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Para Hamiltonian Equations With Poisson 

Brackets
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Abstract

In this study, taking care of the framework of para-Kählerian manifolds it was introduced para-complex
analogue of Hamiltonian equations with Poisson bracket. Also, it was shown that a canonical transformation
preserves para-complex Hamiltonian equations with Poisson structure. Finally, the geometrical and
mechanical conclusions on the para-mechanic systems have been suggested.
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Özet

Bu çal›flmada, para-Kähler manifoldlar›n çat›s› dikkate al›narak, Poisson parantezli Hamilton
denklemlerinin para-kompleks benzeri tan›t›ld›. Ayn› zamanda; bir kanonik dönüflümün Poisson yap›l› para-
kompleks Hamilton denklemleri korudu¤u gösterildi. Sonuçta ise; para-mekanik sistemler üzerindeki
geometrik ve mekanik sonuçlar tart›fl›ld›.

Anahtar Kelimeler: para- Kähler manifoldlar; Hamilton sistemler; Poisson manifold; kanonik dönüflüm

1. Introduction

Differential geometry provides a good framework for studying Hamiltonian
formalisms of classical mechanics. It is possible to show in [1,2,3] some numerous
articles and books where differential geometric methods in mechanics are presented. In
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fact, we may say that the role of symplectic geometry in Hamiltonian theories is similar
to  that  of  tangent geometry in Lagrangian theories [3]. The dynamics of Hamiltonian
formalisms is characterized by a suitable vector field defined on cotangent bundles
which are phase-spaces of momentum of a given configuration manifold Q of
dimension m. If H:T*Q→R is a regular Hamiltonian function then there is a unique
vector field ZH on T*Q such that dynamical equations 

i_ZH Φ = Φ (ZH) =dH,    (1)

where Φ is the symplectic form and H stands for Hamiltonian function. The paths of the
Hamiltonian vector field ZH are the solutions of the Hamiltonian equations. The triple
(T*Q, Φ, ZH) is called Hamiltonian system on the cotangent bundle T*Q with
symplectic form Φ. Hamilton equations with Poisson structure are written as

dqi /dt={qi,H} ,   dpi /dt={pi,H},    (2)

where ( qi , pi ), 1≤ i≤m are canonical coordinates on T*Q.

Complex (para-complex) analogues of the Hamiltonian equations were obtained in
the framework of Kählerian (para-Kählerian) manifolds and the geometric results on a
complex (para-complex) mechanical systems were found [4,5]. Also, complex version
of Hamiltonian equations with Poisson structure was introduced [6].

The goal of this study is to make a contribution to the modern development of
Hamiltonian formalisms of classical mechanics in terms of differential-geometric
methods on differentiable manifolds. From this point of view, this manuscript presents
the para-complex analogues of Hamiltonian equations with Poisson bracket and
discusses geometrical and mechanical conclusions on a para-mechanic systems.

The present paper is structured as follows. In section 2, it is recalled para-complex
and para-Kählerian manifolds, and also para-complex analogues of Hamiltonian
equations. In section 3, Poisson structure is generalized to para-Kählerian manifolds. In
section 4, it is obtained para-complex version of Hamiltonian equations with Poisson
bracket. In the conclusion  section, geometrical  and  mechanical conclusions on
Hamiltonian mechanics systems were suggested.

2. Preliminaries

In this study, all manifolds and geometric objects are differentiable and the Einstein
summation convention is in use. Also, it is denoted by A the set of para-complex
numbers, by F(TM) the set of para-complex functions on TM, by œœœœ (TM) the set of
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para-complex vector fields on TM and by Λ 1(TM) the set of para-complex 1-forms on
TM. The definitions and geometric structures on the differential manifold M given by
[7] may be extended to TM as follows:

2.1 Para-complex Manifolds

Definition 1: A tensor field J of type (1,1) on TM such that J2=I is called an almost
product structure on a tangent bundle TM of configuration manifold M of real
dimension m. The pair (TM,J) is said to be an almost product manifold. An almost
para-complex manifold is an almost product manifold (TM,J) such that the two
eigenbundles TT+M and TT-M associated to the eigenvalues +1 and -1 of J,
respectively have the same rank. The dimension of an almost para-complex manifold is
necessarily even. Equivalently, a splitting of the tangent bundle TTM of tangent bundle
TM, into the Whitney sum of two sub bundles on TT±M of the same fibre dimension
is called an almost para-complex structure on TM. An almost para-complex structure
on a 2m-dimensional manifold TM may alternatively be defined as a G- structure on
TM with structural group GL(n,R)x GL(n,R).

A para-complex manifold is an almost para-complex manifold (TM,J) such that the
G- structure defined by the tensor field J is integrable. Assume that xi and (xi,yi ), 1≤ i≤m
are a real coordinate system on neighbourhoods Up and TUp of any points p and Tp of
M and TM and, also {(∂/∂xi)p, (∂/∂yi)p} and {(dxi)p, (dyi)p} natural bases over R of
the tangent space Tp(TM) and the cotangent space Tp*(TM) of TM, respectively. It
can be seen to be

J(∂/∂xi)= ∂/∂yi , J(∂/∂yi)= ∂/∂xi (3)      

and

J*( dxi)=-dyi, J*( dyi)=-dxi.  (4)

be a  para-complex  local  coordinate system
on a neighbourhood TUp of any point Tp of TM. We define the vector fields as:

and the dual co-vector fields as:

(6)  
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which represent the bases of the tangent space Tp(TM)  and cotangent space Tp*(TM)
of TM, respectively. Then the following can be found

(7)

The dual endomorphism J* of the cotangent space Tp*(TM)  at any point Tp of
manifold TM satisfies J*2=I and is defined by

(8)

2.2 Para-Kählerian Manifolds

Definition 2: An almost para-Hermitian manifold (TM,g,J) is a differentiable
manifold TM endowed with an almost product structure J and a pseudo- Riemannian
metric g, compatible in the sense that

g(JX,Y)+g(X,JY)=0, for all X,Y∈ œ(TM).                             (9)

An almost para-Hermitian structure on a differentiable manifold TM is G- structure
on TM whose structural group is the representation of the para unitary group U(n,A)
given in [7]. A para-Hermitian manifold is a manifold with an integrable almost para-
Hermitian structure (g,J). 2-covariant skew tensor field Φ defined by Φ (X,Y)=g(X,JY)
is called  fundamental 2-form. An almost para-Hermitian manifold (TM,g,J), such that
Φ is closed shall be called an almost para-Kählerian manifold.

A para-Hermitian manifold (TM,g,J) is said to be a  para-Kählerian manifold if Φ
is closed. Also, by means of geometric structures, one may show that (T*M,g,J) is a
para-Kählerian manifold.

2.3 Para Hamiltonian Equations

Here, we obtain para-Hamiltonian equations for classical mechanics structured on
para-Kählerian manifold T*M.

Let T*M be any para-Kählerian manifold and {zi,zi},1≤i≤m its para-complex
coordinates. Suppose that {(∂/∂zi)p, (∂/∂zi)p} and {(dzi)p, (d zi )p} are bases over the
set of para-complex numbers A of tangent space Tp(TM) and the cotangent space
Tp*(TM) of TM. Taking care of almost para-complex structure J* given by Eq.(8),
para-Liouville form λ is calculated as λ = J* (ω)=1/2 j(zidzi - z idzi) such that para-
complex 1-form ω =1/2 (zi dzi +z idzi) on T*M. If Φ =-d λ is closed para-Kählerian
form, then Φ is also a para-symplectic structure on T*

pM.
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Proposition 1: Let T*M be para-Kählerian manifold with closed para-Kählerian
form Φ. Para-Hamiltonian vector field ZH on para-Kählerian manifold with closed
para-Kählerian form Φ is given by

ZH =-j ∂H/∂zi ∂/∂zi+j ∂H/∂zi ∂/∂zi , 1≤ i≤m                               (10)

on T*M.

By para-Hamiltonian equations on para-Kählerian manifold T*M, we call the
following equations:

dzi/dt=-j ∂H/∂ΩΩi , dΩΩi /dt=j ∂H/∂zi (11)

3. Poisson Manifolds

Let T*M be a para-Kählerian manifold with closed para-Kählerian form Φ. If the
closed para-Kählerian form Φ on T*M is symplectic structure, all para-Kählerian
manifolds are also symplectic manifolds.

Proposition 2: Let (T*M, Φ) and (S, ω) be symplectic manifolds of same dimension
and let H be a symplectic transformation from (T*M,Φ) to (S, ω). Then (Th)ZFof=ZF

holds for any function F on S.

Assume that (T*M, Φ) is a symplectic manifold. Let F and G be C∞ para-complex
functions on T*M . Then Poisson bracket of F and G is defined by

{F,G}= Φ (ZF,ZG), (12) 

where ZF, ZG are Hamiltonian vector fields on T*M defined by i _ZF Φ = Φ (ZF)=dF

and i _ZG Φ = Φ (ZF)=dG, respectively.

Definition 3: Poisson structure is called a bilinear map defined by

C∞( T*M) x C∞( T*M) → C∞( T*M)                             (13)

(F,G) →{F,G}

on a para-Kählerian manifold T*M if the following identities are verified.

(i) (Skew symmetry) {F,G}=-{G,F},

(ii) (Jacobi identity) {F,{G,H}}+{G,{H,F}}+{H,{F,G}}=0,

(iii) (Leibniz rule) {FG,H}=F{G,H}+{F,G}H,

where C∞( T*M) is the space of C∞ functions on T*M.
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Para-Kählerian manifold endowed with Poisson structure { , } is also called Poisson
manifold.

Let { , } be a Poisson structure on the para-Kählerian manifold.

From (iii) of Definition 3 we see that the map

{ F, }: C∞( T*M) → C∞( T*M), (14)

(G) → { F, G}

is a derivation. Therefore there is a unique vector field ZG on T*M such that

ZG F={ F, G},                                                    (15)

where ZG is said the Hamiltonian vector field of C∞ para-complex function  G on para-
Kählerian manifold T*M with closed para-Kählerian form Φ.

4. Para Hamiltonian Equations with Poisson brackets

In this section, we obtain para-complex Hamiltonian equations on T*M with
Poisson structure { , }. Taking Eq.(10), we deduce that the Poisson bracket of two
functions F and G is 

{F,G}= -j ∂F/∂zi ∂G/∂źi + j∂F/∂źi ∂G/∂zi. (16)

From Eq.(16), we obtain the Poisson brackets of the canonical coordinates:

{zi,zj}={źi,źj}=0, {zi,źj}=δi
j (17)

Furthermore, if F is a function on T*M, we get

{F,zi}=-{zi,F}=j∂F/∂źi , {F, źi}=-{ źi,F}=j∂F/∂zi (18)

Finally, using Eqs.(11) and (18), para-complex Hamilton equations with Poisson
structure are calculated as

dzi/dt=-{zi,H} , dźi /dt=-{źi,H} (19)

Now, we have a question. We try to solve it. A canonical transformation h: (T*M, Φ) →
( T*M, Φ) preserves para-complex Hamiltonian equations? To see this it is sufficient to
show that the Poisson brackets are invariant under the action of H. Firstly, let us take

h*{F,G}={F,G}oh (20)
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Then we have

{F,G}oh=(ZGF)oh=(((Th)ZGoh)F)oh=(ZGoh)(Foh)={Foh,Goh}={h*F,h*G},     (21)

by means of Eq.(15) and  Proposition 2. Hence considering Eqs.(20) and (21) it is

h*{F,G}={h*F,h*G} or {F,G}oh={Foh,Goh}.  (22)

Finally, Poisson brackets are seen invariant under the action of h.

Especially, if are canonical coordinates
on T*M, we have

(23)

such that K=h*H=Hoh. Thus we call to be Kamiltonian K in a canonically transformed
set of coordinates. It is said that K is identical to H, with the possible exception of an
arbitrary additive constant if

K≡ H+dΩ/dt,  (24)

where Ω is any function of phase space coordinates with continuous second derivatives.

Conclusion

Taking care of the considerations the above, it is clear that Poisson bracket is the
most important operation given by the symplectic and/or Kählerian  structure. We
conclude that the Hamiltonian formalisms in generalized classical mechanics and field
theory can be intrinsically characterized on the para-Kählerian manifold endowed with
Poisson structure { , }. The geometric approach of para-complex Hamiltonian systems
is that solutions of Hamiltonian vector field ZH on para-Kählerian manifold T*M  are
paths para-complex Hamiltonian equations obtained in Eq. (19) on T*M  with Poisson
bracket { , }. 

With respect to Eq. (23), it was shown that canonical transformations preserve the
form of Hamiltonian equations. Φ being useful in Hamiltonian mechanics as well as
thermodynamics given in Eq. (24) is known generating function for canonical
transformation. Moreover, four types of time-dependent generating functions are
possible to define. By means of these, it may obtain generalized Maxwell relations [8].
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h:(zi, i) ( ži, ži´), where (zi, i) and (ži, ži´) 

 

h*{zi,H}={zioh,Hoh}={ži,K}=dži/dt,  h*{ i ,H} ={ i oh,Hoh}={ ži´,K}=dži´,/dt, 
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