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ABSTRACT 
Recently, green synthesis in nanotechnology has gotten considerable 

attention because of its economic importance, as well as providing a 

clean, eco-friendly, effectual, facile, and non-toxic route to nanoparticle 

(NP) synthesis. The utilization of various microorganisms especially 

beneficial microorganisms in NP synthesis presents a sustainable and eco-

friendly alternative to conventional synthesis methods, aligning with the 

principles of green synthesis. In this regard, beneficial microorganisms 

used in fermented foods as starter cultures, such as Lactobacillus 

acidophilus, Lactiplantibacillus plantarum, Limosilactobacillus 

fermentum, Secundilactobacillus kimchicus, Saccharomyces boulardii, 

and S. cerevisiae have been utilized for the synthesis of Ag, Se, ZnO, Pd, 

Sb2O3, and TiO2 NPs. These synthesized NPs have a high potential for use 

in drug delivery systems, agriculture, and the food industry as 

antimicrobial, antioxidant, and anticancer agents. Hence, further research 

is necessary on NP synthesis, novel sources for NP synthesis, and 

applications in various fields by considering its advantages and 

disadvantages. This review highlights the green synthesis of NPs, NPs 

synthesized by beneficial microorganisms, as well as the potential 

applications of NPs. 
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1. Introduction 
 

Nanotechnology is known as the reduction of atomic, molecular, and macromolecular matter to nanometer-scale molecules and 

is a highly prospective field of study in the twenty-first century, with applications spanning biotechnology, chemistry, medicine, 

and material sciences (Balakrishnan et al. 2017; Ahmed et al. 2024). Improving nanotechnology has synthesized various 

nanoparticles (NPs) and nanostructured materials. The particles with at least one dimension in 1-100 nm are described as NP, 

whose characteristics significantly change depending on the particle sizes (Pacheco-Blandino et al. 2012; Guleria et al. 2020). 

NPs feature inherent qualities that enable them to demonstrate reactivity and effectively bind, absorb, and transport a range of 

chemicals, such as DNA, RNA, small-molecule medications, proteins, and probes, with a significant level of efficiency (Elmer 

& White 2018). These NPs are very beneficial in various sectors such as materials and manufacturing, agriculture, food, medical, 

pharmaceutical, and environmental, as well as medical applications, ranging from diagnostics to cancer treatment (Guleria et al. 

2020; Mitchell et al. 2021).  

 

NPs consist of a wide variety of elements such as aluminum (Al), cerium (Ce), copper (Cu), gold (Au), iron (Fe), manganese 

(Mn), platinum (Pt), silver (Ag), titanium (Ti), thallium (TI) and zinc (Zn). Both bottom-up and top-down methodologies in NP 

synthesis are used (Singh et al. 2021). The bottom-up approach is a very effective method, wherein NPs occur by assembling 

smaller molecular components. In contrast, NP synthesis by the top-down approach involves utilizing a diverse range of 

techniques such as electro-explosion, milling, etching, lithographic processes, and laser ablation (Fu et al. 2018). These 

approaches are important in producing nanomaterials with excellent stability, and their morphology can change depending on 

desired applications (Jamkhande et al. 2019). Nonetheless, NPs produced can be highly toxic for humans and the environment, 

and high-cost equipment is also required for some physicochemical synthesis approaches, which increases their production cost 

and restricts their large-scale commercial production (Siaw et al. 2020). In this regard, the importance of green synthesis 

techniques has been increasing for the last decades. The major pathways of green synthesis techniques are schematized in Figure 

1. The green synthesis of NPs has attracted great attention because of the biocompatibility, cost-effectiveness, low toxicity, and 

eco-friendly nature of the process and NP products (Mariotti et al. 2020). Also, there is a wide range of green synthesis methods 

for NPs, plant extracts, or the microorganisms are generally reacted with a metallic salt and then the biological reduction is 

performed to convert the metal to NPs. The obtained NPs are readily suitable for utilization after proper characterization (Mittal 

et al. 2013).  
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Figure 1- Schematic diagram for the green synthesis of nanoparticles 

 

On the other hand, beneficial microorganisms, including probiotics, are frequently utilized in fermentations associated with 

foods/food applications and nutraceutical industries. These microorganisms with a positive effect on health are generally lactic 

acid bacteria (LAB), yeast, and acetic acid bacteria (AAB) (Hazards et al. 2017; Harandi et al. 2021; De Bellis & Rizzello 2024). 

The exceptional health benefits associated with AAB, LAB, and yeasts position them as highly promising biological scaffolds 

for the synthesis and targeted delivery of NPs. These microorganisms not only contribute to the sustainable and eco-friendly 

synthesis of NPs but also enhance their biocompatibility, stability, and therapeutic potential. By leveraging their unique metabolic 

pathways and bioactive properties, these microorganisms offer a versatile platform for optimizing NP formulations, improving 

drug delivery efficiency, and minimizing potential toxicity in various biomedical applications (Faramarzi et al. 2020; Majumder 

et al. 2022; Abd Qasim & Yaaqoob 2023; Mohammed et al. 2023). Various LAB and yeast species commonly found in foods 

have been used for NP (such as Ag and Zn) synthesis (Sásková et al. 2016; Abdulradha & Alhadrawi 2023). Generally, NPs 

produced by beneficial microorganisms are used for various purposes, such as antimicrobial and anticancer agents, in agriculture, 

drug delivery systems, and the food industry (Gomez-Zavaglia et al. 2022; Shanmugam et al. 2023). In this review article, the 

green synthesis of NPs, microbial synthesis, the usage of beneficial microorganisms for NP synthesis, and their potential 

applications are highlighted. 

 

2. Green Synthesis of Nanoparticles 
 

The present approach for NP synthesis is characterized by the absence of hazardous chemicals, elevated temperatures, high 

pressure, and providing that ensures both human health and environmental safety (Mariotti et al. 2020). The utilization of 

economically viable and ecologically sustainable substances, including botanical extracts, microorganisms (bacteria, fungi, 

microalgae, and viruses), organic polymers, and proteins, has solidified this methodology as a widely favored way for the 

synthesis of NPs (Taha 2022). 

 

2.1. Nanoparticles from plants or plant extracts 

 

Different parts of plants and vegetables, including peels, extracts, and shells, can be utilized in various applications. The active 

natural chemical compound obtained from these parts by removing their tissue with a solvent is a plant extract, which is also 

rich in terms of proteins, soluble fibers, bioflavonoids, and insoluble fibers (Doan et al. 2020; Priya et al. 2023). Plants have been 

accepted as a more reliable approach to the synthesis of nanomaterial (Figure 2) as they avoid the usage or toxic substances 

formation, are abundant and environment-friendly, and allow better control over NPs’ morphology. Hence, the functional 

substances such as alkaloids, amino acids, carbonyl, ketones, phenolics, polysaccharides, proteins, vitamins, and tannins found 

in plants are used for NP synthesis as a reductant source by reducing metal ions into atoms (Vijayaraghavan & Ashokkumar 

2017; Kumar & Rajeshkumar 2018). In this scope, NP synthesis has been utilized in plant extracts such as Aloe vera, Camellia 

sinensis, Cinnamomum zeylanicum leaf, Jatropha curcas, Mangifera indica leaf, Mangosteen leaf, Murraya koenigii leaf, 

gooseberry, mushroom, lemon, pear, papaya, and tansy. NPs prepared using the extracts ensure the advantage in long-term 

storage conditions due to the non-aggregation of NPs (Jayaprakash et al. 2017; Bhardwaj et al. 2020). Also, tea and coffee 
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extracts were exploited to synthesize stable NP such as Pd and Ag NPs (Size ranges 20-60 nm). Accordingly, these approaches 

might be employed for NP synthesis of other noble metals (Nadagouda & Varma 2008). 

 
 

Figure 2- Schematic illustration for plant and microbial synthesis of nanoparticles 

 

On the other hand, various plant sources were explored for the synthesis of metal NPs that had different characteristic 

properties. For example, in a study, spherical Ag NPs with sizes of 45-110 nm were synthesized using leaf extracts from 

Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga, and Senna siamea). The study revealed that Ag NPs 

showed antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa (Kambale et al. 

2020). In another study, Jayaprakash et al. (2017) produced Ag NPs from the natural fruit extract of Tamarindus indica. The 

plant extract acted as both a reducing and a capping mediator for Ag NPs synthesis. The morphology of NPs was a face-centered 

cubic shape and 6-8 nm sizes. Besides, they possess good antibacterial action. In a different study, Abbas et al. (2020) showed 

that plant-mediated NP synthesis could be used in wastewater treatment applications and for this purpose, Ag NPs and Au NPs 

obtained from Aloe barbedensis, Azadirachta indica, and Coriandrum sativum were fabricated. Table 1 compiles various plant 

sources for biogenic NP synthesis and their characteristics. 

 

Plants provide advantages for natural product synthesis owing to their inherent safety, widespread availability, and diverse 

biomolecules or metabolites, which aid in stabilizing and reducing NPs (El-Seedi et al. 2019). Plant-derived nanotherapeutic 

medications have become a potential asset in contemporary cancer therapy. Over the past few years, substantial research has 

been dedicated to producing metallic NPs with potential anticancer properties. This exploration has spanned both laboratory 

experiments and studies conducted within living organisms (Andleeb et al. 2021). The anticancer properties of bioactive 

compounds obtained from various plants and/or plant extracts have been investigated (Majumder et al. 2019). It has been detected 

that the functional groups attached to NPs directly or indirectly improve anticancer effectiveness, reduce toxicity, and increase 

bioavailability/absorption (Pei et al. 2020). In a study conducted by In & Nieva (2015) examined the efficacy and toxicity of 

various NP-based chemotherapeutic treatments. It was detected that chemotherapy using NPs has substantially enhanced the 

management of non-small cell lung cancer compared to conventional chemotherapy. Also, Dutta et al. (2020) synthesized and 

stabilized orange peel-based NPs to induce apoptosis in hepatic cancer cell lines, while Andleeb et al. (2021) found that the 

effectiveness of various NPs in addressing cancer differs due to variations like the biological material used in their manufacturing 

process.  
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Table 1- Nanoparticle synthesis from various plant sources and their characteristics 

 

Plant sources NP/Size/Shape Characteristics References 

Ananas comosus leaves 
Ag NPs, 40-150 nm with hexagonal or 

spherical shape 
Antimicrobial activity Anis et al. 2023 

Azadirachta indica 
Ag NPs, 19.27-22.15 nm with spherical 

shape 

Antiinflammatory, 

antidiabetic activity 
Chi et al. 2022 

Azadirachta indica Ag NPs, 41-60 nm with spherical shape Biolarvicidal activity Poopathi et al. 2015 

Boerhavia diffusa 
Cu NPs, 2-10 nm with irregular spherical 

shape 
Antibacterial activity Vaghela et al. 2018 

Catharanthus roseus Pd NPs, 38 nm with spherical shape 
Catalytic activity in dye 

degradation 
Kalaiselvi et al. 2015 

Citrus medica Cu NPs, 10-60 nm Antimicrobial activity Shende et al. 2015 

Curcumin Au NPs, 45.10 nm with spherical shape Cancer chemoperathy Amini et al. 2023 

Datura 

stramonium 

Au NPs, 75.10-156.50 nm with spherical 

shape 

Antifungal, antioxidant, 

anticoagulant, thrombolytic 

activity 

Oladipo et al. 2020 

Datura 

stramonium 
MgO NPs, 0.17 nm with rod-like shape Antibacterial activity Saka et al. 2022 

Echinochloa stagnina Ag NPs, 30 nm with spherical shape 
Antibacterial, cytotoxic, 

larvacidal activity 
Shehabeldine et al. 2021 

Garcinia xanthochymus ZnO NPs, 20-30 nm with spherical shape 
Antioxidant and 

photocatalytic activity 
Nethravathi et al. 2015 

Ocimum sanctum 
TiO2 NPs 75-123 nm with spherical and 

polygonal 

Healing efficacy in diabetic 

wounds 
Ahmad et al. 2022 

Ocimum sanctum CeO2 NPs, 34 nm with spherical shape 
Photocatalytic and 

antibacterial activity 
Bakkiyaraj et al. 2021 

Oil palm Ag NPs, 18-20 nm with spherical Antimicrobial Torres et al. 2021 

Phyllanthus emblica 

 

Ag NPs, 19.8-92.8 with spherical shape 

 

Antibacterial and biofilm 

inhibition activity 

Masum et al. 2019 

 

Phyllanthus emblica 

 

Au NPs, 5-60 nm with circular, triangular, 

and polygonal shape 
Potential anticancer activity Wang et al. 2021 

Phyllanthus emblica 

 

Ag NPs, 4-5 nm with spherical shape 

 

Biogenic reducing agent, 

antioxidant and antibacterial 

activity 

Suvandee et al. 2022 

Piper nigrum Ag NPs, 15-38 nm with spherical shape Antibacterial, cytotoxicity Kanniah et al. 2021 

Sambucus ebulus Ag NPs, 35-50 nm with spherical shape 
Catalytic, antibacterial, 

anticancer 
Hashemi et al. 2022 

Sugar cane leaves Ag NPs, 16.90 nm with cubic shape 
Ammonia hydrogen peroxide 

detection 
Srikhao et al. 2021 

Tamarindus indica 
Ag NPs, 20-52 nm with spherical shape 

 
Anticancer activity Gomathi et al. 2020 

Tamarindus indica Cu NPs, 88 nm with spherical shape 
Catalytic and antibacterial 

activity 
Ashok et al. 2020 

Tamarindus indica 
Carbon nanotubes, 18-65 nm with 

microstructure sheets with thickness 
Supercapacitor Thirumal et al. 2021 

Tinospora 

cordifoli 
Se NPs, 100-200 nm with spherical shape 

Antioxidant and 

Antiproliferative activity 
Puri & Patil 2022 

Tinospora 

cordifoli 

SnO2 NPs, 6.90-28.40 nm with non-

uniform spherical shape 

Photocatalytic activity for 

rhodamine dye degradation 
Fatimah et al. 2022 

 

2.2. Nanoparticle synthesis by microorganisms 

 

Microorganisms are present all over the world, such as in plants, soil, water, and air. However, certain microorganisms, which 

can cause infections that are harmful to humans, while some microorganisms are significant in maintaining human health and 

are known as beneficial microorganisms. Microorganisms such as bacteria, fungi, viruses, and microalgae have been used for 

the green synthesis of NPs like plant-based sources (Shah et al. 2015; Gahlawat & Choudhury 2019; Jeevanandam et al. 2022). 

The microbial synthesis of NPs possesses several significant advantages, and they have defined morphology, size, and chemical 

composition, can scale up, are adaptable to various environmental conditions, and are also easy to cultivate and handle the 

microbial cells (Grasso et al. 2020; Jacob et al. 2021). It has also been reported that microorganisms such as Pseudomonas 

aeruginosa, P. deceptionensis, Bacillus licheniformis, Pyrobaculum islandicum, Pyrococcus furiosus, Bacillus sp., Fusarium 

oxysporum, Lactobacillus sp., Saccharomyces cerevisiae, and Shewanella oneidensis can be used for the green synthesis of NPs 

such as Au, Ag, Cu, Fe, Mn, Ni, Ti, and Zn (Shamaila et al. 2016; Sanaeimehr et al. 2018). However, the properties (such as 

size, morphology, and characteristics) of the NPs could be changed depending on the conditions of the synthesis process 

(temperature, pH, incubation period, etc.) (Jeevanandam et al. 2022). 
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The microbial synthesis of NPs is generally performed by the internalization of metal ions, which settle on the cell surface 

(described as the extracellular approach) or form inside the microbial cells (described as the intracellular approach). The 

reduction reaction of metal ions on the cell surface or inside the microbial cells may be catalyzed by the microbial enzymes, and 

so metallic NPs form (Salunke et al. 2016; Barabadi et al. 2017; Grasso et al. 2020). These synthesis methods of NPs described 

as the extracellular and intracellular approaches mainly include oxidoreductase enzymes like NADPH-dependent sulfite 

reductase and NADH-dependent nitrate reductase and factor cellular transporters. The extracellular approach ensues exterior to 

the microbial cell after utilizing various systems and these are (1) the microbial biomass, (2) the supernatant of microbial cultures, 

and (3) cell-free extracts (Al-Khattaf 2021) (Figure 2). The intracellular process to synthesize NPs involves supplementary phases 

to isolate the synthesized and gathered NPs from bacterial cells or cell biomass and, so is less favored (Annamalai et al. 2021). 

For example, in the first approach, Ag NPs fabricated from microbial supernatant can surround constituents of the media, in this 

way their colloidal dispersion, characterization, and retrieval could be impeded. Despite that, this method verifies the complete 

elimination of bacterial biomass and the organic media constituents, however, the incubation of bacteria in distilled water for a 

long period may be inactivated biomolecules, especially enzymes (Annamalai et al. 2021). For NP synthesis, it is suggested as 

an efficient method that well-grown microorganisms are washed, centrifuged, and then sonicated in ice. In this regard, it is stated 

that cell-free extract or supernatant is used as a highly concentrated and suitable source for organic molecules and biomolecules 

such as reductive enzymes (Gholami-Shabani et al. 2015; Wadhwani et al. 2018). With this technique, the eradication of organic 

media constituents and bacterial biomass by frequent washing is provided to protect biomolecules against proteolytic degradation 

and denaturation. In this way, it can be stated that the usage of organic biomolecules is more suitable to synthesize the NPs 

(Badoei-dalfard et al. 2019). In this scope, many enzymes such as alpha-amylase, keratinase, laccase, nitrate reductase, protease, 

and xylanase, have been used to synthesize Ag NPs and these NPs demonstrated important properties, such as antiradical, 

anticoagulant, larvicidal, and thrombolytic activities (Lateef et al. 2015a, 2105b; Adelere & Lateef 2016; Elegbede et al. 2018a, 

2018b). 

 

Bacteria are one of the prokaryotes, and they are unicellular organisms with a simple structure. Green synthesis of several 

metallic ions to produce different shapes and sizes of NPs has been attained via different kinds of bacteria strains such as 

Lactobacillus, Bacillus, Pseudomonas, Streptomyces, Klebsiella, Enterobacter, Escherichia, Aeromonas, Brevibacterium, 

Corynebacterium, Desulfovibrio, Plectonemaboryanum, Rhodobacter, Rhodococcus, Rhodopseudomonas, Shewanella, and 

Weissella (Singh et al. 2016b). Generally, pH, salt concentration, and temperature can largely affect the characteristics of 

bacterial NP synthesis. For example, Saifuddin et al. (2009) demonstrate the synthesis of relatively smaller Ag NPs (5-50 nm) 

by B. subtilis at 37 °C and pH 7.5, which suggests that a higher incubation temperature might facilitate a more rapid reduction 

of Ag ions, leading to smaller NP formation. On the other hand, Das et al. (2014) observed larger size range (42-94 nm) at lower 

temperature of 25 °C, indicating that the rate of NP synthesis and the resulting NP characteristics can be strongly influenced by 

lower temperatures. These findings emphasize the need for a careful optimization of synthesis parameters to achieve desired NP 

sizes and properties for specific applications. Additionally, Sinha & Khare (2011) reported that mercury (Hg) NPs intracellularly 

synthesized by Enterobacter sp. were uniform in size (2-5 nm), spherical, and monodispersed in low amounts at pH 8. Also, it 

has been demonstrated that Enterobacter sp. can be used in the decontamination of the environment polluted with toxic Hg 

(Sinha & Khare 2011). When compared to other microbial systems, such as those used for the synthesis of Ag or Au NPs, the 

unique ability of Enterobacter sp. to synthesize Hg NPs in a controlled manner demonstrates the organism’s specialized 

adaptation for dealing with heavy metal contamination. While other bacteria, like Bacillus sp., have been shown to synthesize 

larger and more variable NPs (e.g., Ag NPs with sizes ranging from 5-50 nm, with some studies reporting sizes up to 94 nm) 

(Saifuddin et al. 2009; Das et al. 2014), Enterobacter sp. excels in producing smaller, uniform particles (Sinha & Khare 2011). 

This variability in NP size may influence their applicability in specific fields, as uniform and smaller NPs are often preferred for 

certain biomedical and environmental applications. These findings underscore that different bacterial species possess distinct NP 

synthesis capabilities, influenced by their unique metabolic pathways and environmental adaptations. Such diversity suggests 

that tailoring the choice of microbial species for NP synthesis can optimize the properties of the NPs for specific applications, 

enhancing their efficacy and functionality. Different NPs synthesized from a wide range of bacteria, and their characteristics 

(size, morphology, and/or characteristic properties) were summarized in Table 2. 
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Table 2- Nanoparticle synthesis by bacteria and their characteristics 

 

Microorganisms Sources Method NP/Size/Shape Characteristics References 

Halomonas 
elongate IBRC-

M 10214 

-* Extracellular 
CuO NPs, 57-79 nm with 

rectangular shape 

Antimicrobial activity against Escherichia coli 
ATCC 25922, and Staphylococcus aureus ATCC 

43300 

Rad et al. 2018 

Bacillus cereus 

HMH1 
Soil Extracellular 

FeO NPs, 18.8–28.3 nm with 

spherical shape 

Anticancer effects against the MCF-7 (breast 

cancer) and 3T3 (mouse fibroblast) cell lines 
Fatemi et al. 2018 

Bacillus subtilis 

ZBP4 
Soil Extracellular 

ZnO NPs, 22-59 nm with 

spherical or pseudo-spherical 
shape 

Antimicrobial activity against Bacillus cereus, 

Escherichia coli O157:H7, Escherichia coli Type 

1, Listeria monocytogenes, Pseudomonas 
aeruginosa, Salmonella Typhimurium, and 

Staphylococcus aureus 

Hamk et al. 2023 

Escherichia coli 

E-30, Klebsiella 

pneumoniae K-6 

Stool Extracellular 

CdS NPs, from E. coli, 3.2-44.9 
nm with spherical shape 

K. pnemoniae, 8.5-44.9 nm with 

spherical shape 

Antimicrobial activity against Aspergillus 

fumigatus, Geotricum candidum, Bacillus subtilis, 

Staphylococcus aureus and Escherichia coli 

 
 

Abd Elsalam et al. 

2018 

Idiomarina sp. 
PR58-8 

Soil Intracellular 

Lead (IV) Sulfide (PbS2), with a 
tetragonal crystal lattice, a 

crystallite domain size of 2.38 

nm, spherical shape, with an 
average size 6 nm 

Noncytotoxic, potential for in situ bioimaging 
applications 

Srivastava & 
Kowshik 2017 

Escherichia coli 

sa2, Exiguobacter
ium 

aurantiacumm 

sa3, 
and Brevundimon

as diminuta sa4 

Soil Extracellular 
Ag NPs, 5-50 nm with spherical 

shape 

Antimicrobial activity against Bacillus 

subtilis, Bacillus cereus, methicillin-

resistant Staphylococcus aureus, Pseudomonas 
aeruginosa, Klebsiella pneumoniae, Escherichia 

coli, Proteus, Salmonella typhi, and Enterobacter 

vermicularis 

Saeed et al. 2020 

Alcaligenes 
faecalis GH3 

Poultry 
soil 

Intracellular 
Ag NPs, 32-49 nm, spherical 

shape 

Antibacterial activity against Bacillus 

cereus, Bacillus subtilis, Pseudomonas 
aeruginosa, Staphylococcus aureus, antioxidant 

activity 

Badoei-dalfard et 
al. 2019 

Bacillus 
endophyticus 

SCU-L 

Saline 

soil 
Extracellular 

Ag NPs, 5-35 nm with spherical 

shape 

Antibacterial activity against Candida 
albicans, Escherichia coli, Salmonella 

typhi and Staphylococcus aureus 

Gan et al. 2018 

Bacillus cereus 

SZT1 
Soil Extracellular 

Ag NPs, 18-39 nm with spherical 

shape 

Antibacterial activity in vitro and in vivo against 

rice bacterial pathogen Xanthomonas 
oryzae pv. oryzae, no toxicity to healthy rice plants 

Ahmed et al. 2020 

Streptococcus 
griseoplanus 

SAI-25 

Rhizosp

heric 

soil of 
rice 

Extracellular 
Ag NPs, 19.5-20.9 nm with 

spherical shape 

Antifungal activity against charcoal rot pathogen 

Macrophomina phaseolina 

Vijayabharathi et 

al. 2018 

Shewanella 
loihica PV-4 

- 
Intracellular/
Extracellular 

Au, Pd, and Pt NPs, 2-7 nm, 
spherical 

Catalytic activity on the degradation of methyl 
orange dye 

Ahmed et al. 2018 

Pseudomonas 
poae CO 

Garlic 
plants 

Extracellular 
Ag NPs, 19.8-44.9 nm with 

spherical shape 

Antifungal activity against Fusarium 
graminearum, inhibitive effect on spore 

germination, germ tube growth, mycotoxin 

production, and the damage of cell membrane of 
Fusarium graminearum 

Ibrahim et al. 
2020 

Micrococcus 
yunanensis J2 

Sarches

hme 
mine 

soil 

Extracellular 
Au NPs, 15-55 nm, spherical 

shape 

Antibacterial activity against Staphylococcus 

aureus, Bacillus subtilis, Micrococcus luteus, 

Pseudomonas aeruginosa, Klebsilella 
pneumoniae, and cytotoxicity effect on six cancer 

cell lines of U87, HT1080, PC12, Caco2, MCF7, 

and A549 

Jafari et al. 2018 

Listeria 
monocytogenes 

J0161, Bacillus 

subtilius ATCC 
11774 

and Streptomyces 

anulatus MTCC 
2528 

- Extracellular 

Ag NPs, L. monocytogenes, 62.07 

nm with rod and 29.64 nm with 

spherical shape, B. subtilis, 
143.60 nm with hexagonal, 76.38 

nm with spherical shape, S. 

anulatus, 42.44 nm with rod, 
37.96 nm with hexagonal, 28.99 

nm with triangular and 11.53 nm 

with spherical shape 

Antifungal activity against the entomopathogenic 
fungus Chrysosporium keratinophilum MTCC 

2828, the larvae, pupae and adults of Anopheles 

stephensi and Culex quinquefasciatus were 
susceptible to Ag NPs 

Soni & Prakash 
2015 

Weissella oryzae 

DC6 

Mountai
n 

ginseng 

Intracellular 
Ag NPs, 10-30 nm with spherical 

shape 

Antimicrobial activity against clinical pathogens 

including Vibrio parahaemolyticus, Bacillus 

cereus, Bacillus anthracis, Staphylococcus aureus, 
Escherichia coli, and Candida albicans 

Singh et al. 2016a 

 

*-: not described. 
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In NP synthesis with the intracellular approach by mold and yeasts, metal ions internalized within the fungal mycelia are 

reduced to less toxic forms, whereas the extracellular approach involves bioactive metabolites and enzymatic secretions 

facilitating NP formation (Molnár et al. 2018; Zhao et al. 2018; Rajeshkumar & Sivapriya 2020). Compared to bacteria, molds 

and yeasts exhibit distinct advantages in NP biosynthesis, including the production of diverse bioactive metabolites, improved 

production, and higher aggregation efficiency (Castro-Longoria et al. 2011; Alghuthaymi et al. 2015). However, bacterial 

systems offer superior genetic manipulability, faster growth rates, and more precise control over NP morphology, which are 

critical factors in biomedical applications (Jeevanandam et al. 2016; Shamaila et al. 2016). Furthermore, different yeast strains 

vary in their NP biosynthesis efficiency. For instance, yeast strains such as Candida glabrata and Schizosaccharomyces pombe 

have been reported the intracellular synthesis of cadmium sulfide (CdS), Ag, Se, Ti, and Au NPs, with enhanced biocompatibility 

and stability (Moghaddam et al. 2015; Feng et al. 2017). Conversely, certain yeast species predominantly support extracellular 

NP formation, which facilitates large-scale synthesis and industrial applicability. Also, NPs had various morphology (at 2-16 nm 

sizes with rounded, spherical, or oval shapes) were obtained by using different molds and yeasts such as Alternata alternate, 

Aspergillus oryzae, Colletotrichum sp., Fusarium oxysporum, Verticillium luteoalbum, Trichothecium sp., Trichoderma viride, 

Candida glabrata, C. albicans, Rhodotorula glutinis, and R. mucilaginosa (Jeevanandam et al. 2016; Ananthi et al. 2018; Cunha 

et al. 2018; Jalal et al. 2018; Dhabalia et al. 2020). NPs synthesized by different kinds of fungi and their various characteristics 

such as size, morphology, and/or characteristic properties were summarized in Table 3. 
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Table 3- Nanoparticle synthesis by fungi and their characteristics 

 
 

 
Sources Method NP/Size/Shape Characteristics References 

Mold      

Trichoderma 

longibrachiatum 
Cucumber Extracellular 

Ag NPs, 5-25 nm with 

spherical shape 

 

Antifungal against phyto-pathogenic fungi: 

Alternaria alternate, Fusarium 

oxysporum, Fusarium verticillioides, Fusarium 

moniliforme, Aspergillus flavus, Aspergillus 

heteromorphus, Penicillium glabrum, Penicillium 

brevicompactum, Pyricularia grisea, 

and Helminthosporium oryzae 

Elamawi et al. 

2018 

Penicillium 

oxalicum 
-* Extracellular 

Ag NPs, 60-80 nm with 

spherical shape 

Antibacterial activity against 

against Staphylococcus aureus, Shigella 

dysenteriae, and Salmonella typhi 

Feroze et al. 

2020 

Aspergillus niger - Extracellular 
Ag NPs, 25.5-543.3 nm 

with spherical shape 

Antifungal effect on Aspergillus niger, and 

Aspergillus flavus 
Gursoy 2020 

Cladosporium 

perangustum 

DflLAKPAG05 

Parasitic 

plant 

Dendrophtho

e falcata 

grown on 

mango plant 

Extracellular 
Ag NPs, 30-40 nm with 

spherical shape 

Antioxidant activity, anticancer activity on MCF-7 

(human breast adenocarcinoma cells) cancer cell 

line and nano-toxicology activity on human blood 

RBCs and green gram seedling growth of Vigna 

radiata 

Govindappa et 

al. 2020 

Cladosporium sp. 
MK138585 

Commiphora 

wightii 
Extracellular 

Au NPs, 5-10 nm with 

spherical shape 

Photocatalytic activity for the degradation of 

Rhodamine-B (Rh-B) and Methylene Blue (MB) 

under sunlight irradiation, non-toxic on normal 

cell lines (3T3-L1), in vitro cytotoxicity against 

MCF-7 cancer cell line and in vivo inhibitive 

effect on tumor growth in ascitic tumor model 

Munawer et al. 

2020 

Fusarium 

oxysporum 
- Extracellular 

Pt NPs, 25 nm with 

face-centered cubic 

shape 

Antioxidant and antibacterial activity against 

Escherichia coli 

Gupta & 

Chundawat 2019 

Fusarium 

oxysporum 

UTMC-5026 

- Extracellular 

Au NPs, 22-30 nm with 

spherical and hexagonal 

shapes 

Antibacterial activity against Bacillus 

cereus PTCC-1247, Escherichia coli PTCC-

1270, Pseudomonas aeruginosa PTCC-

1310, Staphyloccoccus aureus PTCC-1179 

Naimi-Shamel et 

al. 2019 

Penicillium 

chrysogenum 
- Extracellular 

Pt NPs, 5-40 nm with 

spherical shape 

Cytotoxicity activity toward myoblast C2C12 

carcinoma cells via reactive oxygen species 

(ROS)-mediated nucleus NF-κB and caspases 

activation 

Subramaniyan et 

al. 2018 

Yeasts      

Yarrowia 

lipolytica DSM 

3286 

- Intracellular 
Ag NPs, 12.4-24 nm 

with spherical shape 

Antibacterial activity against Staphyloccocus 

aureus, Eshcerichia coli, Proteus vulgaris, 

Streptococcus pyogenes, Pseudomonas aeruginosa 

Bolbanabad et 

al. 2020 

Candida albicans 

C86 
 Extracellular 

Ag NPs, 30-70 nm with 

spherical shape 
Antifungal activity against Candida strain C403 

Dhabalia et al. 

2020 

C. albicans 

Patients at 

Al-Elweya 

children's 

Extracellular 
Ag NPs, 40.19 nm with 

spherical shape 

Antioxidant activity, cytotoxic action against HT-

29 cancer cells, non-toxic against normal cell line 

Hikmet & 

Hussein 2021 

Candida glabrata 

Oropharynge

al mucosa of 

patients 

Extracellular 

Ag NPs, 2-15 nm with 

spherical and oval 

shapes 

Antimicrobial activity against Escherichia 

coli, Salmonella typhimurium, Klebsiella 

pneomonaie, Shigella flexneri, Pseudomonas 

aeruginosa, Staphylococcus aureus, Candida 

albicans, Candida dubliniensis, Candida 

parapsilosis, Candida tropicalis, Candida krusei, 

and Candida glabrata 

Jalal et al. 2018 

Rhodotorula 

glutinis and 

Rhodotorula 

mucilaginosa 

Soil Intracellular 

Ag NPs, 

R. glutinis, 15.45 nm, 

R. mucilaginosa, 13.70 

nm with rounded shapes 

Antifungal activity against Candida parapsilosis, 

catalytic capacity in the degradation of 4-

nitrophenol and methylene blue and cytotoxicity 

activity on HK-2 (human kidney cells) 

Cunha et al. 

2018 

Filobasidium 

stepposum 
Soil Intracellular 

Cu-In-S (in the presence 

of copper, indium, and 

sülfür) NPs, 3-5 nm with 
triangular shape 

Photostability, showing potential as 

photosensitizers in solar cells 

Arriaza-Echanes 

et al. 2024 

 

*-: not described 

 

Algae are autotrophic organisms, which can easily develop with minimal environmental conditions. They act as a “nano 

factory” for NP synthesis because of their secondary metabolites and many physiologically active substances that serve as 

capping agents during the synthesis (Fawcett et al. 2017). Previously, da Silva Ferreira et al. (2017) used dry biomass of Chlorella 
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vulgaris for NP synthesis, AgCl-NPs (ranging from 10 to 80 nm and spherical shape) from C. vulgaris had antimicrobial activity 

against Staphylococcus aureus and Klebsiella pneumonia. In the other studies, Bhuyar et al. (2020) synthesized Ag NPs ranging 

between 25-60 nm sizes using the marine microalga Padina sp., and Ag NPs showed antimicrobial activity against P. aeruginosa 

and S. aureus, while Fatima et al. (2020) synthesized Ag NPs with a size range of 60-70 nm and spherical shape using the red 

algae Portieria hornemannii and these NPs showed antimicrobial activity against the fish pathogens Vibrio harveyii, V. 

parahaemolyticus, V. alginolyticus, and V. anguillarum. Besides, various microalgae strains such as Cystoseira trinodis, 

Sargassum tenerrimum, Sargassum ilicifolium and Turbinaria conoides have been reported to synthesize Au, CuO, and AlO 

NPs (Ramakrishna et al. 2016; Gu et al. 2018; Koopi & Buazar 2018). However, microalgae-based NP synthesis often faces 

challenges related to extended synthesis durations and less precise control over particle size distribution when compared to 

bacterial systems. This is primarily due to the complex composition of microalgae biomolecules, which can lead to variability in 

NP characteristics. In contrast, bacterial-based synthesis can offer more controlled environments, resulting in more uniform NP 

sizes (Chugh et al. 2021; Kulkarni et al. 2023). NPs synthesized by microalgae and their characteristic properties were given in 

Table 4.  

 
Table 4- Nanoparticle synthesis by microalgae and their characteristics 

 
Microorganisms Sources Method NP/Size/Shape Characteristics References 

Amphiroa rigida 

Coastal area of 

Kanyakumari 

District 

Extracellular 
Ag NPs, 20-30 nm 

with spherical shape 

Antibacterial activity against Staphylococcus 

aureus and Pseudomonas aeruginosa, cytotoxicity on 

breast cancer cells (MCF-7) and larvicidal efficiency 

against the 3rd and 4th instar larvae of Aedes aegypti 

Gopu et al. 

2021 

Chlorella 

ellipsoidea 

Domestic 

sewage water of 

Silchar town 

(Assam, India) 

Intracellular 

Ag NPs, 220.8 nm 

with mostly spherical 

shape 

Photocatalysts for degradation of water-soluble 

pollutants, methylene blue and methyl orange dye 

and antibacterial activity against Staphylococcus 

aureus, Escherichia coli, Klebsiella 

pneumoniae and Pseudomonas aeruginosa 

Borah et al. 

2020 

Cystoseira 

baccata 

lower intertidal 

rocky shore in 

the NW coast of 

Spain 

Extracellular 
Au NPs, 8.40 nm with 

spherical shape 

The cytotoxic activity against two of the human colon 

cancer cell lines, Caco-2 and HT-29, and on the 

healthy cell line PCS-201-010 CRC 

González-

Ballesteros et 

al. 2017 

Spirulina 

platensis 

Freshwater 

canals near 

Shebin El-Kom, 

Menoufia 

Government, 

Egypt 

Intracellular 

Au NPs, 15.60-77.13 

nm with octahedral, 

pentagonal and 

triangular shape 

Antiviral activity against HSV-1 on Vero cells 
El-Sheekh et al. 

2022 

Oscillatoria sp. 

Freshwater 

canals near 

Shebin El-Kom, 

Menoufia 

Government, 

Egypt 

Intracellular 

AgO NPs, 14.42 to 

48.97 nm with 

spherical shape 

Antiviral activity against HSV-1 on Vero cells 
El-Sheekh et al. 

2022 

Spirulina 

platensis 
- Intracellular 

Pd NPs, 10-20 nm 

with spherical shape 
Adsorbent for lead removal from aqueous solution 

Sayadi et al. 

2018 

Synechococcus 

moorigangae 

InaCC M208 

Jakarta Bay, 

Indonesia 
Intracellular 

Au NPs, 2.5 to 19.9 

nm with spherical 

shape 

Antimicrobial activity against Staphylococcus 

aureus B4, Escherichia coli B5, Klebsiella 

pneumoniae 1617, Pseudomonas aeruginosa N90PS, 

and Escherichia coli 8654, antioxidant activity 

Purbani et al. 

2024 

Phaeodactylum 

tricornutum 
- Extracellular 

Ti NPs NPs 50-200 

nm, Spherical shape 

Antimicrobial activity against Escherichia coli and 

Staphylococcus aureus, in vitro cytotoxicity against 

human alveolar adenocarcinoma (A549), human 

prostate adenocarcinoma (PC-3), human mammary 

gland adenocarcinoma (MDA-MB) cancer cell lines 

and human neonatal fibroblasts (CCD34LU) non-

cancerous cell lines 

Caliskan et al. 

2022 

 

*-: not described. 
 

Viruses are also non-cellular parasites (nanosized) that can infect host cells (including animals, bacteria, fungi, humans, and 

plants) by delivering their genetic materials. The general sizes of most viral capsids are between 20 and 500 nm in diameter and 

viruses are considered natural NPs because of their sizes (Soto & Ratna 2010; Jeevanandam et al. 2019). Viruses, on the other 

hand, serve as naturally occurring nanoscale structures with well-defined morphological and structural properties, making them 

promising candidates for nanotechnology applications (Jeevanandam et al. 2019). Their inherent self-assembling capabilities 

and biocompatibility have facilitated their utilization in biomedical applications such as gene and drug delivery, 

vaccines/immunotherapeutics, and theranostics and imaging (Ghosh et al. 2021). Plant viruses exist morphologically in various 
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forms, generally in the form of rigid rods (helical) and roughly spherical (icosahedral). Frequently used icosahedral viruses in 

nanotechnology are the Brome mosaic virus, cowpea chlorotic mottle virus, and cowpea mosaic virus. In contrast, the most 

frequently utilized rod-shaped virus is the tobacco mosaic virus (Wen & Steinmetz 2016; Zhang et al. 2018). However, the major 

limitation of virus-based NP synthesis is their potential immunogenicity, which may pose biosafety concerns for clinical 

applications (Nooraei et al. 2021). 

 

On the other hand, all these microbial-based NPs with antimicrobial, anticancer, antioxidant, and catalytic properties have 

been used in various fields. Notably, Au NPs synthesized using Penicillium aculeatum have demonstrated promising scolicidal 

agent against Echinococcus granulosus, indicating potential applications in the treatment of cystic hydatid disease (Barabadi et 

al. 2017). Similarly, Ag NPs obtained from Cryptococcus laurentii had anticancer activity against breast cancer cell lines, and 

the reason that the stimulation of apoptosis, sustainability, and endocytic action of tumor cell lines was influenced via synthesized 

Ag NPs (Ortega et al. 2015). Another study conducted by Pugazhendhi et al. (2018) also stated the potential of microbial-based 

NPs, where they synthesized Ag NPs by marine red algea, Gelidium amansii and determined that these NPs can show antifouling 

characteristics at an important level due to their bactericidal activities against biofilm-forming pathogens. Additionally, hybrid 

approaches involving different bacterial consortia have shown enhanced NP synthesis efficiency and bioactivity. In this regard, 

Ag NPs synthesized using a mixture of Lactobacillus sp. isolated from raw milk and Bacillus sp. isolated from soil exhibited 

superior antimicrobial efficacy against S. aureus and P. aeruginosa compared to NPs synthesized by either bacterium alone, 

highlighting the potential advantages of synergistic microbial systems (Al-Asbahi et al. 2024). 

 

Generally, different types of microorganism species such as Bacillus, Halomonas, Escherichia, Klebsiella, Alcaligenes, 

Pseudomonas, Weissella, Penicillium, Aspergillus, Cladosporium, Candida, Rhodotorula, Amphiroa, and Spirulina have been 

successfully used to NP synthesis such as Ag, Au, Pd, CdS, ZnO, FeO NPs with antimicrobial, anticancer, antioxidant, and 

catalytic activity. Although these studies were performed, more research about using microbial synthesis of NPs in various 

diagnostics would provide a more feasible perspective in the future, especially in vivo studies. 

 

2.3. Nanoparticle synthesis by beneficial microorganisms 

 

Beneficial microorganisms, which positively affect human health, include various species such as lactic acid bacteria (LAB), 

acetic acid bacteria (AAB), and yeasts that play a role in the production of fermented foods, especially probiotics (Hill et al. 

2014; De Bellis & Rizzello 2024). The investigation of the beneficial microorganisms as green synthesis is important for 

nanobiotechnological promises due to their nontoxic and/or environmentally friendly properties.  For this scope, NPs synthesized 

by beneficial microorganisms can exhibit diverse therapeutic applications, such as antimicrobial, antioxidant, catalytic, 

anticancer, and cytoprotective activities (Ghosh et al. 2022). 

 

LABs are Gram-positive and generally accepted as probiotics, they have thick cell walls consisting of glycosides, peptides, 

polysaccharides, and proteins. These structures are known as bioreduction sites and attract metal ions because of their negative 

electric potential, this property facilitates NP synthesis and serves as a protective mechanism against metal toxicity (Król et al. 

2018; Mohd Yusof et al. 2019). Various NPs, including Ag, Se, Au, and ZnO, have been synthesized using LAB strains (Nair & 

Pradeep 2002; Bandeira et al. 2020; Spyridopoulou et al. 2021). For example, Ag NPs synthesized by Lactiplantibacillus 

plantarum HDL-03 had crystalline and metallic properties, with the particle sizes of 36.63 nm, and antimicrobial activity against 

B. subtilis, M. luteus, E. coli, S. aureus, S. enterica, and S. paratyphi. The results showed that Ag NPs synthesized by LAB can 

be used as antimicrobial agents at safe biological concentrations (Zang et al. 2024). Similarly, Lactobacillus acidophilus HN23 

was used to synthesize Se NPs, yielding particles ranging from 60 to 300 nm. Compared to Se, these Se NPs exhibited 

significantly lower toxicity and demonstrated therapeutic potential in mitigating lipid accumulation and enhancing mitochondrial 

membrane potential in WRL68 human hepatic cells, indicating their potential application in treating nonalcoholic fatty liver 

disease (Lei et al. 2024). Additionally, Lacticaseibacillus casei ATCC 393 assisted synthesis of Se NPs exhibited in vitro 

antiproliferative activity, induced apoptosis, and increased ROS levels in BALB/c mice’s CT26 syngeneic colorectal cancer cell 

models (Spyridopoulou et al. 2021). On the other hand, ZnO NPs synthesized using probiotic bacteria (Limosilactobacillus 

fermentum) exhibited an average size between 100 and 120 nm, with pronounced antimicrobial activity, especially against Vibrio 

harveyi (Shanmugam et al. 2023). Different NPs synthesized by LAB, and their characteristic properties such as size, 

morphology, and/or various activity were summarized in Table 5. 

 

AAB are Gram-negative α-Proteobacteria, which are obligate aerobes. They are found commonly in environments such as 

fruits, flowers, rotten fruits or flowers, and so on they are well known for their ability to oxidize sugars and alcohols into organic 

acids, which has been utilized in the production of fermented foods such as vinegar, Kombucha, lambic beer, and water kefir, 

all of which possess various health benefits (Buddhika et al. 2021; Hata et al. 2023). Additionally, AAB can produce 

exopolysaccharides that received significant attention in designing hydrogel materials with applications in tissue engineering for 

their viscoelasticity, swelling, morphology, and thermal stability, these exopolysaccharides commonly referred to as bacterial 

cellulose, have also been investigated in NP synthesis (Qi et al. 2020; Gupte et al. 2021). A notable example includes a study 

utilizing Glucanoacetobacter kombuchae to synthesize Ag NPs. Results showed that NPs were 20 nm with spherical shapes and 

demonstrated potent antioxidant and antimicrobial activity against B. cereus, E. coli, S. aureus, S. sonnei, S. typhi, and V. 
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cholerae. Besides, the anticancer effect of NPs detected on HEPG2 hepatoblastoma, MCF-7 breast, and MDA-MB 468 triple-

negative breast cancer cell lines (Majumder et al. 2022). Similarly, Acetobacter xylinum NCIM 2526 produced Au NPs with 

excellent catalytic activity in the sodium borohydride-mediated reduction of 4-nitro phenol and methylene blue, demonstrating 

the potential of AAB-derived NPs in catalytic applications (Ahmed et al. 2014). 

 
Table 5- Nanoparticle synthesis by lactic acid bacteria and their characteristics 

 

Microorganisms Sources Method NP/Size/Shape Characteristics References 

Bifidobacterium 

bifidum 

Patients with 

diarrhea who 

had known 

clinical 

symptoms 

Extracellular 
TiO2 NPs, 81 nm with 

spherical or oval 

Antimicrobial activity against Pseudomonas 

aeruginosa, Acinetobacter baumanii, Klebsiella 

pneumoni, Escherichia coli and Salmonella typhi 

Ibrahem et al. 

2020 

Lactobacillus 

kimchicus 

(Secundilactobac

illus kimchicus) 

DCY51 

Korean kimchi Intracellular 
Au NPs, 5-30 nm with 

spherical shape 

Antioxidant activity, in vitro low toxicity in 

murine macrophage (RAW264.7) and human 

colon cancer cell lines (HT29) 

Markus et al. 

2016 

Lactobacillus sp. Raw milk Intracellular 
Ag NPs, 11-22.8 nm, 

spherical shape 

Antimicrobial activity against Staphylococcus 

aureus, Pseudomonas aeruginosa and non-

hemolysis effect 

Al-Asbahi et al. 

2024 

Lactobacillus 

sporogenes 
- Intracellular 

ZnO NPs, 145.70 nm 

with hexagonal shape 

Antimicrobial activity against Staphylococcus 

aureus 

Mishra et al. 

2013 

Lactiplantibacill

us plantarum 

VITES07 

 

Curd sample 

(fermented 

milk product) 

Intracellular 

ZnO NPs, 7-19 nm 

with roughly spherical 

shape 

Potential non-toxic 

Selvarajan & 

Mohanasrinivasa

n 2013 

Lactobacillus sp. 

 
- Extracellular 

TiO2 NPs, 50-100 nm, 

spherical shape 

Antibacterial activity against Staphylococcus 

aureus and Escherichia coli, less haemolytic 

activity compared to the antibiotic ampicillin 

Ahmad et al. 

2014 

Lactobacillus 

acidophilus 

Fermented milk 

products 
Intracellular 

Ag NPs, 19-25 nm 

with spherical shape 

Antimicrobial activity against Escherichia 

coli ATCC25,922, Pseudomonasaeruginosa AT

CCC 27,853, and Salmonella enterica ATTC 

14,028, Gram-positive: Staphylococcus 

aureus ATCC 29,213 and Bacillus 

subtilis ATCC 6051, and fungus Candida 

albicans ATCC 10,231 and cytotoxic effect on 

A549 (Lung), Caco (Colon), and HepG2 (Liver) 

cancer cell lines 

Mohammed et 

al. 2023 

Lactobacillus sp. 
Fermented food 

product 
Extracellular 

Fe2O3 NPs, 31.34 nm 

with spherical shape 

Antibacterial activity on Pseudomonas 

aeruginosa 

Abd Qasim & 

Yaaqoob 2023 

Lactobacillus sp. 

strain LCM5 

Brined 

cucumbers 
Extracellular 

Ag NPs, 3-35 nm with 

spherical shape 

Antimicrobial activity against Aspergillus 

ochraceus, Aspergillus flavus, Penicillium 

expansum, and Chromobacterium violaceum 

Matei et al. 2020 

Lactobacillus 

acidophilus 

Mother dairy’s 

curd 
Extracellular 

Se NPs, 2-15 nm with 

spherical shape 

Antibacterial activity on Escherichia 

coli, Staphylococcus aureus, Bacillus 

subtilis, Pseudomonas aeruginosa, Klebsiella 

pneumoniae, cytotoxicity activity against HEK-

293 (Human Embryonic Kidney) cell lines 

Alam et al. 2020 

Lactobacillus sp. Cow milk Intracellular 
ZnO NPs, 32 nm with 

spherical shape 

Antimicrobial activity against Clostridium 

difficile, Clostridium perfringens, 

Esherichia coli, Salmonella typhi, Candida 

albicans, Aspergillus flavus, and biocompatibility 

activity against human colon cancer (HT-29) cell 

lines 

Suba et al. 2021 

Lactiplantibacill

us plantarum 
- Extracellular 

Ag NPs, 40-50 nm 

with spherical shape 

Antioxidant activity, antimicrobial activity 

against Escherichia coli, Klebsiella pneumoniae, 

Proteus mirabilis, Pseudomonas aeruginosa, 

Staphylococcus aureus, and Enterococcus 

faecalis 

Prema et al. 

2022 

Lactiplantibacill

us 

plantarum BSe 

Citrus Intracellular 
Se NPs,100 nm with 

round shape 

Antimicrobial activity against Escherichia 

coli GDMCC 1.118 and Staphylococcus 

aureus GDMCC 1.2442 and cytotoxicity on 

293T cell line of human renal epithelial cells 

Zhong et al. 

2024 

 
*-: not described. 
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Yeasts are widely used as starter culture in various food industries, such as winemaking, bakery, brewing, and dairy 

production, because of their desirable technological and sensory properties. The most frequently utilized yeasts in food products 

and supplements include Saccharomyces cerevisiae and S. boulardii, the latter being recognized as a probiotic yeast) (Chan & 

Liu 2022). Beyond their traditional applications, yeasts have recently been investigated as potential alternative protein sources 

due to their optimal amino acid composition, and their ability to be cultivated using industrial waste products, making them an 

eco-friendly protein source (Jach et al. 2022). On the other hand, yeasts also provide several advantages in NP synthesis, 

including ease of cultivation under laboratory conditions, rapid growth rates, and the ability to utilize simple nutrients, making 

them highly suitable for scalable and environmentally sustainable NP production (Skalickova et al. 2017). For this purpose, in a 

study reported by Abdulradha & Alhadrawi (2023), Zn NPs were synthesized using the probiotic S. boulardii, yielding spherical 

NPs with an average size of 24.61 nm. These Zn NPs showed antimicrobial activity against Burkholderia cepacia, a pathogen 

associated with diabetic foot ulcers. Furthermore, Pt NPs synthesized by S. boulardii had important anticancer activity against 

A-431 epidermoid squamous carcinoma and MCF-7 breast cancer cell lines (Borse et al. 2015). NPs synthesized by beneficial 

yeast, which are commonly used as starter cultures in the food industry, and their characteristic properties are compiled in Table 6. 

 
Table 6- Nanoparticle synthesis by beneficial yeasts and their characteristics 

 

Microorganisms Sources Method NP/Size/Shape Characteristics References 

Saccharomyces 

cerevisiae 

Baker’s 

yeast 
Extracellular 

Ag NPs, 10-60 

nm with spherical 

shape 

Antimicrobial effect against Cryptococcus gastricus, 

Esherichia coli, Trichophyton rubrum, Shigella 

flexneri, Fusarium oxysporum 

Sowbarnika et al. 

2018 

Saccharomyces 

cerevisiae 

Baker’s 

yeast 
Intracellular 

Se NPs, 30-100 

nm, spherical 

shape 

Antioxidant activity 
Faramarzi et al. 

2020 

Pichia 

kudriavzevii HA-

NY2 

and Saccharomyc

es uvarum HA-

NY3 

Egyptian 

sweet fruits 
Extracellular 

Ag NPs, 

P. kudriavzevii, 

20.66 nm with 

cubic regular 

shape, 

S. uvarum,12.4 

nm with round 

shape 

Antimicrobial effect against Bacillus 

subtilis ATCC6633, Staphylococcus 

aureus ATCC29213, Pseudomonas 

aeruginosa ATCC27953, Candida 

tropicalis ATCC750, and Fusarium 

oxysporium NRC21, inhibiting of paw edema by 

oral administration, anticancer activity on HCT-116 

(Colon cell line) and PC3 (Prostate cell line), no 

ulcerogenic effects 

Ammar et al. 

2021 

Saccharomyces 

cerevisiae 
Dry yeast Intracellular 

Pd NPs, 32 nm, 

hexagonal shape 

Photocatalytic activity on degradation of the azo dye 

direct blue 71 

Sriramulu & 

Sumathi 2018 

Saccharomyces 

cerevisiae 

Baker’s 

yeast 
Intracellular 

TiO2 NPs, 36-

12.0 nm with 

spherical shape 

and rough 

surfaces 

 

Antibacterial activity against Pseudomonas 

aeruginosa ATCC 27853, Staphylococcus aureus 

ATCC 25923, Escherichia coli ATCC 25922, 

Candida albicans ATCC 10231, Methicillin 

resistant Staphylococcus aureus (MRSA) and 

Acinetobacter baumannii and photocatalytic activity 

into methylene blue dye 

Peiris et al. 2018 

Saccharomyces 

cerevisiae 

Baker’s 

yeast 
Intracellular 

ZnO NPs, 13.0-

20.0 nm with 

spherical shape 

Antimicrobial activity against Staphylococcus 

aureus and Escherichia coli, photocatalytic 

efficiency on degradation of Eriochrome Black T 

El-Khawaga et al. 

2023 

Saccharomyces 

cerevisiae PTCC 

5269 

-* Extracellular 

Ag NPs, 29.07 nm 

with spherical 

shape 

The antibacterial effect on Listeria 

monocytogenes ATCC 7644 and Streptococcus 

marcescens PTCC 1111, antioxidant activity, 

thrombolytic potential to lyse the blood clots, the 

ability of alpha-amylase inhibition 

Barabadi et al. 

2024 

Saccharomyces 

cerevisiae 
- Extracellular 

Ag NPs, 5-30 nm 

with spherical to 

oval shapes 

Antibacterial properties against Escherichia 

coli (KCCM 11234) and Staphylococcus 

aureus (KCCM 11335) and enhancing seed 

germination, seedling vigor, and disease resistance 

for Sorghum jowar and Zea mays seeds 

Kim et al. 2024 

 

*-: not described
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Considering the diverse applications and synthesis mechanisms of LAB, AAB, and yeasts, each microbial system exhibits 

distinct advantages in NP biosynthesis. LAB-mediated synthesis is characterized by the production of biofunctional NPs with 

antimicrobial and therapeutic properties, whereas NPs synthesized by AAB offer enhanced catalytic activity and potential in 

drug delivery systems. Yeasts, with their rapid growth and high biomass yield, provide a scalable platform for NP synthesis, 

particularly for biomedical applications. Despite these advantages, differences in NP morphology, particle size distribution, and 

synthesis efficiency must be considered when selecting a microbial system for NP production. 

 

3. Potential Applications of Nanoparticles 
 

Green synthesis technology is a promising interdisciplinary field that provides novel synthetic materials with broad application 

prospects in the fields of biology, agriculture, food medicine, and structural materials (Osman et al. 2024). There have been 

several researches on the utilization of microorganisms for NP synthesis, and microbial NPs are used for anticancer, 

antimicrobial, anti-biofouling, biosensor, catalysis, medical diagnosis, and mosquito larvicidal purposes (Salunke et al. 2016). 

Also, NPs are commonly employed in combination with traditional therapies or active substances to augment cellular 

permeability and effectiveness, while simultaneously reducing the negative effects and morbidity linked to advanced cancer 

treatment (Ma et al. 2020). Potential application fields of microbially synthesized NPs are presented in Figure 3. 

 

 
 

Figure 3- Schematic for the potential applications of microbial nanoparticles 

 

3.1. NPs as antimicrobial agents 

 

The occurrence of resistant strains because of the continuous utilization of antibiotics has dramatically increased infectious 

diseases. In this context, NPs have an important potential in terms of antimicrobial agents. Some physicochemical characteristics 

of NPs underlying their antimicrobial activities include their size, surface morphology, charge, and crystal structure (Wang et al. 

2017). NPs' small size is a main advantage in achieving strong antimicrobial actions and effectively combating intracellular 

bacteria since it facilitates the penetration of NPs through bacterial cell walls into the bacteria (Shaikh et al. 2019). The 

antimicrobial effect mechanism of NPs includes the destruction of the cell wall, causing the leakage of cellular components 

including proteins, enzymes, DNA, and metabolites into the surrounding environment, ultimately leading to the breakdown of 

cellular structure (Gomaa 2017; Yuan et al. 2017; Ravichandran et al. 2018; Jalal et al. 2019). The schematic representation of 

the antimicrobial mechanisms of NPs is given in Figure 4. Firstly, NPs adhere to the cell surface to the plasma membrane and 

later on transport within the cell where they interact with DNA, so both inhibiting replication and changing the respiratory chain 

(Slavin et al. 2017). Several studies have investigated the antimicrobial activity of NPs synthesized by microorganisms. For 

example, Gan et al. (2018) reported that B. endophyticus, isolated from soil, extracellularly synthesized Ag NPs with spherical 

morphology and size range of 5-35 nm, exhibiting significant antibacterial activity with inhibition zones of 15 mm against C. 

albicans, 13 mm against E. coli, 11 mm against S. typhi, and 19 mm against S. aureus. Similarly, Lactobacillus sp. (isolated from 

raw milk) and Bacillus sp. (isolated from soil) were utilized for the biosynthesis of Ag NPs. The intracellularly synthesized Ag 

NPs exhibited spherical morphology with sizes ranging from 4.65 to 22.8 nm. Antibacterial activity analysis demonstrated that 

Ag NPs derived from Lactobacillus sp. exhibited inhibition zones of 12 mm against S. aureus and 11 mm against P. aeruginosa, 
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whereas those synthesized by Bacillus sp. showed inhibition zones of 11 mm and 10 mm, respectively (Al-Asbahi et al. 2024). 

Additionally, Ibrahem et al. (2020) reported that B. bifidum, isolated from patients with diarrhea exhibiting known clinical 

symptoms, extracellularly synthesized TiO2 NPs with spherical or oval morphology and an average size of 81 nm. These TiO2 

NPs demonstrated antimicrobial activity at concentrations of 16 mg/mL and 32 mg/mL against E. coli and S. typhi, respectively. 

 

The other antimicrobial mechanism of NPs is the occurrence of pits leading to structural damage in the cell membrane and 

death (Figure 4). After NPs enter the cytoplasm of microorganisms, they induce the generation of ROS, primarily through 

electron transfer interactions and oxidative stress. These ROS, including superoxide anions (O2⁻), hydroxyl radicals (•OH), and 

hydrogen peroxide (H2O2), cause oxidative damage to essential biomolecules such as DNA, lipids, and proteins, ultimately 

leading to cellular toxicity and microbial death (Abo‐zeid & Williams 2020). In this scope, for example, MgO NPs have shown 

a broad range of toxicity against various microorganisms such as E. coli, S. aureus, Aspergillus niger, and Penicillium oxalicum 

(Cai et al. 2017; Sierra-Fernandez et al. 2017). Also, NPs such as Ag, Cu, TiO2, and ZnO are evaluated as antimicrobial agents 

because of the formation of ROS (e.g., hydrogen peroxide, hydroxide, or superoxide anion), which can damage cellular structure 

(Hemeg 2017). 

 
Figure 4- Schematic illustration for the inhibitory mechanisms of NPs on a microbial cell 

 

3.2. NPs as anticancer agents 

 

Cancer has been one of the prominent causes of mortality around the globe in recent years. It includes an assemblage of illnesses, 

characterized by indefinite growth and changed or no apoptosis. Generally, surgery, chemotherapy, and radiotherapy, which 

have undue side effects are used as methods of cancer treatment (Gegechkori et al. 2017). However, these methods are inadequate 

for the treatment and hence, incidences of various cancers such as blood, breast, colon, and lung are increasing each day. Hence, 

it is crucial to explore alternative solutions to address these challenges. According to numerous researchers, nanomedicine 

applications can be used in rapid tumor detection and targeted drug delivery and treatment (Bajpai et al. 2018b; Wang et al. 

2020; Bloise et al. 2021; Ikram et al. 2021; Mortezaee et al. 2021; Razak et al. 2021). NPs are very comparable in size to most 

biological structures and compounds and thus have functional properties such as in vivo and in vitro cancer research (Oroojalian 

et al. 2021). Recent studies have highlighted the potential of NPs synthesized by microorganisms in cancer treatment. For 

example, L. kimchicus (Secundilactobacillus kimchicus) DCY51 isolated from Korean kimchi, has been utilized for the 

intracellular synthesis of Au NPs ranging from 5 to 30 nm in size, exhibiting spherical shape. These Au NPs have demonstrated 

significant antioxidant activity, as well as low toxicity in both murine macrophage (RAW264.7) and HT29 colon cancer cell 

lines, making them potential candidates for anticancer applications (Markus et al. 2016). Similarly, L. acidophilus, commonly 

found in fermented milk products, has been employed to synthesize Ag NPs with size range of 19 to 25 nm. The Ag NPs, also 

spherical in shape, displayed cytotoxic effects on several cancer cell lines, including A549 lung, Caco colon, and HepG2 liver 

cancer cell lines, suggesting their potential as anticancer agents (Mohammed et al. 2023). Additionally, Lactobacillus sp., isolated 

from cow milk, was used for the intracellular synthesis of ZnO NPs with spherical shape and size of approximately 32 nm. These 

ZnO NPs exhibited biocompatibility in HT-29 colon cancer cell lines, further supporting their role in cancer therapy (Suba et al. 

2021). Moreover, yeasts such as P. kudriavzevii HA-NY2 and S. uvarum HA-NY3, isolated from Egyptian sweet fruits, have 

been used for the extracellular biosynthesis of Ag NPs. The Ag NPs synthesized by P. kudriavzevii were approximately 20.66 

nm in size with cubic regular shape, whereas those synthesized by S. uvarum had round shape and were approximately 12.4 nm 

in size. These NPs exhibited potent anticancer activity against HCT-116 colon and PC3 prostate cancer cell lines (Ammar et al. 

2021).  

 



Kılıç - Journal of Agricultural Sciences (Tarim Bilimleri Dergisi), 2025, 31(3): 640-669 

654 

 

 Also, it has been believed that NPs serve as tools that facilitate molecular-level interaction, and traverse biological barriers 

but do not affect the functioning of healthy cells. As well as their usage as a drug carrier, NPs can have an anticancer effect on 

their own. For instance, Au NPs promoted apoptosis in pancreatic cancer cells and reversed epithelial-mesenchymal transition, 

and in this way, gemcitabine-resistant cells became sensible to the drug (Qiu et al. 2018; Huai et al. 2019; Zhang et al. 2019; 

Tomşa et al. 2021). On the other hand, the toxicity of Au NPs can be changed depending on size itself, the larger particles with 

4.8-12 nm sizes may be less toxic against healthy cells while maintaining significant toxicity against tumor cells, whereas smaller 

NPs with 1-2 nm sizes are toxic to both healthy and tumor cells (Liu et al. 2021; Tomşa et al. 2021). Also, Au NPs have been 

utilized in photothermal and photodynamic therapies for various cancer types (Liu et al. 2021). Additionally, Ag NPs can induce 

pro-apoptotic effects by promoting ROS production through electron transfer reactions and redox cycling processes. These 

mechanisms lead to oxidative stress, resulting in increased caspase-3 activity and the upregulation of the p53 protein, which 

collectively contribute to apoptosis (Lee & Lee 2019; Halawani et al. 2020). For example, it has been stated that the cytotoxicity 

of Ag NPs against MCF-7 breast cancer cells resulted from the apoptosis induction by activation of the pro-apoptotic Bax protein 

and the inhibition of the anti-apoptotic Bcl-2 protein, also the release of cytochrome c from mitochondria (Kulandaivelu & 

Gothandam 2016).  

 

Beyond their direct cytotoxic effects, NPs can also modulate the immune response, offering additional mechanisms for cancer 

therapy. Microbial NPs could be loaded with immunostimulatory agents, such as cytokines, Toll-like receptor agonists, or 

checkpoint inhibitors, and delivered to the tumor site. These NPs can stimulate antigen-presenting cells, leading to enhanced T-

cell activation and a more robust adaptive immune response against tumor cells (Chohan et al. 2023; Zeng et al. 2023; Gholami 

et al. 2024). In terms of cytotoxicity, Au NPs have been shown to enter human cervical cancer cells via endocytosis, where they 

elevate intracellular ROS, disrupt matrix metalloproteinase activity, and induce apoptosis by causing cell cycle arrest at the S-

phase (Khatua et al. 2020). While these mechanisms contribute to anticancer efficacy, the potential off-target effects on healthy 

cells due to ROS elevation and DNA damage warrant further investigation. In addition to Au NPs, Ag NPs have been reported 

to induce oxidative stress and mitochondrial dysfunction, ultimately triggering apoptosis in cancer cells. Their cytotoxicity is 

primarily associated with the disruption of cellular membranes and increased production of ROS (Xu et al. 2023). Interestingly, 

the microbial NPs also demonstrated significant cytotoxicity against MCF-7 breast cancer and A549 lung carcinoma cell lines, 

further supporting their potential as alternative anticancer agents (Fahmy et al. 2020). However, before microbial NPs can be 

fully integrated into clinical practice, extensive in vivo studies are necessary to evaluate the long-term immunogenicity, 

biodistribution, and potential off-target effects (Gavas et al. 2021). 

 

Nanoparticles synthesized from microorganisms offer a promising, environmentally friendly alternative to traditional 

synthetic methods. They can not only exhibit anticancer effects but also modulate immune responses, further enhancing their 

potential in cancer therapy. 

 

3.3. NPs as nanocarriers in drug delivery systems 

 

Generally, the new drug delivery systems are designed to increase therapeutic effects, but these systems should provide safe, 

accurate, and controlled drug delivery at the target sites. NPs are extensively used as drug delivery carriers for various therapeutic 

agents (nucleic acids, antibodies, chemotherapeutic drugs, etc.) (Thanki et al. 2013). Target-specific nanocarriers must traverse 

blood-tissue barriers to reach the target cells. These carriers enter the target cells by endocytosis and transcytosis pathways and 

interact with cytoplasmic constituents (Fadeel & Garcia-Bennett 2010). NP drug carriers can also pass through the blood-brain 

barrier and junctions of tight epithelial cells in the skin, which provides drug delivery to the desired target site. Besides, these 

nanocarriers can increase the biodistribution of therapeutic agents due to their high surface area-to-volume ratio and reduce 

toxicity at the target site (Wolfram & Ferrari 2019). For this scope, NPs like Ag, Au, Cu, Pl, TiO2, and ZnO NPs possess improved 

tunable optical properties and can be used as nanocarriers. Besides, their surface can be easily functionalized to conjugate 

targeting agents and active biomolecules through covalent bonding, Hydrogen bonding and electrostatic interactions, and 

multiple drugs can be easily added to improve therapeutic efficacy (Thanki et al. 2013). 

 

On the other hand, certain types of NPs, such as lipid-based NPs (e.g., liposomes), polymeric NPs, and micelles, increase the 

solubility of hydrophobic compounds, making them suitable for parenteral administration. Additionally, these NPs enhance the 

stability of therapeutic agents, such as oligonucleotides, peptides, and other biomolecules (Emerich & Thanos 2006). Besides, 

adhesion and other interfacial interactions between nanocarrier and biomembrane are necessary, especially for intracellular drug 

delivery (Vedernykova et al. 2018). Therefore, it is stated that drug delivery by NPs could also decrease the dosage concentration 

of anticancer drugs with higher specificity/efficacy and lower toxicity, like that in melanoma treatment (Cassano et al. 2021). 

For instance, it has been reported that ZnO NPs synthesized by Rhodococcus pyridinivorans loaded with anthraquinone 

demonstrated cytotoxicity toward colon cancer cells (HT-29 colon carcinoma) depending on the dose-dependent manner used 

(Kundu et al. 2014). Moreover, it was stated that NPs could show features to target tumor vessels and microenvironments and 

enhance the efficacy of antiangiogenic drugs (Alsaab et al. 2021). On the other hand, the study by Liu et al. (2020) demonstrated 

the intracellular synthesis of Au NPs by Gluconacetobacter liquefaciens kh-1, which served as carriers for the peptide CopA3 

and ginsenoside compound K, enhancing their therapeutic efficacy. These biogenic NPs facilitated targeted drug delivery to 

lipopolysaccharide-activated macrophages, ensuring controlled intracellular release without significant cytotoxicity. This 

innovative approach showed the potential of microbial synthesized NPs as biocompatible and effective drug delivery systems in 
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inflammation-related disorders. Additionally, the study by Pradeepa et al. (2016) introduced a novel antibiotic delivery system 

using Au NPs synthesized via bacterial exopolysaccharide derived from L. plantarum. The biogenic Au NPs were functionalized 

with various antibiotics, including levofloxacin, cefotaxime, ceftriaxone, and ciprofloxacin, to enhance their therapeutic efficacy 

against multidrug-resistant bacterial strains. Conjugation of antibiotics to Au NPs significantly improved their stability, 

bioavailability, and controlled release, ensuring a prolonged antibacterial effect while reducing the minimum inhibitory 

concentration and minimum bactericidal concentration of the drugs. Mechanistically, the Au NP-antibiotic conjugates effectively 

penetrated bacterial cells, overcoming resistance mechanisms such as efflux pumps and enzymatic degradation. Transmission 

electron microscopy analysis revealed that these NP-drug complexes disrupted bacterial membranes, leading to cytoplasmic 

leakage and eventual cell death. This targeted delivery system not only enhanced the antibacterial activity of conventional 

antibiotics but also minimized potential cytotoxic effects by reducing the required dosage. These studies not only demonstrate 

the therapeutic potential of NP-based drug delivery systems but also highlight the crucial role of microorganisms in the synthesis 

of biocompatible NPs. In both cases, G. liquefaciens and L. plantarum serve as key microbial agents, enabling the intracellular 

synthesis of Au NPs that have different characteristics and are functionalized for specific therapeutic applications. The use of 

these microorganisms ensures a sustainable, eco-friendly synthesis process and enhances the efficiency of the drug delivery 

system, as their metabolic pathways provide a natural method for producing NPs with tailored properties suitable for targeted 

drug delivery. 

 

3.4. NPs applications in agriculture 

 

Nanotechnology in agriculture is accepted as one of the most appropriate methods to enhance crop yield and sustain the world’s 

continuously growing population. NPs have significant applications such as nano-fertilizers, nano-pesticides, and crop protection 

for the regulated dispensing of agrochemicals (de Oliveira et al. 2014; Grillo et al. 2016; Qureshi et al. 2018). The applications 

of NPs in agriculture as fertilizers are related to their enhanced characterization such as absorption, adhesion effects, 

responsiveness, and surface properties (Qureshi et al. 2018). Nanofertilizers are micro- or macro-nutrient fertilizers with a 

particle size of <100 nm and can be used to increase yields. They are also responsible for supplying types of nutrients (one or 

more) to growing plants, promoting their growth, and increasing production (Chhipa 2017). Nanofertilizers are used in two 

different types. Firstly, they can provide nutrients to plants to enhance their development and yield. Secondly, they are used as 

nutrient carriers like nanocarriers used in drug delivery systems, and they help not only in the transport and release of nutrients 

but also as a nutrient source (Liu & Lal 2015). However, foliar spray or irrigation can be delivered above or below ground to 

encourage plant growth and yield, or NPs can be added to seeds or primed (Mittal et al. 2020). The efficiency of NPs can change 

depending on various factors such as the plant type, as well as NP type, size, concentration, stability, chemical composition, and 

transformation rate after biological interaction (Prasad et al. 2017; Chen 2018). 

 

NPs synthesized by microorganisms such as B. subtilis, Paenibacillus elgii, and P. fluorescens can be used as nano-

biofertilizers. Since one liter of nano-biofertilizers can be applied to several hectares of crops, their requirements are so (relatively 

minimal in comparison with other fertilizers), making them costs-affordable. In addition to carbon-based nanomaterials, nano-

clay minerals, and zeolites can also be used as fertilizers (Guo et al. 2018; Bisinoti et al. 2019). Many crops such as tomatoes, 

chickpeas, spinach, and maize have benefited from the use of different natural nanofertilizers such as ZnO, SiO2, Fe slag powder, 

and TiO2 NPs (Sivarethinamohan & Sujatha 2021). Additionally, the studies conducted for the potential application in food and 

agriculture fields of NPs are also given in Table 7. 
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Table 7- Potential applications in the agriculture and food fields of NPs 

 

Applications NPs Type Synthesis Sources Properties References 

Agriculture - 

Fertilizers 

Se NPs, 50-500 

nm 

Extracellular synthesis by L. 

acidophilus, 

L. casei, 

Bifidobacterium sp. 

Plant disease enhancer 
Eszenyi et al. 

2011 

Agriculture-

Fertilizer and 

Pathogen Control 

Ag NPs, 12-27 

nm 

Extracellular synthesis by L. 

casei 

Plant-growth stimulator, antimicrobial 

effect 
Singh et al. 2015 

Agriculture - 

Pathogen Control 

Ag NPs, 20-50 

nm 

Extracellular synthesis by 

Achromobacter sp., 

Pseudomonas sp. 

Antifungal activity against Fusarium 

oxysporum in chickpeas 
Kaur et al. 2018 

Agriculture -

Pathogen Control 

ZnO NPs, 2-83 

nm 

Extracellular synthesis by 

Trichoderma harzianum 

Antifungal agent against soil 

pathogens Macrophomina 

phaseolina, Rhizoctonia solani, 

and Fusarium sp. 

Zaki et al. 2021 

Agriculture - 

Pathogen Control 

CuO NPs, 31-45 

nm 

Extracellular synthesis by 

Trichoderma harzianum 

Antifungal effects against Alternaria 

brassicicola (the foliar pathogen) 
Gaba et al. 2022 

Agriculture - 

Pathogen Control 
ZnO NPs, 32 nm 

Extracellular synthesis by B. 

subtilis 

Control growth of agricultural 

pathogens including Alternaria 

solani, Colletotrichum capsici, F. 

oxysporum, Sclerotium rolfsii 

Nargund et al. 

2022 

Food Industry - 

Antimicrobial 

Packaging 

Ag NPs Cellulose and collagen 
Prevent the growth of E. coli and S. 

aureus in sausage casings 

Fedotova et al. 

2010 

Food Industry – 

Packaging 
Ag NPs, 300 nm Chitosan 

Prevent the growth of E. coli O157: 

H7, L. monocytogenes, S. aureus, and 

S. typhimurium in food packaging 

Rhim et al. 2013 

Food Industry - 

Packaging 

Ag NPs 

embedded in 

carboxymethylce

llulose film 

-* 
Prevent the growth of E.coli and E. 

faecalis in food packaging 

Siqueira et al. 

2014 

Food Industry - 

Food Preservation 

Ag NPs, ZnO 

NPs, 20 nm 
- 

Antibacterial biodegradable films 

based on polylactide and polybutylene 

adipate terephthalate (as matrix) 

loaded with ZnO or Ag NPs in active 

packaging to preserve the fresh 

noodles 

Yana et al. 2024 

 

*-: not described. 

3.5. NP applications in the food industry  

 

The Food and Agriculture Organization of the United Nations highlights that over 1.3 billion metric tons of consumable food is 

trashed annually due to inadequate storage and transport facilities, poor post-harvest techniques, and market/consumer waste. 

Preventing food wastage is critical to mitigate the food crisis exacerbated by environmental challenges and growing populations 

(Nile et al. 2020). The primary causes of food wastage are microbial contaminations and/or spoilages, which compromise food 

quality and safety and increase the risk of foodborne diseases (Sperber 2009). Nanotechnology presents various solutions across 

the food supply chain, including production, processing, storage, and distribution. It increases food safety through nanosensors, 

which detect foodborne pathogens, enhance packaging with antimicrobial properties, and extend shelf life (Sekhon 2010; Nile 

et al. 2020). Besides, nanotechnology helps in toxin detection, color formation, and flavor production (Seklon et al. 2010). 

Moreover, smart nanotechnology systems provide efficient localization, sensing, and remote control of food items. Also, 

nanobased delivery systems can improve the nutritional value of food (Bajpai et al. 2018a). For example, carbon nanotubes serve 

as potent antimicrobial agents by causing cellular damage or death in E. coli through direct contact (Kang et al. 2007), nano-

biosensors can be also used for detecting carcinogenic pathogens in food production (Nile et al. 2020). Besides, SiO2 (E551) and 

TiO2 (E171) were allowed as food additives in bulk quantities to produce healthier foods (EFSA 2009), while Ag NPs were used 

for the production of fortified Jambu juice to increase their content of essential vitamins and minerals (CFS 2017). Moreover, 

Ag NPs were utilized for sterilization, quality control, and bioavailability, supporting the immune system and defense for natural 

healing in supplemented functional drinks (CFS 2017). NPs are also utilized as carriers to deliver enzymes, antibrowning agents, 

antioxidants, flavors, etc. to develop the shelf life even if the package is opened (Cha & Chinnan 2004; Weiss et al. 2006). Fe, 

ZnO, C, MgO, TiO2, and SiO2 NPs are used as antimicrobial agents and in some conditions as food components and/or 

ingredients (He et al. 2019). Besides, NPs were used in various food applications, as food colorants, anticaking, hygroscopic, 

and drying agents, as a whitener in dairy products, and as acting antibacterial agents, absorbing and decomposing ethylene in 

fruit and vegetables (Mohammad et al. 2022). 
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On the other side, NPs are widely used in packaging systems since they show antioxidant and antimicrobial activities against 

the microorganisms found on the surface of food and/or food packaging materials (Wang et al. 2022). NPs (namely Ag, CuO, 

Cu, Fe, MgO, Pd, TiO2, and ZnO) with antimicrobial properties that could be adhered by various interactions (such as covalent, 

electrostatic, and hydrogen bonding) are used to develop advanced packaging systems that possess antimicrobial activities 

(Morris et al. 2017). On the other hand, for nanocomposite production, polymers such as ethylene–vinyl acetate copolymer, 

polyolefins, nylons, polyethylene terephthalate, polystyrene, and polyamides can be used because polymer matrices control the 

release of active components and regulate the function of nanocomposites (Nie et al. 2020). The studies conducted for the 

potential application in food and agriculture fields of nanoparticles are given in Table 7. 

 

As a result, the application of NPs is vast in the food industry, spanning from ingredients to packaging, and product analysis. 

Despite its potential, the interaction of NPs with food systems can cause health concerns for humans and animals. 

Nanoformulated products can be toxic to plants and animals, yet no standard regulatory laws exist for their use in the food and 

agriculture sectors. Thus, effective guidelines and policies should be legislated as crucial for the safe use of NPs in the food 

industry (Nie et al. 2020). In the European Union, “Scientific Committee on Emerging and Newly Identified Health Risks 

(SCENIHR)” conducts risk assessments for nanotechnology. EU regulations highlight that nanotechnology-based food 

ingredients should undergo safety evaluations before authorization for consumption (Tinkle et al. 2014; Nie et al. 2020). 

 

4. Challenges and future prospects 

 

NP synthesis through green methods, especially by using beneficial microorganisms, has garnered significant attention because 

of its eco-friendly nature and potential applications in various fields such as medicine, agriculture, food, and environmental 

remediation. However, this area of research is not without its challenges, and addressing these is significant for future 

advancements and applications. 

 

The reproducibility and scalability of NP synthesis using microorganisms pose important challenges. Variability in biological 

systems can lead to inconsistent NP characteristics, affecting their performance and application. Besides, scaling up from 

laboratory to industrial production while maintaining the NP's quality and characteristics is complex and requires standardization 

of processes (Gomez-Zavaglia et al. 2022). In this regard, genetic engineering could play a vital role in producing 

microorganisms with enhanced reproducibility, thus overcoming some of the scalability challenges. 

 

On the other hand, controlling the shape, size, and crystallinity of NPs synthesized by microorganisms is also challenging. 

Contrary to chemical synthesis, where conditions can be finely tuned, biological synthesis is influenced by many factors such as 

the microorganism's metabolic state, growth conditions, and the presence of other biomolecules. To address this, advanced 

bioreactors with precise control over parameters like pH, temperature, and nutrient availability could enhance NP consistency 

and quality. Achieving uniformity in NP properties is important for their usages, particularly in fields, such as drug delivery and 

food (Gomez-Zavaglia et al. 2022; Shanmugam et al. 2023; Osman et al. 2024). 

 

The other one, understanding the exact mechanisms by which microorganisms synthesize NPs is still incomplete. Different 

microorganisms use varied biochemical pathways for NP synthesis, and these pathways can be both intracellular and 

extracellular. Comprehensive knowledge of these mechanisms is important for optimizing and controlling the synthesis process 

(Shanmugam et al. 2023). Future work should focus on identifying and controlling these pathways to improve NP synthesis. The 

type of microorganisms can also affect the characteristics of nanoparticles synthesized by green technology. Some properties of 

ZnO NPs synthesized by different beneficial microorganisms (Lactobacillus sp., L. plantarum VITES07, and Saccharomyces 

cerevisiae) are presented and compared in Figure 5. While the shape of all ZnO NPs synthesized by different beneficial 

microorganisms was observed as spherical by SEM analyses, the sizes of nanoparticles were measured as 32 nm, 7-19 nm, and 

13-20 nm for Lactobacillus sp., L. plantarum VITES07 and S. cerevisiae, respectively. The average crystalline sizes of ZnO NPs 

were also calculated by XRD peaks using Scherrer’s equation as 7 nm, 18.6 nm, and 13.58 nm, respectively. FTIR results showed 

the ZnO stretching vibrations patterns were correlated with 528 cm-1, 641 cm-1, and 570.2 cm-1 for NPs synthesized by L. 

plantarum VITES07, Lactobacillus sp. and S. cerevisiae, respectively. Ensuring the biocompatibility and non-toxicity of 

biosynthesized NPs is vital, especially for medical and food applications. The presence of residual biomolecules from the 

synthesis process can impact the toxicity profile of NPs. Detailed toxicological studies are required to ensure safety and efficacy, 

which can be time-consuming and resource-intensive (Kışla et al. 2023).  
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Figure 5- Comparison of the properties of ZnO NPs synthesized by different beneficial microorganisms including 

Lactiplantibacillus plantarum VITES07 (A) (Selvarajan et al. 2013), Lactobacillus sp. (B) (Suba et al. 2021), and 

Saccharomyces cerevisiae (C) (El-Khawaga et al. 2023) 
 

While green synthesis is environmentally friendly, its economic viability is a concern factor. The costs associated with 

cultivating microorganisms, optimizing growth conditions, and harvesting NPs can be high. Besides, the extraction and 

purification processes should be efficient to make the overall process cost-effective compared to conventional methods (Alsaiari 

et al. 2023; Osman et al. 2024). Nevertheless, advances in genetic engineering offer promising solutions to improve the efficiency 

and control of NP synthesis. By manipulating the genetic pathways involved in metal ion reduction and NP formation, 

microorganisms can be engineered to synthesize NPs with desired characteristics. This approach could increase the 

reproducibility and scalability of biosynthesis processes. Also, detailed studies on optimizing the growth conditions of 

microorganisms can lead to more consistent and controllable NP synthesis. Factors such as pH, temperature, nutrient availability, 

and the presence of specific inducers need to be finely tuned to maximize NP yield and quality. Developing bioreactors with 

precise control over these parameters could facilitate large-scale production. Combining biological and chemical synthesis 

methods could overcome some of the limitations of pure biological synthesis (Alsaiari et al. 2023). 

 

Post-synthesis functionalization and surface modification of NPs can also improve their biocompatibility, stability, and 

functionality.  Techniques such as coating NPs with peptides or biopolymers etc. can improve their dispersibility in different 

media and target-specific applications. This is particularly important for medical applications where targeted drug delivery is 

significant (Gavas et al. 2021; Kışla et al. 2023). Conducting application-specific research to tailor NPs for particular uses can 

accelerate their adoption in various fields. For example, in agriculture, NPs can be designed for slow-release fertilizers or 

pesticides, while in medicine, they can be used for specific drug delivery systems or imaging agents (Liu et al. 2021; 

Sivarethinamohan & Sujatha 2021). So, collaborative research across disciplines can lead to innovative solutions and practical 

applications of synthesized NPs. 

 

A comprehensive assessment of the environmental impact of NP synthesis and application is necessary. Despite green 

synthesis being eco-friendly compared to traditional methods, the long-term effects of NPs in the environment need to be 

understood. For this scope, in addition to the increase in the synthesis of NPs with different types, shapes, and characteristics, 

the scientific community has increasingly focused on examining their environmental impact, as well as their effects on living 

things (Martínez et al. 2021). Multiple pathways exist for NPs to enter the environment, these sources can be categorized into 

point sources (such as factories, landfills, and wastewater treatment plants) and non-point sources (materials containing NPs). 

Besides, NPs are directly introduced into the environment through applications such as remediation technologies, causing their 

aggregation and subsequent infiltration into soil, groundwater, and sediments. This has resulted in a novel research domain 

described as "Nanoecotoxicology" (Bimová et al. 2021). The intrinsic toxicity of NPs can be related to their propensity to reach 

and accumulate in air, soil, and water, with their effect directly proportional to their degree of accumulation. The risks of NPs 

are affected by various processes that impact their release mechanisms (Martínez et al. 2021). The principal mechanism 

underlying the potential toxicity of NPs includes their property to induce peroxidation of membrane lipids and oxidative stress, 

which subsequently causes the generation of ROS and resultant damage to cellular structures (Czyżowska & Barbasz 2022). 

While the application of NPs offers numerous advantages across various industries, it is imperative to consider and address their 
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potential negative effects on the environment. Hence, toxicology studies of NP synthesized on negative effects not only on 

humans but also on the environment should be thoroughly studied. The interaction of these NPs with crucial nutrients, especially 

for plants is also a compelling area of research.  So, a detailed assessment of all factors such as application method, exposure 

time, and environmental factors, as well as NP’s shape, size, and concentration is required (Bundschuh et al. 2016; Selmani et 

al. 2020). 

 

As a result, while the green synthesis of NPs using beneficial microorganisms holds great promise, several challenges must 

be addressed to fully realize its potential. Future research should focus on improving reproducibility, scalability, and 

understanding the underlying mechanisms of NP synthesis, alongside advancements in genetic engineering, hybrid synthesis, 

and environmental safety. Collaborative efforts between microbiologists, engineers, chemists, and material scientists will be 

crucial to overcome these challenges and enable the widespread application of green-synthesized NPs. 

 

5. Conclusions 
 

The green synthesis of NPs offers a sustainable and environmentally friendly alternative to traditional chemical and physical 

methods. Beneficial microorganisms have also attracted special interest in the green synthesis of NPs due to their non-pathogenic 

properties of them, high production of various enzymes, as well as GRAS status that allows their use in various food and 

nutraceutical products. In this review, NP synthesis by beneficial microorganisms as green synthesis has been highlighted, and 

the potential application fields of NPs summarising their efficiency have been described. The green synthesis approach leverages 

the natural metabolic processes of microorganisms to produce NPs with unique properties suitable for various applications. 

Different NPs such as Ag, Se, Pd, Sb2O3, ZnO, and TiO2 are synthesized by beneficial microorganisms, and these NPs have 

various characteristics in terms of size (20-300 nm), morphology (spherical or hexagonal), as well as characteristic properties 

such as antimicrobial, antioxidant, antiproliferative, anticancer, and antidiabetic activity, as presented in this review.  Besides, 

microbial NPs have potential use in various fields as antimicrobial, anticancer, nanocarrier, and nanofertilizer, and can also play 

an important role in enhancing food quality and safety through developed processing and/or packaging, and long-term storage 

techniques. Despite the evident potential and diverse applications, significant challenges remain in ensuring reproducibility, 

controlling NP characteristics, understanding synthesis mechanisms, and ensuring economic viability. For this scope, the toxicity 

effect of NP synthesis and applications on living things and the environment should be comprehensively assessed. In conclusion, 

while microbial synthesis of NP presents several challenges, the future prospects are bright. Future research focused on 

application-specific development and comprehensive environmental impact assessments will be crucial in harnessing the full 

potential of this green synthesis method. As the field progresses, the integration of interdisciplinary research and innovative 

technological approaches will likely lead to significant advancements, making synthesized NP a cornerstone in various 

industries, especially in food, agriculture, and medical applications. 
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