Çankaya Üniversitesi Fen-Edebiyat Fakültesi, Journal of Arts and Sciences Sayı: 6 / Aralık 2006

On the Eigenvalues of Integral Operators

Yüksel SOYKAN¹

Abstract

In this paper, we obtain asymptotic estimates of the eigenvalues of certain positive integral operators. *Key words: Positive Integral Operators, Eigenvalues, Hardy Spaces.*

Özet

Bu çalışmada bazı positive integral operatörlerin özdeğerlerinin asimtotik yaklaşımlarını elde edeceğiz. Anahtar Kelimeler: Pozitif İntegral Operatörleri, Özdeğerler, Hardy Uzayları.

1. INTRODUCTION

From now on, let *J* be a fixed closed subinterval of the real line **R**. Suppose that *D* is a simply-connected domain containing the real closed interval *J* and φ is any function, which maps *D* conformally onto Δ , where Δ is the open unit disk of complex plane \mathbb{C} . Let us define a function K_D on $D \times D$ by

$$K_{D}(\zeta, z) = \frac{\varphi'(\zeta)^{\frac{1}{2}} \varphi'(z)^{\frac{1}{2}}}{1 - \varphi(\zeta) \overline{\varphi(z)}} \quad \text{for all } \zeta, z \in D,$$

for either of the branches of ${\varphi'}^{\frac{1}{2}}$. The function K_D is independent of the choice of mapping function φ , see [1, p.410]. By restricting the function K_D to the square JxJ we obtain a compact symmetric operator T_D on L^2 defined by

Karaelmas Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Zonguldak. e-mail: yuksel_soykan@hotmail.com

 $T_D f(s) = \int_J K_D(s,t) f(t) dt \qquad (f \in L^2(J), s \in J).$ This operator is always positive in the sense of operator theory (i.e. $\langle Tf, f \rangle \ge 0$ for all $f \in L^2(J)$, see [1].

We shall use $\lambda_n(K_D)$ to denote the eigenvalues of T_D .

In this work the following theorem shall be proved in detail.

THEOREM 1.1 If D_1, D_2, D_3 are three half-planes and their boundary lines are not parallel pairwise and if $D = D_1 \cap D_2 \cap D_3$ contains the real closed interval *J*, then

$$\lambda_n(K_D) \cong \lambda_n(K_{D_1} + K_{D_2} + K_{D_3})$$

ere $a_n \cong b_n$ means $a_n = O(b_n)$ and $b_n = O(a_n)$.

To prove Theorem 1.1 we will show that

i) $\lambda_n(K_{D_1 \cap D_2 \cap D_3}) = O(\lambda_n(K_{D_1} + K_{D_2} + K_{D_3}))$ ii) $\lambda_n(K_{D_1} + K_{D_2} + K_{D_3}) = O(\lambda_n(K_{D_1 \cap D_2 \cap D_3})).$

This is a special case of a theorem in [1, Theorem 1] and we give a different proof.

2. PRELIMINARIES

wh

The space $H^{\infty}(\Delta)$ is just the set of all bounded analytic function on Δ with the uniform norm. For $1 \le p < \infty$, $H^{p}(\Delta)$ is the set of all functions *f* analytic on Δ such that

$$\sup_{0< r< 1} \frac{1}{2\pi} \int_0^{2\pi} \left| f(re^{i\theta}) \right|^p d\theta < \infty.$$

The *p*-th root of the left hand side of (1) here defines a complete norm on $H^p(\Delta)$. For more information on this spaces see [2 and 3]. In the case of p=2, H^2 be the familiar Hardy space of all functions analytic on Δ with square-summable Maclaurin coefficients.

Let D be a simply connected domain in $\overline{\mathbb{C}} = \mathbb{C} \cup \infty$ and let φ be a Riemann mapping function for D, that is, a conformal map of D onto Δ . An analytic function g on D is said to be of class $E^2(D)$ if there exists a function $f \in H^2(\Delta)$ such that $g(z) = f(\varphi(z))\varphi'(z)^{\frac{1}{2}}$ $(z \in D)$ where ${\varphi'}^{\frac{1}{2}}$ is a branch of the square root of φ' . We define $||g||_{E^2(D)} = ||f||_{H^2(\Delta)}$. Thus, by construction, $E^2(D)$ is a Hilbert space with

$$\langle g_1, g_2 \rangle_{E^2(D)} = \langle f_1, f_2 \rangle_{H^2(\Delta)}$$

where $g_i(z) = f_i(\varphi(z))\varphi'(z)^{\frac{1}{2}}$, (i = 1, 2) and the map $U_{\varphi}: H^2(\Delta) \to E^2(D)$ given by

$$U_{\varphi}f(z) = f(\varphi(z))\varphi'(z)^{\frac{1}{2}} \quad (f \in H^{2}(\Delta), z \in D)$$

is an isometric bijection. For more information on this spaces see [1]. If ∂D is a rectifiable Jordan curve then the same formula

$$V_{\varphi}f(z) = f(\varphi(z))\varphi'(z)^{\frac{1}{2}} \quad (f \in L^{2}(\partial \Delta), z \in \partial D)$$

defines an isometric bijection V_{φ} of $L^2(\partial \Delta)$ onto $L^2(\partial D)$, the L^2 space of normalized arc length measure on ∂D where ∂D and $\partial \Delta$ denote the boundary of D and Δ respectively. The inverse

$$V_{\psi} = V_{\varphi}^{-1} : L^{2}(\partial D) \to L^{2}(\partial \Delta)$$

of V_{ψ} is given by

$$V_{\psi}g(w) = g(\psi(w))\psi'(w)^{1/2} \quad (g \in L^2(\partial D), w \in \partial \Delta, \psi = \varphi^{-1}).$$

To prove Theorem 1.1 we need the following lemma. This is Corollary 1.3 to Lemma 1.2 in [4].

LEMMA 2.1 Suppose that *D* is a disc or a codisc or a half-plane and $\gamma' \subseteq \overline{D}$ be a circular arc (or a straight line) then for every $g \in E^2(D)$,

$$\frac{1}{2\pi}\int_{y'}\left|g\left(z\right)\right|^{2}\left|dz\right| \leq \left\|g\right\|_{E^{2}\left(D\right)}^{2} = \frac{1}{2\pi}\int_{\partial D}\left|g\left(z\right)\right|^{2}\left|dz\right|.$$

Suppose now that *D* contains our fixed interval *J*. By restricting φ to *J* we obtain a linear operator $S_D : E^2(D) \to L^2(J)$ defined by $S_D f(s) = f(s)$ $(f \in E^2(D), s \in J)$. Then S_D is compact operator and $T_D = S_D S_D^*$ is the compact, positive integral operator on *J* with kernel K_D :

$$K_D(s,t) = \frac{\varphi'(s)^{\frac{1}{2}}\varphi'(t)^{\frac{1}{2}}}{1-\varphi(s)\overline{\varphi(t)}}$$

for all $s,t \in J$. This is proved in [1]

DEFINITION 2.1 Let *H* and *H'* be Hilbert spaces and suppose that *T* is a compact, positive operator on *H*. If $S: H' \to H$ is a compact operator such that $T = SS^*$, then *S* is called a quasi square-root of *T*. We call *H'* the domain space of *S*.

REMARK 2.2 Suppose that D_1 , D_2 , D_3 are simply-connected domains containing J and let T_{D_1} , T_{D_2} , T_{D_3} be continuous positive operators on a Hilbert space $L^2(J)$ and suppose that for each i, S_{D_i} is a quasi square-root of T_{D_i} with domain space $E^2(D_i)$. If $T_+ = T(K_{D_1} + K_{D_2} + K_{D_3}) = T(\sum_{i=1}^{3} K_{D_i})$

so that $T_+f(s) = \int_J (K_{D_1}(s,t) + K_{D_2}(s,t) + K_{D_3}(s,t))f(t)dt$ $(f \in L^2(J), s \in J)$, then $T_+ : L^2(J) \to L^2(J)$ is compact, positive integral operator and T_+ has the quasi square-root

$$S_{+}: E^{2}(D_{1}) + E^{2}(D_{2}) + E^{2}(D_{3}) \rightarrow L^{2}(J), \qquad S_{+}(f_{1} + f_{2} + f_{3}) = S_{D_{1}}f_{1} + S_{D_{2}}f_{2} + S_{D_{3}}f_{3}$$

so that
$$S_{+}(f_{1} + f_{2} + f_{3})(s) = S_{D_{1}}f_{1}(s) + S_{D_{2}}f_{2}(s) + S_{D_{3}}f_{3}(s) = f_{1}(s) + f_{2}(s) + f_{3}(s) \qquad (f \in L^{2}(J), s \in J).$$

LEMMA 2.3 Let T_1, T_2 be compact operators on a Hilbert space *H* and suppose that S_1, S_2 are quasi square-root of T_1, T_2 with domain H_1, H_2 respectively.

i) If there exists a continuous operator $V: H_2 \to H_1$ such that $S_2 = VS_1$ then $(T_2f, f) \le k(T_1f, f)$ for some $k \ge 0$ and so $\lambda_n(T_2) = O(\lambda_n(T_1))$ $(n \ge 0)$.

ii) If there exists continuous operators $V: H_2 \to H_1$ and $W: H \to H$ such that $S_2 = WS_1V$, then $\lambda_n(T_2) = O(\lambda_n(T_1))$.

Proof. See [1, page 407].

3. PROOF OF MAIN RESULT

Suppose that *D* is a simply connected and bounded domain. Let φ be a Riemann mapping function for *D* and suppose that $\psi = \varphi^{-1}$ is the inverse function of φ . An analytic function *f* on *D* is said to be of class $H^{\infty}(D)$ if it is bounded on *D*.

PROPOSITION 3.1 If $\psi' \in H^1$, then $H^{\infty}(D) \subseteq E^2(D)$.

Proof. Suppose that $f \in H^{\infty}(D)$. For $z \in D$, define $g(z) = f(\psi(z))\psi'(z)^{\frac{1}{2}}$. Then $f \circ \psi \in H^{\infty}(D)$ and ${\psi'}^{\frac{1}{2}} \in H^2$. It follows that $(f \circ \psi)\psi'^{\frac{1}{2}} \in H^2$. Hence $f \in E^2(D)$.

PROPOSITION 3.2 Suppose that ∂D is a rectifiable Jordan curve, then *i*) $\psi' \in H^1$

ii) Each function $f \in E^2(D)$ has a non-tangential limit $\tilde{f} \in L^2(\partial D)$. The map $f \to \tilde{f}$ is an isometric isomorphism and $\|f\|_{E^2(D)}^2 = \frac{1}{2\pi} \int_{\partial D} |\tilde{f}(z)|^2 |dz|$.

iii) If D is a convex region, it is a Smirnov domain.

iv) If D is a Smirnov domain, then polynomials (thus $H^{\infty}(D)$) are dense in $E^{2}(D)$.

v) $E^2(D)$ coincides with the $L^2(\partial D)$ closure of the polynomials if and only if D is a Smirnov domain.

Proof. See [2, pages 44, 170 and 173]. For the definition of Smirnov domain see [2, page 173].

LEMMA 3.4 If D is a disc, or codisc or half-plane, then the formula

$$Pf(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta$$

defines a continuous linear operator $P: L^2(\partial D) \to E^2(D)$ with ||P|| = 1.

Proof. See [1, page 423].

From now on, suppose now that D_1, D_2, D_3 are three half-planes, and let $D = D_1 \cap D_2 \cap D_3$ contains the real closed interval *J* (see Figure 1). For k = 1,2,3, let $\gamma_k = \partial D_k \cap (D_1 \cap D_2 \cap D_3)$.

We shall exhibit continuous operators

 $N: E^{2}(D) \to E^{2}(D_{1}) \oplus E^{2}(D_{2}) \oplus E^{2}(D_{3})$ and $M: E^{2}(D_{1}) \oplus E^{2}(D_{2}) \oplus E^{2}(D_{3}) \to E^{2}(D).$

To define N suppose first that $G = \{f: f \text{ is a polynomial in } E^2(D)\}$. Since D is convex, $\overline{G} = E^2(D)$. If $f \in G$, then for all $z \in D$, Cauchy's Integral Formula gives

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(w)}{w-z} dw + \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(w)}{w-z} dw + \frac{1}{2\pi i} \int_{\gamma_3} \frac{f(w)}{w-z} dw$$

For $f \in G$ and $1 \le k \le 3$, define a function f_k on D_k by

$$f_k(z) = \frac{1}{2\pi i} \int_{\gamma_k} \frac{f(w)}{w - z} dw \qquad (z \in D_k),$$

and define a function \tilde{f}_k on ∂D_k by

$$\tilde{f}_{k}(z) = \begin{cases} f(\zeta), & \text{if } \zeta \in \gamma_{k} \\ 0, & \text{if } \zeta \in \partial D_{k} - \gamma_{k} \end{cases} \quad (z \in \partial D_{k}).$$

LEMMA 3.5 If $f \in G$ and $1 \le k \le 3$ then

i) $\tilde{f}_k \in L^2(\partial D_k)$ and $f_k \in E^2(D_k)$.

ii) The formula $V_1 f = (f_1, f_2, f_3)$ defines a continuous linear operator $V_1 : G \to E^2(D_1) \oplus E^2(D_2) \oplus E^2(D_3)$ and so that V_1 has an extension N by continuity to $E^2(D)$.

Proof. i) Let φ_k be a Riemann mapping function for D_k and suppose V_{φ_k} and U_{φ_k} are as in Section 2. The map $P_k : L^2(\partial D_k) \to E^2(D_k)$ given by

$$P_k f(z) = \frac{1}{2\pi i} \int_{\partial D_k} \frac{f(\zeta)}{\zeta - z} d\zeta$$

is a continuous linear operator with $||P_k|| = 1$ (from Lemma 3.4). Since $f_k = P_k \tilde{f}_k$, it follows that $f_k \in E^2(D_k)$. So $(f_1, f_2, f_3) \in E^2(D_1) \oplus E^2(D_2) \oplus E^2(D_3)$. Since

and

$$\begin{split} \left\|f_{k}\right\|_{E^{2}(D_{k})}^{2} &= \left\|P_{k}\tilde{f}_{k}\right\|_{E^{2}(D_{k})}^{2} \leq \left\|\tilde{f}_{k}\right\|_{L^{2}(\partial D_{k})}^{2} = \frac{1}{2\pi} \int_{\gamma_{k}} \left|f(\zeta)\right|^{2} \left|d\zeta\right| \leq \left\|f\right\|_{E^{2}(D)}^{2} \\ \left\|V_{1}f\right\|_{E^{2}(D_{1})\oplus E^{2}(D_{2})\oplus E^{2}(D_{3})}^{2} &= \left\|(f_{1},f_{2},f_{3})\right\|_{E^{2}(D_{1})\oplus E^{2}(D_{2})\oplus E^{2}(D_{3})}^{2} \\ &= \left\|f_{1}\right\|_{E^{2}(D_{1})}^{2} + \left\|f_{2}\right\|_{E^{2}(D_{2})}^{2} + \left\|f_{2}\right\|_{E^{2}(D_{3})}^{2} \leq 3\left\|f\right\|_{E^{2}(D)}^{2} \end{split}$$

it follows that the map $f \to (f_1, f_2, f_3)$ is a continuous linear operator $G \to E^2(D_1) \oplus E^2(D_2) \oplus E^2(D_3)$. Now suppose that N is an extension by continuity to $E^2(D)$. Note that then $||N||^2 \le 3$.

If we denote $F = H^{\infty}(D_1) \oplus H^{\infty}(D_2) \oplus H^{\infty}(D_3)$ then $\overline{F} = E^2(D_1) \oplus E^2(D_2) \oplus E^2(D_3)$.

LEMMA 3.6 The map $V_2: F \to E^2(D)$, is given by

$$V_2(f_1, f_2, f_3)(z) = f_1(z) + f_2(z) + f_3(z), \qquad ((f_1, f_2, f_3) \in F, z \in D),$$

is a continuous operator so that V_2 has an extension M by continuity to $E^2(D_1) \oplus E^2(D_2) \oplus E^2(D_3).$

Proof. If $(f_1, f_2, f_3) \in F$ then by Propositions 3.1 and 3.2, $f_i \in H^{\infty}(D) \subseteq E^2(D)$ $(1 \le i \le 3)$ and $V_2(f_1, f_2, f_3) \in H^{\infty}(D) \subseteq E^2(D)$. So we have

Hence $||V_2||^2 \le 9$ and V_2 is a continuous linear operator. Let now M be extension by continuity to $E^2(D_1) \oplus E^2(D_2) \oplus E^2(D_3)$. Note that then $||M||^2 \le 9$.

PROOF OF THEOREM 1.1

i) Suppose that V_1 is as in Lemma 3.5. Note that here $T_+ = S_+ S_+^*$ and $T_D = S_D S_D^*$. By definition of V_1 , we have $S_D f = S_+ V_1 f$ for every $f \in G$. Thus, by continuity of V_1 , $S_D f = S_+ N f$ for every $f \in E^2(D)$ and so $S_D = S_+ N$.

So for $g \in L^2(J)$,

$$\langle S_{D}S_{D}^{*}g,g \rangle = \left\| S_{D}^{*}g \right\|^{2} = \left\| N^{*}S_{+}^{*}g \right\|^{2}$$

$$\leq \left\| N^{*} \right\|^{2} \left\| S_{+}^{*}g \right\|^{2} = \left\| N \right\|^{2} \langle S_{+}S_{+}^{*}g,g \rangle$$

$$\leq 3 \langle S_{+}S_{+}^{*}g,g \rangle.$$

.

That is, $S_D S_D^* \le 2S_+ S_+^*$. Hence by Lemma 2.3

$$\lambda_n(S_D S_D^*) \leq 3\lambda_n(S_+ S_+^*)$$

as required.

ii) Suppose that V_2 is as in Lemma 3.6. By definition of V_2 , it follows that $S_+(f_1, f_2, f_3) = S_D V_2(f_1, f_2, f_3)$ for every $(f_1, f_2, f_3) \in H^{\infty}(D_1) \oplus H^{\infty}(D_2) \oplus H^{\infty}(D_3)$. Thus, by continuity of V_2 ,

$$S_{+}(f_1, f_2, f_3) = S_D M(f_1, f_2, f_3)$$
 for every $(f_1, f_2, f_3) \in E^2(D_1) \oplus E^2(D_2) \oplus E^2(D_3)$

and so $S_+ = S_D M$. So for $g \in L^2(J)$, we have

$$egin{aligned} &\langle S_{+}S_{+}^{*}g,g
angle \leq \left\|M
ight\|^{2} \langle S_{D}S_{D}^{*}g,g
angle \ &\leq 9 \langle S_{D}S_{D}^{*}g,g
angle. \end{aligned}$$

i.e, $S_+S_+^* \le 9S_DS_D^*$. Consequently, from Lemma 2.3,

$$\lambda_n(S_+S_+^*) \leq 9\lambda_n(S_DS_D^*).$$

REFERENCES

Little, G., "Equivalences of positive integrals operators with rational kernels", Proc. London. Math. Soc. (3) 62 (1991), 403-426.

Duren, P. L., "Theory of spaces", Academic Press, New York, 1970

- Koosis, P., "Introduction to spaces", Cambridge University Press, Cambridge, Second Edition, 1998.
- Soykan Y., "An Inequality of Fejer-Riesz Type", Çankaya University, Journal of Arts and Sciences, Issue: 5, May 2006, 51-60.

On the Eigenvalues of Integral Operators