software

complexity as the aspect of software that is used to predict external properties of the

program (e.g. reliability, understandability, maintainability). Since the main focus of

COSE is on structure (Dogru and Tanik, 2003), we are dedicating more interest to

structural complexity of systems.

Component Composition: The process of integrating two or more components

with well-defined interfaces to produce a single functional component.

3. COMPLEXITY METRICS

A component-oriented software system can be obtained as a result of the

composition of some components with defined interfaces (Szyperski et al., 2002).

A component’s functionality is implemented in its methods and is provided for other

components through its well-defined interfaces. Based on this view and the

preliminary definitions presented in section 2, component-oriented software systems

structural complexity can be characterized using the following attributes.

1- components in the system

2- connectors between components

3- interfaces of each component

4- composition tree

A set of metrics that characterize these attributes are defined as follows:

1- To characterize the components in a system the following metrics are

defined:

a. Total number of components (TNC) in a system is defined as: the count

of all components in the system that appear in different levels of

abstractions.

b. Average number of methods per component (ANMC) metric is used.

This metrics is estimated by dividing the total number of methods by the

total number of components.

c. Total number if implemented components (TNIC): The count of

implemented components only.

44

Complexity Metrics AS Predictors of Maintainability and Integrability of Software Components

2- To characterize connectors in a system, the following metrics are defined

a. Total number of links (TNL): count of all links appearing in the system

design model in all levels.

b. Average number of links between components (ANLC): Total number of

links divided by the total number of components.

c. Average number of links per interface (ANLI): Total number of links

between interfaces divided by the total number of interfaces.

3- To characterize interfaces in the system, the following metrics are defined:

a. Total number of interfaces (TNI): count of all interfaces of all

components in the system.

b. Average number of interfaces per component (ANIC): Total number of

interfaces divided by the total number of components.

4- To characterize the composition tree the following metrics are defined:

a. Depth of the composition tree (DCT): count of the number of levels of

the composition tree.

b. Width of the composition tree (WCT): count of the maximum number of

components in any level of the composition tree.

4. PROPERTIES OF A SOFTWARE COMPLEXITY METRIC

A software complexity metric is valid if it succeeds in satisfying defined

properties. Several researchers have tried to describe a set of properties that a good

software complexity metric must satisfy. Such approaches can be seen in the works

described in (Weyuker, 1988), (Briand, Morasca, and Basili, 1996), (Kitchenham,

Pfleeger, and Fenton, 1995), (Tian, and Zelkowitz, 1995), (Schneidewind, 1992)

and (Zuse, 1996), but valid approaches are not limited to these. While some of the

work has gained more popularity than the others (Weyuker, 1988), none has been

totally accepted or totally rejected by the software development community. Since

no global acceptance has been reached for any of these properties and, also, none of

these properties have specifically tackled the particular and new aspects of

component-oriented software systems, we introduce a set of properties that a

component-oriented system complexity metric must satisfy. The properties defined

in this article came as a result of investigating the properties described in (Weyuker,

1988), (Briand, Morasca, and Basili, 1996), (Kitchenham, Pfleeger, and Fenton,

1995), (Tian, and Zelkowitz, 1995), (Schneidewind, 1992), and (Zuse, 1996). The

properties described in this paper do not have a generic nature in the sense that we

45

Nael SALMAN

do not claim that they can apply to all types of complexity metrics ,especially those

proposed for “non-component-oriented” systems.

Property 1: Nonnegativity: A complexity metric value can not be a negative

number. For some complexity metrics it is necessary to be even stricter, since a

value of zero will not always be accepted.

Interpretation guidelines: The meaning of a complexity metric value for a

software artifact (a software artifact can be a method, component, or the whole

system) that provides some functionality to be equal to zero is that the artifact is the

least-complex possible design that can provide that functionality. A lower

complexity value, for two functionally equal designs, is preferred over a higher

value since lower complexity is believed to be associated with less development,

testing, and maintenance efforts.

Property 2: Scalability: A software complexity metric must provide a scale of

values. Comparison between different alternatives must be possible. For any two

software artifacts it must be possible to compare and then make managerial

decisions according to the metrics values. For any two functionally-equal

components C1 and C2, if Complexity(C1) > Complexity(C2) then C2 is preferred

over C1 assuming that we keep all other parameters constant. This is due to the fact

that C2 will require less testing, less integration, and less maintenance efforts. Also,

metrics must provide enough information to help managers make business decisions

and compare different alternatives.

Property 3: The complexity of a single software unit S composed of two

software components can not be less than the sum of the complexities of the

individual components.

Complexity(S) >= Complexity(C1) + Complexity(C2)

According to the metrics described in section 4, the complexity of a component-

oriented software system is a function of the complexities of individual components

that make it up, and an added complexity will appear as a result of new interactions

that may exist between the components. In the best case, when a system is

composed of two components and no new added interactions between the

components are available, the system’s complexity will be equal to the sum of the

individual component complexities.

Property 4: If a component C is decomposed into two or more components C1,

C2, .., Cn then the sum of complexities of the resulting components is no more than

the overall complexity of the original component.

Complexity(C1) + Complexity(C2) + … + Complexity(Cn) <= Complexity(C)

46

Complexity Metrics AS Predictors of Maintainability and Integrability of Software Components

The reason for this is that, according to our perception of the three-level

component-oriented software complexity, there is usually an added complexity

whenever two components are composed. The new complexity usually results from

the interactions between these components. So, when the component is

decomposed these links will disappear and only the component’s intrinsic

complexity will remain.

Property 5: The complexity value of one component does not have a direct

relation to its functionality, i.e. for any two components C1 and C2, if

Complexity(C1) > Complexity(C2) then it is not necessary that C1 provides more

functionality than C2. The same functionality can be obtained by different designs

and then implementation. The complexity measures described in this article are

those that enable software developers and/or managers to take decisions and

contrast/compare different alternative solutions to the same problem. Of course, any

added functionality may introduce an added complexity. So, a complexity metric

does not consider evaluating functionality of the system or provide any information

about the system size.

Property 6: The complexity value is directly influenced by structure. Two

different structures for the same functionality can result in two different complexity

values. A complexity measure of the system can have different values for different

alternative architectures of the same functionality.

5. METRICS EVALUATION AND VALIDATION

The metrics have been evaluated using the set of properties defined in section 4.

All metrics satisfied all properties. This leads to concluding that metrics qualify

from a mathematical perspective. What remains is examining whether metrics

qualify form a practical perspective. To examine the latter we conducted a case

study where data from 25 graduate students’ projects have been collected. All of the

projects are designed for component oriented software development using

COSEML (Dogru and Tanik).

The case study has been conducted to investigate the potential of using

complexity metrics values as predictors of both integrability and maintainability of

component oriented systems. Integrability is defined as the total effort spent on

defining inter-component link and component interfaces. Maintainability is defined

as the effort spent on making corrections to errors discovered during the design

phase of system development.

Data Collection approach: Data were collected from the design documents. A

47

Nael SALMAN

metrics collection form was prepared for the purpose of making the metrics

collection less costly and to encourage the developers to perform the task. The

developers were exposed to a short training course on how to collect these metrics

from the design documents.

Regression analyses have been performed where all metrics values were fed in a

forward addition manner. The results obtained from the regression analyses can be

summarized as follows:

1) Correction Effort per Component (Component Maintainability) regression

analysis: Variables have been fed to the model were fed in a forward addition

manner. Variables whose coefficients’ corresponding p-values are less than or

equal to 0.05 are added to the model. The regression analysis produced the

following regression model:

Correction-Effort Per Comp = exp(-0.02 * (TNC) + 0.07* (TNIC)+ 0.2 * (ANMC) – 2.37)

(p = 0.003) (p = 0.008) (p = 0.04) (p = 0.0)

The model demonstrates a high statistical significance with maximum p-value 0f

0.04 and R2 0f 0.95. Besides being statistically significant, the model also is

practically significant as well.

The average error rate is encouraging to recommend the model for practical use

with a value of 13% when removing the outliers. The plot of the regression model

is shown in figure 2.

Figure 2: Correction Effort Per Component Regression Model Plot

Model exp(a*x1+b*x2+c*x3+d)

C
o
r
r
e
c
t
i
o
n

E
f
f
o
r
t

P
e
r

Components, PComponents, Methods/Component

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.0 5.0 10.0 15.0 20.0 25.0

48

Complexity Metrics AS Predictors of Maintainability and Integrability of Software Components

2) Integration effort (Integrability) regression analysis: Variables have been fed

to the model were fed in a forward addition manner. Variables whose coefficients’

corresponding p-values are less than or equal to 0.05 are added to the model. The

regression analysis produced the following regression model:

Integration Effort = 0.1 * (TNL) + 2.6

(p = 0.0) (p = 0.0)

The model uses only the total number of links measure. We believe that some

other variables must be related to integration effort e.g. number of interfaces and

number of components which are intuitively believed to influence integrability.

Despite the fact that the model contains only one variable, it still bears both

statistical and practical significance. Both p-value of the variable coefficient and the

constant are equal to 0.0. R2 has a value of 0.91 which is also quite high to

encourage the adoption of the model. Average error rate is 11% when removing

outliers. The model plot is shown in figure 3.

Figure 3: Integration Effort Model Plot

6. CONCLUSIONS AND FUTURE WORK

Structural complexity of component oriented systems has been defined. Metrics

for measuring CO systems’ structural complexity have been also been defined and

validated. The results obtained are of great significance and worth consideration for

further research in the field. Making early decisions about integrability and

maintainability during system design stage has been a matter of great interest to

researchers since the early days of software development.

Model a*x+b

I
n
t
e
g
r
a
t
i
o
n

E
f
f
o
r
t

Connections

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0.0 50.0 100.0 150.0 200.0 250.0 300.0

49

Nael SALMAN

The study still needs further validation using data from industry practices. Using

implemented projects will provide opportunities to examine the relationships

between metrics values and several other product quality factors like performance

and reliability.

There is still little effort dedicated to component oriented software engineering

measurement in both the theoretical and empirical grounds. The major problem that

researchers encounter in the field is a lack of experimental data from the industry

that can be used to validate the proposed measures and/or measurement frameworks.

References

Basili, V. R., and Boehm, B. 2001. COTS-Based Systems Top 10 List. IEEE Computer, vol. 34, No.

5: 91—93.

Briand, L. C., Morasca, S., and Basili, V. R. 1996. Property-Based Software Engineering

Measurement. IEEE Transactions on Software Engineering, vol. 22, No. 1: 68—86.

Clements, P. C., 1995, “From Subroutines to Subsystems: Component-Based Software Development,”

American Programmer, vol. 8, no. 11.

Clements, P. C., Bass, L., Kazman, R., Abowd, G., 1995, “Predicting Software Quality by

Architecture-Level Evaluation,” Proceedings of the Fifth International Conference of Software
Quality, Austinx, Tx, October, 1995.

Dogru, A. H., and Tanik, M. 2003. A process Model for Component Oriented Software Engineering.

IEEE Software, March/April: 34—41.

Gorla, N., Ramakrishnan. R., 1997, Effect of Software Structure Attributes on Software Development

Productivity, Journal of Systems and Software, vol. 36:191-199

Halstead, M. 1997. Elements of Software Science. Elsevier Computer Science Library.

Kitchenham, B., Pfleeger, S. L., and Fenton, N. 1995. Towards a Framework for Software

Measurement Validation. IEEE Transactions on Software Engineering, vol. 21, No. 12: 929—

944.

Kitchenham, B., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El Emam, K., and

Rosenberg, J. 2002. Preliminary Guidelines for Empirical Research in Software Engineering.

IEEE Transactions on Software Engineering, vol. 28, No. 8: 721—734.

Mendonça, M. G., and Basili, V. R. 2000. Validating of an Approach for Improving Existing

Measurement Frameworks. IEEE Trans. on Software Engineering, vol. 26, No. 6: 484—499.

Ravichandran, T., and Rothenberger, M. 2003. Software Reuse Strategies and Component Markets.

Communications of the ACM, vol. 46, No. 8: 109—114.

Schneidewind, N. F. 1992. Methodology for Validating Software Metrics. IEEE Transactions on

Software Engineering, vol. 18, No. 5: 410—422.

Sebesta, R. W. 2002. Concepts of Programming Languages. 5th Ed., Addison Wesley.

Sedigh-Ali, S., Ghafoor, A., and Paul, R. A. 2001. Software Engineering Metrics for COTS-Based

Systems. IEEE Computer, vol. 34, No. 6: 44—50.

Szyperski, C., Gruntz, D., and Murer, S. 2002. Component Software - Beyond Object-Oriented

Programming. 2nd Ed. Addison-Wesley / ACM Press: 1—47.

50

Complexity Metrics AS Predictors of Maintainability and Integrability of Software Components

Tian, J., and Zelkowitz, M. V. 1995. Complexity Measure Evaluation and Selection. IEEE

Transactions on Software Engineering, vol. 21, No. 8: 641—650.

Vitharana, P., Zahedi, F. M., and Jain, H. 2003, “Design Retrieval and Assembly in Component-Based

Software Development. Communications of the ACM, vol. 46, No. 11: 97—102.

Visaggio, G. 1997. Structural Information as a Quality Metric in Software Systems Organization.

Proceeding of ICSM: 92—99.

Watt, D. A., Findlay, W., and Hughes, J., 1990. Programming Language Concepts and Paradigms,”

Prentice Hall.

Weyuker, E. J., 1988. Evaluating Software Complexity Measures. IEEE Transactions on Software

Engineering, vol. 14, No. 9: 1357—1365.

Zelkowitz, M. V., and Wallace, D., 1997. Experimental Validation on Software Engineering.

Information and Software Technology, Elsevier Sciences, vol. 39: 735—743.

Zelkowitz, M. V., and Wallace, D. 1998. Experimental Models for Validating Technology. IEEE

Computer, Vol.31, No.5: 23—31.

Zuse, H. 1993. Criteria for Program Comprehension Derived from Software Complexity Metrics.

Proceedings of the Second International Workshop on Software Comprehension, IEEE,

Capri/Italy: 8—16.

Zuse, H. 1996. Foundations of Object-Oriented Software Measures, IEEE Proceedings of

METRICS’96: 75—88.

