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On the Eigenvalues of Integral Operators

Yiiksel SOYKAN!

Abstract
In this paper, we obtain asymptotic estimates of the eigenvalues of certain positive integral operators.
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Ozet
Bu calismada bazi positive integral operatorlerin 6zdegerlerinin asimtotik yaklagimlarini elde edecegiz.

Anahtar Kelimeler: Pozitif Integral Operatérleri, Ozdegerler, Hardy Uzaylar:.

1. INTRODUCTION

From now on, let J be a fixed closed subinterval of the real line R. Suppose that D
is a simply-connected domain containing the real closed interval J and ¢ is any
function, which maps D conformally onto A, where A is the open unit disk of complex
plane €. Let us define a function Kp on D x D by

o AU C) Y
1=p(S)e(2)
1
for either of the branches of ¢’ - The function K, is independent of the choice of mapping
function ¢, see [1, p.410]. By restricting the function K, to the square JxJ we obtain a
compact symmetric operator Tj, on L? defined by
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Tpf(s)= | Kp(s.00 ()t (fel’()sel).
This operator is always positive in the sense of operator theory (i.e. (Tf, f) >0
forall fe*(J),see[l].

We shall use A, (K ) to denote the eigenvalues of 7}, .

In this work the following theorem shall be proved in detail.

THEOREM 1.1 If D,,D,, D, are three half-planes and their boundary lines are
not parallel pairwise and if D =D, N D, N D, contains the real closed interval J,
then

4,(Ky)=4,(K, +Kp, +Kp)
where a, = b, means a, =O(b, )and b, =O(a,) .

To prove Theorem 1.1 we will show that
i 4, (KDlszmD3 )= 0(//{71 (KD, + KD2 + KD3 ),
i) ﬂ,n(KD1 +KD2 +KD3):0(/1n(KDmD2mD3)).

This is a special case of a theorem in [1, Theorem 1] and we give a different proof.
2. PRELIMINARIES

The space H”(A) is just the set of all bounded analytic function on A with the
uniform norm. For 1< p <oo, H”(A) is the set of all functions f analytic on A such
that 1

gz [ el do <

The p-th root of the left hand side of (1) here defines a complete norm on H” (A).
For more information on this spaces see [2 and 3 ]. In the case of p=2, H * be the
familiar Hardy space of all functions analytic on A with square-summable Maclaurin
coefficients.

Let D be a simply connected domain in C =C U and let @ be a Riemann
mapping function for D, that is, a conformal map of D onto A. An analytic function g
on D is said to be of class E*(D) if there exists a function f € H>(A) such that
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g(z)= f((o(z))go’(z)% (z € D) where (o'% is a branch of the square root of @' . We
E*(D) = ”f
<g1’g2>52(p) = <f1’f2>H2(A)

where g,(2) = f,(¢(2))@'(2)*, (i = 1, 2) and the map U, : H*(A) — E*(D)
given by

define ” g ) Thus, by construction, £ 2 (D) is a Hilbert space with

U, /()= [(p(2)¢'(2)' (f € H*(A),z€D)

is an isometric bijection. For more information on this spaces see [1]. If 0D is a
rectifiable Jordan curve then the same formula

V. f(2)=f(@(2)¢'(2)} (f el (dA),zedD)

defines an isometric bijection ¥, of L*(6A) onto L*(8D), the L* space of
normalized arc length measure on 0D where 0D and OA denote the boundary of D

and A respectively. The inverse
-1, 72 2
V,=V," :L(0D)— L (0A)
of V, is given by
V,g(w)=gyw)y'(w)"” (gel’(0D),wedAy=9¢ ).

To prove Theorem 1.1 we need the following lemma. This is Corollary 1.3 to
Lemma 1.2 in [4].

LEMMA 2.1 Suppose that D is a disc or a codisc or a half-plane and y’' < D bea
circular arc (or a straight line) then for every g € E*(D),

1 ) , ) i
- j e |l <[gll.. ., =56£ @[ |-

Suppose now that D contains our fixed interval J. By restricting ¢ to J we obtain a
linear operator S, : E*(D) —> L*(J) defined by S, f(s)=f(s) (feE*(D),sel).
Then S, is compact operator and T, =SS, is the compact, positive integral

operator on J with kernel K, :
RAORAOR

1=p(s)o(?)
for all s,t € J. This is proved in [1]

K, (s,1)
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DEFINITION 2.1 Let H and H' be Hilbert spaces and suppose that T is a
compact, positive operator on H. If S:H'— H is a compact operator such that
T =SS, then Sis called a quasi square-root of 7. We call H' the domain space of S.

REMARK 2.2 Suppose that D,, D,, D, are simply-connected domains containing
Jand let T, D, > T, D, > T, p, be continuous positive operators on a Hilbert space L*(J) and

suppose that for each i, S, isa qua§i square-root of 7,, with domain space £ 2(Di) .

T, =T(K, +K, +K, )= T(z K,)

izl
so that T f(s)= L(KD, (5,0+ Ky, (5,0 + K, (s;0)f ()t (f e '(J),s € J),then
T :I’(J)— [’(J) is compact, positive integral operator and 7T, has the quasi

square-root

S, :E*(D)+E*(D,)+E*(Dy) = I*(J), S, + L+ )=Sp /i +8p, [, 48, 15
so that
S.(/h+ 1o +f3)(s)=Sle1(s)+SDZf2(s)+SDSf3(s)=f1(s)+f2(s)+f3(s) (feLz(J),seJ).

LEMMA 2.3 Let 7,7, be compact operators on a Hilbert space H and suppose
that S,,S, are quasi square-root of 7},7, with domain H,, H, respectively.

i) If there exists a continuous operator V' : H, — H, such that S, =V§, then
(T.f.f/)<Kk(f,f) forsome k>0 and so A (T,) =O(A (1})) (n=0).

i) If there exists continuous operators V' : H, — H, and W :H — H such that
S, =SV ,then 4,(T,) = O(4, (L) .

Proof. See [1, page 407].

3. PROOF OF MAIN RESULT

Suppose that D is a simply connected and bounded domain. Let ¢ be a Riemann
mapping function for D and suppose that | = ¢71 is the inverse function of @. An
analytic function fon D is said to be of class H” (D) if it is bounded on D.

PROPOSITION 3.1 If y'e H', then H* (D) c E*(D).
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Proof. Suppose that '€ H”(D). For z € D, define g(z)= f(l//(z))(//'(z)%.
Then fow e H"(D) and l//'% € H?. 1t follows that (fog//)g//'% € H’. Hence
feE*D).

PROPOSITION 3.2  Suppose that 0D is a rectifiable Jordan curve, then

hy'eH'

ii) Each function f e E*(D) has a non-tangential limit f € L’(0D) . The map

b =3y | Pl e

f — f is an isometric isomorphism and || f

iii) If D is a convex region, it is a Smirnov domain.
iv) If D is a Smirnov domain, then polynomials (thus H~(D)) are dense in E*(D).
v) E*(D) coincides with the I*(0D) closure of the polinomials if and only if D

is a Smirnov domain.

Proof. See [2, pages 44, 170 and 173]. For the definition of Smirnov domain see [2,
page 173].

LEMMA 3.4 If D is adisc, or codisc or half-plane, then the formula

I f@?

P =
OR v W

defines a continuous linear operator P : L*(8D) — E*(D) with ||P|| =
Proof. See [1, page 423].

From now on, suppose now thatD,,D,,D, are three half-planes, and let
D =D, "D, "D, contains the real closed interval J (see Figure 1). For k=1,2,3, let
7, =0D, N(D,nD,N D).
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Figure 1.

We shall exhibit continuous operators
N:E*(D)— E*(D)®E*(D,)® E*(D,) and M:E*(D))® E*(D,)® E*(D,) - E*(D).
To define N suppose first that G={ f is a polynomial in E>(D)?}. Since D is

convex, G=E’ (D).If feG,thenforall ze€ D, Cauchy's Integral Formula gives

) If(W) s

27n

If(W) s If(W)

27zz 27i Tw—z

For f € G and 1<k <3, define a function f, on D, by

fiD) = Md (zeD,).

271'1 —

and define a function ]7,c on 0D, by

if
7(2)= {f(?) if Cey

oD,).
. if CedD, - (z€8)
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LEMMA3.5 If fe€G and 1<k <3 then

i) f, e *(dD,) and f, € E*(D,).

iify The formula V,f =(f,,f,,f;) defines a continuous linear operator
Vi:G— E*(D)®E*(D,)®E*(D,) and so that V, has an extension N by
continuity to E>(D).

Proof. i) Let ¢, be a Riemann mapping function for D, and suppose V% and
U, are as in Section 2. The map P, : L*(0D,) — E*(D,) given by

/(&)

1
— d
27 ‘LDk é/—Z d

Ef(2)=

is a continuous linear operator with ”Pk ” =1 (from Lemma 3.4). Since f, = B, f,, it

follows that f, € E*(D,).So (f;, f,» /2) € E*(D,)® E*(D,)® E*(D,) . Since

2 2

<7, =5 [ 1@ lacl<lr

2 ~ 2
”fk E*(D) Hpkfk E*(D)

E*(Dy) I} (eDy)

and

Vs

2
E2(D)®E (D,)®E*(Dy) ”(fl 2 J20 13)

2
E*(D))®E*(D,)®E*(Dy)

=|A

22(03) < 3||f

zzwl) + ||f2 zz(Dz) + ||f2 22 (D)

it follows that the map f —(f,,f,,/;) is a continuous linear operator
G— E*(D)®E*(D,)®E*(D,). Now suppose that N is an extension by
continuity to £>(D) . Note that then ||N ||2 <3.

If we denote F = H”(D,)® H*(D,)® H*(D,) then F = E*(D)® E*(D,)® E*(D,)-
LEMMA 3.6  Themap V, : F — E*(D), is given by

Vo fos 15)(2) = £1(2) + £2(2) + £3(2) (fi, /o /)€ F,zeD),
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is a continuous operator so that ¥, has an extension M by continuity to

E*(D,)® E*(D,)® E*(D,).

Proof. If (7, f,,f;) € F then by Propositions 3.1 and 3.2, f e H*(D)< E*(D)
(<i<3)and V,(f,, f,, ;) € H*(D) < E*(D) . So we have

Vo fis £ )

A VR A
Al oy AL oy + AL ) +2RERICS )
+2Real( /i, /1) o ) + 2ReAU S, 1) 2 )
S O VY O VA O (7 s VA
AR ) 1AL o) + Al +15

=30 o ol A )
(by Lemma 2.1)

< 3(3 ||f1||252(01) + 3||f2||22(02) + 3||f3||252(03))
=9 "(fl ’ f2 ? f3)||1292(01)@52(1)2)@Ez(D3)

2
E? <D>)

Hence ||V2||2 <9 and V, is a continuous linear operator. Let now M be extension
2
by continuity to E°(D,)® E*(D,)® E*(D;). Note that then ”M” <9.

PROOF OF THEOREM 1.1

i) Suppose that V| is as in Lemma 3.5. Note that here 7, =SS +* and
T, =S5,S, . By definition of ¥;, we have S, =SV, f forevery f € G.Thus, by
continuity of V,, S, f =S Nf forevery f € E*(D) andso S, =S, N .

So for ge I’ (J),

s 5 2 5 5 2
(S,Syg.2)=|Sy"e| =|N"S. ¢|
+]|2 * 2 2 *
<|V[|s.e] =INT ¢5.5. 2. 8)
<XS.5. 2.8
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Thatis, S,S, <28S.S,". Hence by Lemma 2.3

2,(S,S,)<34,(S.8,)

as required.

ii) Suppose that V, is as in Lemma 3.6. By definition of V), it follows that

S (S Sos L) =S5 (i fos fy) for every (fi. £, ) e H*(D)® H*(D,)® H*(Dy). Thus,
by continuity of V,,

S+(ﬁﬂﬂa]g):SDM(ﬁaf27ﬁ) foreVery (fl’fé’f3)€Ez(Dl)C_BEz(DZ)@EZ(D})
andso S, =S, M. So for g € I’(J), we have
(8.8, g.g) <|M[ (S,S, .8
<9S,S, g, g)

ie, S+S+* < 9SDSD*. Consequently, from Lemma 2.3,

24.(S.8,)<91.(S,S,).
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