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On the Eigenvalues of Integral Operators
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Abstract

In this paper, we obtain asymptotic estimates of the eigenvalues of certain positive integral operators.
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Özet

Bu çal›flmada baz› positive integral operatörlerin özde¤erlerinin asimtotik yaklafl›mlar›n› elde edece¤iz.

Anahtar Kelimeler: Pozitif ‹ntegral Operatörleri, Özde¤erler, Hardy Uzaylar›.

1. INTRODUCTION

From now on, let J be a fixed closed subinterval of the real line R. Suppose that D
is a simply-connected domain containing the real closed interval J and ϕ is any
function, which maps D conformally onto ∆, where  ∆ is the open unit disk of complex
plane C. Let us define a function  KD on D x D by 

for either of the branches of              The function KD is independent of the choice of mapping
function ϕ, see [1, p.410].  By restricting the function KD to the square JxJ we obtain a
compact symmetric operator TD on L2 defined by
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J

T f s K s t f t dt   
2( ( ), ).f L J s J   

This operator is always positive in the sense of operator theory (i.e. , 0Tf f  

for all 
2 ( )f L J , see [1].  

 

We shall use ( )n DK  to denote the eigenvalues of DT . 

 

In this work the following theorem shall be proved in detail. 

 

THEOREM 1.1  If 1 2 3, ,D D D  are three half-planes and their boundary lines are 

not parallel pairwise and if  1 2 3D D D D  contains the  real closed interval J, 

then 

1 2 3
( ) ( )n D n D D DK K K K       

where  n na b  means ( )n na O b and ( )n nb O a . 

 

To prove Theorem 1.1 we will show that 

    i)    
1 2 3 1 2 3

( ) ( ( ))n D D D n D D DK O K K K   

    ii)    
1 2 3 1 2 3

( ) ( ( )).n D D D n D D DK K K O K  

 

This is a special case of a theorem in [1, Theorem 1] and we give a different proof. 

 

2. PRELIMINARIES 

 

The space ( )H  is just the set of all bounded analytic function on  with the 

uniform norm. For 1 p , ( )pH  is the set of all functions f analytic on  such 

that 
2

00 1
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r

f re d      

  (1) 

The p-th root of the left hand side of (1) here defines a complete norm on ( )pH . 

For more information on this spaces see [2 and 3 ]. In the case of p=2, 
2H  be the 

familiar Hardy space of all functions analytic on  with square-summable Maclaurin 

coefficients. 

Let D be a simply connected domain in  and let  be a Riemann 

mapping function for D, that is, a conformal map of D onto . An analytic function g 

on D is said to be of class 
2 ( )E D  if there exists a function 

2 ( )f H  such that 

≅
≅

C C
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1
2( ) ( ) ( )g z f z z  ( )z D where 

1
2  is a branch of the square root of . We 

define 2 2( ) ( )E D H
g f . Thus, by construction, 

2 ( )E D  is a Hilbert space with 
 

2 21 2 1 2( ) ( )
, ,

E D H
g g f f   

    

where 
1
2( ) ( ) ( )i ig z f z z , (i = 1, 2)  and the map 

2 2: ( ) ( )U H E D  

given by 
1
2 2( ) ( ( )) ( )    ( ( ), )U f z f z z f H z D   

   

is an isometric bijection. For more information on this spaces see [1]. If D  is a 

rectifiable Jordan curve then the same formula  
 1

2 2( ) ( ( )) ( )    ( ( ), )V f z f z z f L z D    
  

defines an isometric bijection V  of 
2 ( )L  onto 

2 ( )L D , the 
2L  space of 

normalized arc length measure on D  where D  and  denote the boundary of D 

and  respectively. The inverse 
 

1 2 2: ( ) ( )V V L D L       
  

of V  is given by 
 2 1( ) ( ( )) )    ( ( ), , ).V g w g w w g L D w  

   

To prove Theorem 1.1 we need the following lemma. This is Corollary 1.3 to 

Lemma 1.2 in [4]. 

 

LEMMA 2.1   Suppose that D is a disc or a codisc or a half-plane and D  be a 

circular arc (or a straight line) then for every 
2 ( ),g E D  

 

2

2 2 2

( )

1 1
 ) g  )

2 2E D

D

g (z dz g (z dz .   

               

Suppose now that D contains our fixed interval J. By restricting  to J we obtain a 

linear operator 
2 2: ( ) ( )DS E D L J  defined by 2( ) ( )    ( ( ), )DS f s f s f E D s J . 

Then DS  is compact operator and 
*

D D DT S S  is the compact, positive integral 

operator on J with kernel :DK  
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for all s,t ∈ J. This is proved in [1]
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DEFINITION 2.1   Let H and H  be Hilbert spaces and suppose that T is a 

compact, positive operator on H. If :S H H  is a compact operator such that 
*T SS , then S is called a quasi square-root of T.  We call H  the domain space of S. 

 

REMARK 2.2  Suppose that 1D , 2 3,D D  are simply-connected domains containing 

J and let 
1DT ,

2DT ,
3DT  be continuous positive operators on a Hilbert space 

2 ( )L J  and 

suppose that for each i, 
iDS  is a quasi square-root of 

iDT  with domain space 
2 ( )iE D . 

If 
1 2 3

3

1

( ) ( )
iD D D D

i

T T K K K T K   
 

so that 
1 2 3

2( ) ( ( , ) ( , ) ( , )) ( )      ( ( ), ),D D D
J

T f s K s t K s t K s t f t dt f L J s J then 
2 2: ( ) ( )T L J L J  is compact, positive integral operator and T  has the quasi 

square-root   
  

2 2 2 2

1 2 3: ( ) ( ) ( ) ( ),S E D E D E D L J   
1 2 31 2 3 1 2 3( ) D D DS f f f S f S f S f   

       

so that  

1 2 3

2

1 2 3 1 2 3 1 2 3( )( ) ( ) ( ) ( ) ( ) ( ) ( )      ( ( ), ).D D DS f f f s S f s S f s S f s f s f s f s f L J s J

 

LEMMA 2.3    Let 1T , 2T  be compact operators on a Hilbert space H and suppose 

that 1S , 2S  are quasi square-root of  1T , 2T   with domain 1H , 2H  respectively. 

i) If there exists a continuous operator 2 1:V H H  such that 2 1S VS  then 

2 1( , ) ( , )T f f k T f f  for some k>0 and so 2 1( ) ( ( ))    ( 0).n nT O T n  

ii) If there exists continuous operators 2 1:V H H   and :W H H  such that 

2 1S WS V , then 2 1( ) ( ( ))n nT O T . 

Proof. See [1,  page 407]. 

 

3. PROOF OF MAIN RESULT 

Suppose that D is a simply connected and bounded domain. Let  be a Riemann 

mapping function for D and suppose that 
1
 is the inverse function of . An 

analytic function f on D is said to be of class ( )H D  if it is bounded on D. 

 

PROPOSITION 3.1    If 
1H , then 

2( ) ( )H D E D . 
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Proof. Suppose that ( )f H D . For z D , define 
1
2( ) ( ) ( )g z f z z .  

Then ( )f H D  and 
1
2 2H . It follows that 

1
2 2( )f H . Hence 

2 ( )f E D . 

 

PROPOSITION 3.2     Suppose that D  is a rectifiable Jordan curve, then 

i) 
1H  

ii) Each function 2 ( )f E D  has a non-tangential limit 
2 ( )f L D . The map 

f f  is an isometric isomorphism and 2

22

( )

1
 )

2E D

D

f f  (z dz  . 

 

iii) If D is a convex region, it is a Smirnov domain. 

iv) If D is a Smirnov domain, then polynomials (thus ( )H D ) are dense in 2 ( )E D . 

v) 
2 ( )E D  coincides with the 

2 ( )L D  closure of the polinomials if and only if D 

is a Smirnov domain. 

 

Proof. See [2, pages 44, 170 and 173]. For the definition of Smirnov domain see [2, 

page 173]. 

 

LEMMA 3.4   If D is a disc, or codisc or half-plane, then the formula 

 

1 (
( )

2 D

f
Pf z d

zi
 x 

            

defines a continuous linear operator 
2 2: ( ) ( )P L D E D  with 1P .  

Proof. See [1, page 423]. 

From now on, suppose now that 1 2 3, ,D D D  are three half-planes, and let 

1 2 3D D D D   contains the real closed interval J (see Figure 1). For k =1,2,3, let 

1 2 3k kD D D D . 
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  We shall exhibit continuous operators 

2 2 2 2

1 2 3: ( ) ( ) ( ) ( )N E D E D E D E D   and  2 2 2 2

1 2 3: ( ) ( ) ( ) ( ).M E D E D E D E D  

To define N suppose first that G={f: f is a polynomial in 
2 ( )E D }. Since D is 

convex, 
2 ( )G E D . If f G , then for all z D , Cauchy's Integral Formula gives 

 

1 2 3

1 1 1
( )

2 2 2

f(w f(w f(w
f z dw dw dw

i w z i w z i w z
  

           

For f G  and 1 3k , define a function kf  on kD  by 

 

1
( )

2
k

k

f(w
f z dw

i w z
                  ( )kz D , 

  

and define a function kf  on kD   by 

 
( ),    if   

( )
if   

k

k

k k
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f z

D
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Figure 1. 
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LEMMA 3.5       If f G  and 1 3k  then 

i) 
2 ( )k kf L D  and 

2 ( )k kf E D . 

ii) The formula 1 1 2 3( , , )V f f f f  defines a continuous linear operator 

2 2 2

1 1 2 3: ( ) ( ) ( )V G E D E D E D  and so that V1  has an extension N  by 

continuity to 
2 ( )E D . 

 

Proof.  i) Let k  be a Riemann mapping function for kD  and suppose V
k

and 

U
k

 are as in Section 2. The map 
2 2: ( ) ( )k k kP L D E D  given by 

 

  
1 (

( )
2 k

k
D

f
P f z d

zi
 

  

is a continuous linear operator with 1kP  (from Lemma 3.4). Since k k kf P f , it 

follows that 
2 ( )k kf E D . So 

2 2 2

1 2 3 1 2 3( , , ) ( ) ( ) ( )f f f E D E D E D . Since 

 

2 22 2

2 2 22 2

( ) ( )( ) ( )

1
( )

2k kk k
k k k kE D E DE D L D

f P f f f d f  

and 

2 2 2 2 2 2
1 2 3 1 2 3

2 2

1 1 2 3( ) ( ) ( ) ( ) ( ) ( )
( , , )

E D E D E D E D E D E D
V f f f f   

 

2 2 2 2
1 2 3

2 2 2 2

1 2 2( ) ( ) ( ) ( )
3

E D E D E D E D
f f f f  

 

it follows that the map 1 2 3( , , )f f f f  is a continuous linear operator 

2 2 2

1 2 3( ) ( ) ( )G E D E D E D . Now suppose that N is an extension by 

continuity to 
2 ( )E D . Note that then 

2
3N .  

 

 If we denote 
1 2 3( ) ( ) ( )F H D H D H D  then 2 2 2

1 2 3( ) ( ) ( )F E D E D E D .  

 

LEMMA 3.6        The map 
2

2 : ( )V F E D , is given by 
 

2 1 2 3 1 2 3( , , )( ) ( ) ( ) ( )V f f f z f z f z f z ,              
1 2 3(( , , ) , )f f f F z D , 
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is a continuous operator so that 2V  has an extension M by continuity to 

2 2 2

1 2 3( ) ( ) ( )E D E D E D . 

 

Proof. If 
1 2 3( , , )f f f F  then by Propositions 3.1 and 3.2, 2( ) ( )if H D E D   

(1 3)i  and 2

2 1 2 3( , , ) ( ) ( )V f f f H D E D . So we have  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Hence 
2

2 9V  and 2V  is a continuous linear operator. Let now M be extension 

by continuity to 
2 2 2

1 2 3( ) ( ) ( )E D E D E D . Note that then 
2

9M .  

 

PROOF OF THEOREM 1.1 

i) Suppose that 1V  is as in Lemma 3.5. Note that here 
*

+ + +T S S  and 

*

D D DT S S . By definition of 1V , we have 1DS f S V f  for every f G . Thus, by 

continuity of 1V , DS f S Nf  for every 
2 ( )f E D  and so DS S N .  

So for 
2 ( )g L J , 

   

 

 

 

2 2

22 2 2

2 2

2 2

2 1 2 3 1 2 3( ) ( )

2 2 2

1 2 3 1 2 ( )( ) ( ) ( )
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( , , ))
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                                2Real , 2Real ,

                        

E D E D

E DE D E D E D

E D E D

E

V f f f f f f

f f f f f

f f f f

f 2 2 2 2 2

2 2 2 2

2 2 2

2 2 2 2 2

2 3 1 2( ) ( ) ( ) ( ) ( )

2 2 2 2
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2 2 2
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                        3( )
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E D E D E D

f f f f
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2 2 2
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2 2 2
1 2 3

2 2 2

1 2 3( ) ( ) ( )
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1 2 3 ( ) ( ) ( )

      (by Lemma 2.1)

                          3(3 3 3 )

                          9 ( , , )

E D E D E D

E D E D E D

f f f

f f f

  

 

2 2* * * *

2 2 2* * *

*

,

                   ,

                   3 , .

D D DS S g g S g N S g

N S g N S S g g

S S g g
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That is, 
* *2 .D DS S S S  Hence by Lemma 2.3 

 

* *( ) 3 ( )n D D nS S S S   

as required. 

 

ii) Suppose that 2V  is as in Lemma 3.6. By definition of 2V , it follows that 

+ 1 2 3 2 1 2 3( , , ) ( , , )DS f f f S V f f f  for every 
1 2 3 1 2 3( , , ) ( ) ( ) ( )f f f H D H D H D . Thus, 

by continuity of 2V , 

 

+ 1 2 3 1 2 3( , , ) ( , , )DS f f f S M f f f   for every   2 2 2

1 2 3 1 2 3( , , ) ( ) ( ) ( )f f f E D E D E D   

 

and so + .DS S M  So for 
2 ( )g L J , we have 

2* *

*

, ,

                   9 , .

D D

D D

S S g g M S S g g

S S g g
  

i.e,  
* *9 .D DS S S S  Consequently, from Lemma 2.3,  

 
* *( ) 9 ( )n n D DS S S S .  
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