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Abstract: A data-driven approach was applied in this research to determine input parameters for producing high-quality welds 
in mild steel sheets. By utilizing an L16 orthogonal array, the signal-to-noise (S/N) ratio and analysis of variance (ANOVA) 
techniques were used to optimize weld characteristics. The Multi-Objective Optimization based on Ratio Analysis (MOORA) 
method was used to rank these conflicting objectives according to their importance in different scenarios. From principal 
component analysis (PCA), setting the voltage at 42V, welding current at 250A, wire feed rate at 8 mm/min, and gas flow rate at 
15 L/min results in ideal characteristics: penetration of 2.961 mm, reinforcement of 5.658 mm, bead width of 12.753 mm, and 
dilution percentage of 4.183%. Through the MOORA method, it was determined that a voltage of 40V, welding current of 175A, 
wire feed rate of 4 mm/min, and gas flow rate of 10 L/min would yield optimal weld bead geometry with penetration of 0.884 
mm, reinforcement of 6.489 mm, bead width of 11.715 mm, and dilution percentage of 1.218%. This study effectively optimized 
welding parameters for superior welding in sheet metal fabrication for small and medium-sized enterprises.
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1. Introduction
Many small-scale and medium-scale industries utilize 
Metal Inert Gas (MIG) welding to manufacture sheet 
metal components. However, there is a need to utilize 
the design of experiments to identify the optimum pro-
cess parameters for improved welding. In MIG welding, 
heat is applied to fuse a consumable electrode and the 
base plate metal, which then solidify together to form a 
robust joint. Mild steel is a readily accessible material, 
reasonably priced, and finds extensive use in numerous 
engineering applications [1]. This welding technique of-
fers numerous benefits, including reasonable production 
speed, optimal cost of the product, strength, and im-
proved surface quality [2,3]. The Metal Inert Gas (MIG) 
welding process is also referred to by way of Gas Metal 
Arc Welding (GMAW) [3]. In this procedure, metallic 
components are melted through the application of heat 
by an electric arc, while utilizing a consumable wire 
electrode. The welding gun consistently feeds the filler 
wire into the weld pool, facilitating the joining of the 
main materials [4]. A shielding atmosphere, comprising 
carbon dioxide gas, is established in the working area to 
safeguard the weld deposit from contaminants [5].

Hot-rolled mild steel has been utilized as the base metal 
for this study. This material finds use in structural com-

ponents, railways, agricultural equipment, and various 
components in machinery and equipment. The voltage, 
current, wire filler rate, and gas flow rate have import-
ant effects on weld joints [6-9].

2. Experiment and Methods

The MIG welding process utilized a Toshweld MIG 
400IJ DC inverter source (±2A current stability) and an 
IGBT Module wire feeder. The gas cylinder was fitted 
with a gas flow meter (±0.1 L/min). For the experiment, 
mild steel sheet metal (IS 2062 GR E250) of 2 mm thick-
ness was cut to the desired dimensions of 28×150mm 
using a punching machine. Plate surfaces were cleaned 
using wire brushes and emery paper to eliminate any 
rust. A single bead was then applied to two clean plates 
using 1.2 mm diameter copper-coated mild steel wire 
(ER70S-6) while maintaining a pure carbon dioxide gas 
flow rate and positive electrode polarity to form a butt 
joint. The chemical compositions of the base material 
are detailed in ▶Table 1, while those of the wire can 
be found in ▶Table 2. All experimental analyses were 
conducted utilizing Minitab software (version 21.4.2) 
(RRID:SCR_014483). ▶Figure 1 illustrates the weld 
bead geometry.
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 Table 1. Chemical composition of E250 

C Mn Si P S

0.2 1.5 0.04 0.04 0.04
 

 Table 2. Chemical composition of ER70S-6 

C Mn Si P S Ni Cr Mo V Cu

0.08 1.625 0.975 0.009 0.035 0.15 0.15 0.15 0.03 0.5
 

Figure 1. Weld bead geometry

2.1. Selection of process parameters

In order to establish the extent of the input variables, 
experimental welds were conducted. The key charac-
teristics analyzed for this study include voltage, weld-
ing current, gas flow rate, and wire feed speed [6-9]. 
▶Table 3 presents the specific input variables by their 
corresponding levels.

  Table 3. Levels of process parameters 

Parameters Level 1 Level 2 Level 3 Level 4

Voltage V, V 40 42 44 46

Current I, A 175 200 225 250

Wire feed rate S, mm/min 4 6 8 10

Gas flow rate G, lpm 10 15 20 25
 

2.2. Orthogonal array and recording of data

Table 4 presents data showing that sixteen experiments 
in total were carried out using an L16 orthogonal array. 
These experiments were carried out randomly to avoid 
any potential inaccuracies associated with a systematic 
testing approach [10]. Following the completion of the 
welding process, cross-sections from the optimal sec-
tion, typically the middle, of each welded sample were 
obtained. The weld beads were subsequently analyzed 
with an Epson L3150 image scanner (5760 × 1440 dpi 
resolution), which was used to capture individual mea-
surements from the scans. ImageJ software (1:54i03 
version) was utilized to determine the dilution per-

centage by examining the melted areas of both the base 
material and the material utilized for weld bead height. 
Detailed results are presented in ▶Table 4, while ▶Fig-
ure 2 illustrates the weld bead specimens.

Figure 2. Welded specimens

2.3. Taguchi Method

The Taguchi technique is an effective tool designed for 
solving issues that can significantly reduce the cost and 
duration of experiments while improving the perfor-
mance of the system, layout, procedure, and product 
[11]. This approach, which blends the concepts of qual-
ity loss function and experimental design theory, has 
been used in the manufacturing sector to solve a num-
ber of challenging issues and carry out reliable process 
and product design. Additionally, this method identifies 
the characteristics that have the greatest impact on the 
total performance. 

The Taguchi approach yields optimal parameters for 
the process that are not affected by variations in the 
surrounding conditions or other noise elements [12]. 
As the process variables rise, so does the number of ex-
periments. The Taguchi technique uses an orthogonal 
array arrangement for analyzing the complete process 
parameters with a restricted number of experiments in 
order to overcome this complexity. For evaluating qual-
ity attributes, S/N ratio is utilized in Taguchi method. 
The mean (or desired value) of the output characteris-
tics, is represented by the phrase “signal,” and the un-
wanted value, or the square of the deviation, is repre-
sented by the term “noise.” Consequently, the ratio of 
mean to the square of the deviation is known as the S/N 
ratio [13–18]. In the examination of the (Signal/Noise) 
ratio, Taguchi establishes three categories of quali-
ty characteristics, i.e. the lower-the-better, the larg-
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er-the-better, and the nominal-the-better. The optimal 
bead geometry requires smaller the better characteris-
tics for depth of penetration and dilution, while larger 
the better characteristics for bead width and reinforce-
ment are crucial for optimal design.

The S/N ratio is expressed as follows:

Nominal-the-best,  

 (1)

Smaller-the-better,  

) (2)

Larger-the-better, 

)              (3) 

From a sequence of n simulated trials, yi is the result of 
the ith trial.

2.4. MOORA method

A method of concurrently improving two or more com-
peting attributes while conforming to specific limita-
tions is called multi-objective optimization [19]. One 
such multi-objective optimization strategy is the MOO-
RA method, which Brauers first presented [20]. It is a 
useful tool for resolving a wide range of complicated de-
cision-making problems related to manufacturing set-
tings [19]. The decision matrix that displays the perfor-
mance of the various alternatives in relation to different 
characteristics is the primary step when using MOORA 
method [21–27]. 

          

                                         (4)

Where p is the number of alternatives, q is the number of 
attributes, and Xij is the performance measure of the ith 
alternative on the jth attribute [19]. Next, a ratio arrange-
ment is developed where the performance of each alter-
native on an attribute is compared with a denominator 
that represents all the different alternatives on that attri-
bute. According to the findings of Brauers et al. [21], the 
most favorable option for this denominator involves cal-
culating the square of the total squared values for each 
attribute. The resulting is an equation for this ratio:

          
 (5)

Here Xij represents a dimensionless number which in-
dicates the normalized performance of the ith alterna-
tive on the jth attribute and lies inside the interval [0, 1] 
[19]. These normalized performances are included for 
multi-objective optimization while maximizing helpful 
qualities and removed when minimizing non-beneficial 
attributes. The optimizing problem now changes to 

                             
(6)

Where Yi is the normalized value of the ith alternative 
with regard to every attribute, g is the number of qual-
ities to be maximized, and (n−g) is the number of qual-
ities to be minimized. It is often observed that certain 

Table 4. Layout of L16 orthogonal array with experiment values  

No. V I S G Penetration, mm Reinforcement, mm Bead Width, mm Dilution Percentage

1 40 175 4 10 0.884 6.489 11.715 1.218

2 40 200 6 15 0.775 5.117 9.38 1.292

3 40 225 8 20 0.548 4.173 7.373 1.254

4 40 250 10 25 1.04 3.405 13.023 2.659

5 42 175 6 20 1.733 6.879 11.058 2.092

6 42 200 4 25 1.25 6.127 13.9 1.716

7 42 225 10 10 1.491 5.529 13.046 2.245

8 42 250 8 15 2.961 5.658 12.753 4.183

9 44 175 8 25 1.767 7.124 13.831 2.103

10 44 200 10 20 1.096 7.258 14.023 1.265

11 44 225 4 15 1.386 5.397 15.471 2.175

12 44 250 6 10 1.47 4.956 15.96 2.499

13 46 175 10 15 1.25 7.858 16.681 1.343

14 46 200 8 10 1.491 9.316 16.117 1.345

15 46 225 6 25 2.08 5.768 12.661 2.928

16 46 250 4 20 2.108 5.046 12.479 3.444
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characteristics are more important than others in cer-
tain circumstances. A property is multiplied by its cor-
responding weight to increase its importance [8]. Con-
sidering attribute weights to be taken into account, Eq. 
(6) is modified as follows:

               (7)

Where Wj is the weight of the jth attribute, which is cal-
culated by applying the entropy method. Based on the 
total of the maximum and minimum values in the de-
cision matrix, the  value may be positive or negative 
in research. The ultimate preference of  is displayed 
through an ordered ranking. As a result, the poorest al-
ternative has the lowest  value, and the greatest alter-
native has the highest  value.

2.5. GRA and PCA

The integration of Grey Relational Analysis (GRA) with 
Principal Component Analysis (PCA) significantly en-
hances multi-optimization in welding processes [28]. 
This integration allows for the improvement of multiple 
quality responses, such as penetration, reinforcement, 
bead width, and dilution percentage, simultaneously. 
The weighted response analysis helps determine the rel-
ative importance of different quality responses, provid-
ing a more accurate representation of their impact on 
the overall optimization process [28]. This combination 
also allows for more informed decision-making regard-

ing the selection of welding parameters, as PCA helps 
to classify the most significant parameters based on 
weighted responses. The integration of GRA and PCA 
has been proven to yield effective results in finding op-
timal combinations of welding parameters for multiple 
response optimizations, improving various quality re-
sponses in welding processes. This approach represents 
a novel and valuable contribution to the field, offering 
new insights and solutions for improving weld quality. 
Overall, the integration of GRA and PCA in welding 
optimization enables researchers to handle multiple re-
sponses, determine weighted influences of parameters, 
make informed decisions, achieve successful results, 
and contribute to the advancement of knowledge in the 
optimization of the welding process.

3. Results and Discussion

3.1. Probability plots

The experimental data distribution, as shown in ▶Table 
4, is assessed using probability plots. The normality as-
sumption is confirmed through Anderson-Darling test, a 
robust statistical method commonly used to detect outli-
ers from a normal distribution [29]. ▶Figure 3 shows that 
the data of all experiments and responses closely align 
with the fitted line, low Anderson-Darling statistics val-
ues, and a p-value greater than 0.05 [28], indicating that 
further analysis of the data is appropriate.

Figure 3. Probability plot for responses
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3.2. Mean of Response

The influence of various welding parameters on the 
S/N ratio is individually examined as a result of the or-
thogonal design of the experiments.  Graphs known as 
response curves illustrate how performance character-
istics vary as input parameter levels change [10]. The 
graphs for response means are displayed in ▶Figures 4 to 
7. Weld bead geometry quality attributes are influenced 
by process variables, as seen by the response graphs 
from the Taguchi experiment. Consequently, a thorough 
examination of how these factors affect the geometry of 
the weld bead is given in the sections that follow.

Figure 4. Main effect plots for mean of penetration

Figure 5. Main effect plots for mean of reinforcement

Figure 6. Main effect plots for mean of bead width

Figure 7. Main effect plots for mean of dilution percentage

Figure 8. Pareto diagram for responses

3.3. ANOVA and contribution ratio

Table 5 provides the details of the calculation of the 
contribution ratio, which is derived from the total sum 
square of the difference. A method for identifying the 
significant process variables is Pareto analysis, which 
is also a quick and simple technique to analyze exper-
iment findings [10]. The Pareto diagram’s significant 
factors are chosen from the left side, where they collec-
tively contribute 90%. It is clear from ▶Tables 5 and 6 
that the depth of penetration and bead width is mostly 
determined by the Voltage. But out of all of these fac-
tors, welding current followed by voltage has the bigger 
impact on other parameters which include reinforce-
ment, and dilution percentage. ▶Figure 8 displays the 
extracts of Pareto diagram. 

4. MOORA

The weights of the variables are calculated and given 
in ▶Table 7. ▶Table 8 displays the normalized perfor-
mance scores for various alternatives across specific 
attributes. These scores were determined using Equa-
tion (5). By applying Equation (7), the normalized val-
ues (Yi) for every alternative were calculated based on 
these attributes. The table also presents the results of 
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MOORA method, organizing the alternatives in de-
scending order of their assessment values. According 
to this method, experiment number 1 attained the top 
rank, following process parameters set at Voltage=40 V 
(level 1), Current=175 A (level 1), wire feed rate=4 mm/
min (level 1), and gas flow rate 10 lpm (level 1).

5. Grey Rational Analysis

Maximizing reinforcement and bead width is of inter-
est, depending on the aim of this article. Consequently, 
for these quality attributes, the larger-the-better crite-
rion is chosen, and Equation (8) is used to express the 
normalized results.

        (8)

It is also necessary to decrease penetration and dilution 
percentage, hence, as Equation (9) states, the smaller 
the better is used.

       
(9)

Where the generated grey relational values are denoted 
by yj

*(p), and the highest and lowest values of yj(q) for 
the qth observation are represented by max yi(q) and min 
yi(q), respectively. The number of response variables is 
q = 4. The sixteen observations are listed in the compa-
rable sequence yi(q), with j = 1, 2…,16. A greater value 
of normalized results is anticipated for improved perfor-
mance, as the optimal normalized values equals 1.

After normalizing the data, Grey Relational Coeffi-
cients (GRC) are computed to demonstrate the correla-
tion between the actual experimental outcomes and the 
desired ones. The expression for GRC  j(q) is provided 
in Equation (10).

       
(10)

Where  is the deviation sequence, 
defined as the absolute difference between reference se-
quence  and comparability sequence  [28]. 
The value of the identification or distinguishing coeffi-
cient ( ) is between [0, 1], which in this paper was fixed 
at 0.5 [28]. Grey Relational Grade (GRG) is calculated 
from the weighted mean of the corresponding GRCs 

Table 5. S/N response  

Factors V I S G Error Total

Penetration

Sum at factor levels

1 2.042 -2.647 -2.545 -2.304 -10.403

2 -4.903 -0.998 -3.067 -2.997

3 -2.981 -1.860 -3.155 -1.706

4 -4.562 -4.898 -1.636 -3.396

Sum of squares of differences 2.617 1.171 0.469 0.187 0.817 5.263

Contribution ratio, % 49.724 22.250 8.911 3.553 15.523 100

Reinforcement

Sum at factor levels

1 13.370 16.990 15.170 16.100 61.310

2 15.600 16.630 15.010 15.450

3 15.700 14.280 15.980 15.110

4 16.640 13.410 15.150 14.670

Sum of squares of differences 9.918 16.917 1.920 2.035 1.139 31.929

Contribution ratio, % 31.063 52.983 6.013 6.374 3.567 100

Bead width

Sum at factor levels

1 20.120 22.380 22.490 22.970 88.700

2 22.040 22.350 21.610 22.450

3 23.400 21.380 21.610 20.770

4 23.140 22.600 23.000 22.510

Sum of squares of differences 49.944 4.982 9.262 20.008 6.989 91.185

Contribution ratio, % 54.772 5.464 10.157 21.942 7.665 100

Dilution percen-
tage

Sum at factor levels

1 -3.600 -4.286 -5.974 -4.816 -23.343

2 -7.640 -2.884 -6.482 -5.993

3 -5.800 -6.269 -5.856 -5.291

4 -6.303 -9.905 -5.031 -7.243

Sum of squares of differences 1.960 7.424 0.302 0.668 1.106 11.461

Contribution ratio, % 17.101 64.776 2.635 5.828 9.650 100
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for each experimental run, which gives data about the 
strength of correlation among the welding runs. The 
GRG value ranges from 0 to 1. The ideal scenario is typ-
ically an experimental run with a greater GRG, which 
shows how strongly relevant experiments correlate with 
the idealized value. Equation (11) is used to calculate the 
GRG when all quality responses are given equal weights.

     (11)

In certain practical uses, the weights of quality attri-
butes vary similarly to the weights derived from PCA. 
Under these cases, Equation (11) undergoes a modifica-
tion to become Equation (12) [28]:

 (12)

Where  is GRG for jth experiment and n is the 
number of quality responses,  is the weight of qth 
quality response, and 

5.1. Principal Component Analysis

Principal Component Analysis is considered a reliable 
statistical method used to optimize several objectives 
simultaneously [28]. It simplifies and consolidates nu-
merous related datasets into a few uncorrelated ar-
rays and principal components, reducing complexity, 
correlation, vagueness, and dimensions of information 
[30]. A linear transformation is used in PCA to pre-
serve as much distinctive information [31]. Therefore, 
PCA converts multi-response optimization to single-re-
sponse optimization without varying the existing data 
[32]. It is achieved by constructing linear arrangements 

Table 6. Results of ANOVA  

Analysis of Variance for Penetration

Source DF Adj SS Adj MS F-Value P-Value Rank

Voltage 3 2.617 0.87233 3.2 0.182 1

Current 3 1.1716 0.39055 1.43 0.387 2

Wire feed rate 3 0.4697 0.15658 0.57 0.67 3

Gas flow rate 3 0.1878 0.06259 0.23 0.871 4

Error 3 0.8172 0.27241

Total 15 5.2634

Analysis of Variance for reinforcement

Source DF Adj SS Adj MS F-Value P-Value Rank

Voltage 3 9.918 3.3061 8.71 0.054 2

Current 3 16.917 5.6389 14.86 0.026 1

Wire feed rate 3 1.92 0.6401 1.69 0.339 4

Gas flow rate 3 2.035 0.6784 1.79 0.323 3

Error 3 1.139 0.3795

Total 15 31.929

Analysis of Variance for Bead width

Source DF Adj SS Adj MS F-Value P-Value Rank

Voltage 3 49.944 16.648 7.15 0.07 1

Current 3 4.982 1.661 0.71 0.606 4

Wire feed rate 3 9.262 3.087 1.33 0.411 3

Gas flow rate 3 20.008 6.669 2.86 0.205 2

Error 3 6.989 2.33

Total 15 91.185

Analysis of Variance for Dilution percentage

Source DF Adj SS Adj MS F-Value P-Value Rank

Voltage 3 1.9604 0.6535 1.77 0.325 2

Current 3 7.4238 2.4746 6.71 0.076 1

Wire feed rate 3 0.3021 0.1007 0.27 0.843 4

Gas flow rate 3 0.6679 0.2226 0.6 0.656 3

Error 3 1.1063 0.3688

Total 15 11.4605
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for a variety of responses. The GRC (Generalized Re-
duced Coefficient) of the output variable is utilized for 
developing a matrix denoted by Equation (13).

                            

(13)

In this work, ya(q) denotes the GRC of an individual re-
sponse, in which a is the total number of experiments (a 
= 1, 2, . . . j) and b is the total number of quality responses 
(b = 1, 2, . . . k). In this study, j is equal to 16, and k is 
equal to 4. Subsequently, the equation that follows can 
be utilized for creating the correlation coefficient matrix:

       
         (14)

The expression where Cov (ya(b), ya(l)) represents the 
covariance among the sequences ya(b) and ya(l), while 
σya(b) and σya(l) represent the standard deviation of se-
quences ya(b) and ya(l), individually. The eigenvalues 
and eigenvectors were calculated from the Rjl array us-
ing Equation (15)

          (15)

Consequently, Equation (16) is used to develop the un-
correlated principal components (PCs) from the eigen-
values (λk) and eigenvectors (Vpk) of the square matrix R

              (16)

In this equation, Zjk refers to the kth principal compo-
nent. The initial eigenvalue related to the first princi-
pal component (PC) explains the major contribution of 
variance, where the eigenvalues and principal compo-
nents are organized in descending order based on their 
described variance. ▶Table 9 presents the eigenvalues 
associated with the eigenvectors.

Table 9. Principal Component Analysis 

Component PC1 PC2 PC3 PC4

Eigenvalue 1.9199 1.5786 0.4939 0.0076

Variation (%) 0.48 0.395 0.123 0.002

Cumulative (%) 0.48 0.875 0.998 1

Eigen Vector

0.688 0.118 -0.363 0.617

-0.082 0.723 -0.57 -0.382

0.208 0.642 0.734 0.077

0.69 -0.225 0.073 -0.684
 

 Table 7. Weights of responses 

Parameters Penetration, mm Reinforcement, mm Bead Width, mm Dilution Percentage

Weights 0.382 0.140 0.090 0.387
  

 Table 8. Results of multi-criteria analysis and normalized decision-making matrix 

Exp. no.
Weight Normalized matrix

ȳ Rank
Penetration Reinforcement Bead width Dilution percentage

1 0.054 0.037 0.020 0.318 -0.315 1

2 0.047 0.029 0.016 0.338 -0.340 4

3 0.033 0.024 0.012 0.328 -0.325 2

4 0.063 0.019 0.022 0.694 -0.716 13

5 0.106 0.039 0.019 0.546 -0.594 9

6 0.076 0.035 0.024 0.448 -0.466 7

7 0.091 0.031 0.022 0.586 -0.624 11

8 0.181 0.032 0.022 1.092 -1.219 16

9 0.108 0.041 0.023 0.549 -0.593 8

10 0.067 0.041 0.024 0.330 -0.332 3

11 0.084 0.031 0.026 0.568 -0.596 10

12 0.090 0.028 0.027 0.653 -0.687 12

13 0.076 0.045 0.028 0.351 -0.354 5

14 0.091 0.053 0.027 0.351 -0.362 6

15 0.127 0.033 0.021 0.765 -0.837 14

16 0.129 0.029 0.021 0.900 -0.978 15
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5.2. Optimization of multiple variables by utilizing 
GRA and PCA

Because every response variable in GRA has identi-
cal weights, choosing decisions may be difficult. Thus, 
PCA has been utilized for determining the relative 
weights of quality responses [33]. This study compares 
the multi-objective optimization processes carried out 
by PCA and GRA. The section on optimization meth-
odology goes into comprehensive detail on the steps. 
Equations (8) and (9) are first used to normalize the 
S/N ratios. Equation (10) is utilized to calculate the 
Grey relationship coefficient of individual response. 
▶Table 9 displays the Eigen values and Eigen vectors 
for PCA, which were computed using Equation (15) and 
PC from Equation (16). The Eigenvectors of the first 
PC are squared to yield relative weights of the quality 
responses. Using the weights determined by PCA and 
GRCs that are listed in ▶Table 9 are computed for six-
teen experiments using Equation (11).

Sample number eight yields the maximum GRG value. 
▶Table 10 makes it clear that the first PC contributes 
up to 47.33% of the variance for four quality attributes. 
The squares of the eigenvectors of the first PC, which 
are selected as weights of quality responses, are shown 
in ▶Table 10 and are determined to be, in the order of 
penetration, reinforcement, bead width, and dilution 
percentage of 0.4733, 0.0067, 0.0433, and 0.4761 re-
spectively. Thus, with regard to individual GRG, the 
ideal multi-objective optimization can be accomplished. 
Hence, from GRG, A2B4C3 that is, Voltage=42 V (level 
2), Current=250 A (level 4), wire feed rate=8 mm/min 
(level 3), and gas flow rate 15 lpm (level 2) represents 
the ideal collection of input parameter values for opti-
mum responses.

6. Conclusion

The SN ratio is used to identify interactions among in-
put and process parameters. MOORA method ranks 
parameters based on calculated weights while GRA 
with PCA assigns equal weights to all parameters to 
determine the optimized parameters. This study com-
pares these methods, enabling industries to select the 
suitable optimization process from the available meth-
ods based on their specific requirements. The results 
contributed to reducing the welding defect in the small-
scale industry where the experiments were conducted. 
By reducing the  number of experiments and associated 
costs, it is possible to identify optimized solutions for 
the existing welding machines and the given job.

• Using S/N ratio for single objective optimization 
concludes that:

• For reduced penetration, V=42 V, I=250 A, S=8 
mm/min, and G=15 lpm

• For enlarged reinforcement, V=46 V, I=200 A, S=8 
mm/min, and G=10 lpm

• For enlarged bead width, V=46 V, I=175 A, S=10 
mm/min, and G=15 lpm

• For reduced dilution percentage, V=42 V, I=250 A, 
S=8 mm/min, and G=15 lpm.

• Predominantly voltage affects penetration and 
bead width whereas welding current affects rein-
forcement and dilution percentage.

• Through the MOORA method, it was determined 

Table 9. Calculated Normalized GRC, and GRG for 16 experiments 

Exp. No. Normalization Grey Relational Coefficient GRG Rank

1 0.283 0.641 0.567 0.000 0.411 0.582 0.536 0.333 0.466 14

2 0.205 0.405 0.295 0.048 0.386 0.456 0.415 0.344 0.401 15

3 0.000 0.202 0.000 0.024 0.333 0.385 0.333 0.339 0.348 16

4 0.380 0.000 0.697 0.633 0.446 0.333 0.623 0.577 0.495 13

5 0.682 0.699 0.496 0.439 0.612 0.624 0.498 0.471 0.551 9

6 0.489 0.584 0.777 0.278 0.494 0.546 0.691 0.409 0.535 12

7 0.593 0.482 0.699 0.496 0.551 0.491 0.624 0.498 0.541 11

8 1.000 0.505 0.671 1.000 1.000 0.502 0.603 1.000 0.776 1

9 0.694 0.733 0.771 0.443 0.620 0.652 0.685 0.473 0.608 7

10 0.411 0.752 0.787 0.031 0.459 0.668 0.702 0.340 0.542 10

11 0.550 0.458 0.908 0.470 0.526 0.480 0.844 0.485 0.584 8

12 0.585 0.373 0.946 0.582 0.546 0.444 0.902 0.545 0.609 6

13 0.489 0.831 1.000 0.080 0.494 0.747 1.000 0.352 0.648 3

14 0.593 1.000 0.958 0.080 0.551 1.000 0.922 0.352 0.706 2

15 0.791 0.524 0.662 0.711 0.705 0.512 0.597 0.634 0.612 5

16 0.799 0.391 0.645 0.843 0.713 0.451 0.584 0.761 0.627 4
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that a voltage of 40V, welding current of 175A, wire 
feed rate of 4 mm/min, and gas flow rate of 10 lpm 
would yield optimal weld bead geometry with pen-
etration of 0.884 mm, reinforcement of 6.489 mm, 
bead width of 11.715 mm, and dilution percentage 
of 1.218%.

• From PCA and GRA, setting the voltage at 42V, 
welding current at 250A, wire feed rate at 8 mm/
min, and gas flow rate at 15 lpm results in ideal 
characteristics: penetration of 2.961 mm, rein-
forcement of 5.658 mm, bead width of 12.753 mm, 
and dilution percentage of 4.183%.
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