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Abstract

Metric fixed-point theory has received a lot of recent attention. The Banach fixed-point theorem
served as the foundation for this theory. This theorem’s generalizations have been looked at using
various methodologies. One of these entails generalizing the prevalent contractive condition, while
the other involves generalizing the prevalent metric space. Numerous generalized metric spaces
were defined in the literature for the second generalization. As a new generalization of both a metric
and an S-metric space in this context, our major goal is to present the idea of a triple-composed
S-metric space. We also provide some fundamental and topological ideas about triple-composed
S-metric space. We look into some of this idea’s characteristics. On triple-composed S-metric
spaces, we demonstrate various fixed-point theorems. Finally, we provide the system of linear
equations with an application.

1. Introduction and Background

A vast array of applications in many areas of mathematics make fixed point theory a fascinating subject. In the 20th century,
the fixed point theory’s scientific foundation was established. The Picard-Banach-Caccioppoli contraction principle, which is
the essential outcome of this theory, has led to significant research areas and applications of the theory to functional equations,
differential equations, integral equations, and other types of equations. The contraction principle, commonly referred to as
Banach’s fixed point theory, is a crucial technique in the study of metric spaces [1]. For a variety of applications f, it ensures
the existence and uniqueness of solutions to equations of the type ρ = T ρ , and it also offers a useful technique to find these
solutions.

Diverse methodologies have been used to study fixed-point theory. These methods include the following:

• to broaden the meaning of the term “contractive condition” (as in, take a look at [2, 3, 4, 5, 6, 7, 8, 9, 10]).
• to expand the metric space that is being used (consider, as in [11, 12, 13, 14, 15] as well as any references therein).
• to study some of the fixed point set’s geometric characteristics (in the sense of, look at [16, 17, 18, 19, 20, 21, 22]

including any references thereto).

When using the second strategy, following is an introduction to the concepts of an S-metric space and a double-composed
metric space:

Definition 1.1. [14] Let Ω be a non-empty set. A function S : Ω×Ω×Ω→ [0,∞) is called an S-metric if it satisfies:

(S1) S (ρ,ω,υ) = 0 if and only if ρ = ω = υ for all ρ,ω,υ ∈Ω,
(S2) S (ρ,ω,υ)≤ S (ρ,ρ,a)+S (ω,ω,a)+S (υ ,υ ,a) for all ρ,ω,υ ,a ∈Ω.

The pair (Ω,S) is called an S-metric space.

Definition 1.2. [11] Let Ω be a non-empty set and α,β : [0,∞)→ [0,∞) be two non-constant functions. A function D :
Ω×Ω→ [0,∞) is called a double-composed metric if it satisfies:
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(D1) D(ρ,ω) = 0 if and only if ρ = ω for all ρ,ω ∈Ω,
(D2) D(ρ,ω) = D(ω,ρ) for all ρ,ω ∈Ω,
(D3) D(ρ,ω)≤ α (D(ρ,υ))+β (D(υ ,ω)) for all ρ,ω,υ ∈Ω.

The pair (Ω,D) is called a double-composed metric space. It is denoted by DCMS.

Using the ideas above, the primary goal of this study is to create a new generalized metric space called a triple-composed
S-metric space. In Section 2, we define the concept of a triple-composed S-metric space and look at some of its fundamental
characteristics. We also provide some topological ideas and characteristics of this space. Additionally, we provided some
crucial examples to emphasize the significance of the area we are utilizing. In Section 3, on a triple-composed S-metric space,
we demonstrate the generalization of the Nemtyskii-Edelstein fixed-point theorem and the Banach contraction principle. In
Section 4, for the system of linear equations, we provide an application.

2. Triple-Composed S-Metric Spaces with Basic Topological Notions

In this section, we introduce the notion of a triple-composed S-metric with some basic concepts and properties.

Definition 2.1. Let Ω be a non-empty set and γi : [0,∞)→ [0,∞), i ∈ {1,2,3} be three non-constant functions. A function
ST : Ω×Ω×Ω→ [0,∞) is called a triple-composed S-metric if it satisfies the following conditions:

(ST 1) ST (ρ,ω,υ) = 0 if and only if ρ = ω = υ for all ρ,ω,υ ∈Ω,
(ST 2) ST (ρ,ω,υ) ≤ γ1 (ST (ρ,ρ,a)) + γ2 (ST (ω,ω,a)) + γ3 (ST (υ ,υ ,a)) for all ρ,ω,υ ,a ∈ Ω. Then the pair (Ω,ST ) is

called a triple-composed S-metric space. We denote a triple-composed S-metric space by TCSMS.

Remark 2.2. Every S-metric space is a TCSMS with the control functions

γi (t) = t,

for all t ∈ [0,∞). But the converse statement is not always true.

Example 2.3. Let Ω = {1,2,3} and the function ST : Ω×Ω×Ω→ [0,∞) be defined as

ST (1,1,1) = ST (2,2,2) = ST (3,3,3) = 0,

ST (1,2,3) = ST (1,3,2) = 3000,

ST (2,1,3) = ST (2,3,1) = 2000,

ST (3,1,2) = ST (3,2,1) = 1000,

ST (1,1,2) = ST (2,2,1) = 200,

ST (2,2,3) = ST (3,3,2) = 300

and

ST (1,1,3) = ST (3,3,1) = 400.

Then the function ST is a triple-composed S-metric with non-constant control functions γi : [0,∞)→ [0,∞), i ∈ {1,2,3} defined
as

γ1 (t) = t +3000, γ2 (t) = t +4000 and γ3 (t) = t +5000,

for all t ∈ [0,∞). But it is not an S-metric. Indeed, for ρ = a = 1, ω = 2 and υ = 3, we get

ST (1,2,3) = 3000≤ ST (1,1,1)+ST (2,2,1)+ST (3,3,1) = 600,

a contradiction.

Lemma 2.4. Let (Ω,ST ) be a TCSMS. Then we have

ST (ρ,ρ,ω) = ST (ω,ω,ρ) , (2.1)

for all ρ,ω ∈Ω when γ1 (0) = γ2 (0) = 0 and γ3 (t) = t for all t ∈ [0,∞).
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Proof. Using the condition (ST 2), we get

ST (ρ,ρ,ω) ≤ γ1 (ST (ρ,ρ,ρ))+ γ2 (ST (ρ,ρ,ρ))+ γ3 (ST (ω,ω,ρ)) (2.2)
= ST (ω,ω,ρ)

and

ST (ω,ω,ρ) ≤ γ1 (ST (ω,ω,ω))+ γ2 (ST (ω,ω,ω))+ γ3 (ST (ρ,ρ,ω)) (2.3)
= ST (ρ,ρ,ω) .

Consequently, by the inequalities (2.2) and (2.3), we obtain

ST (ρ,ρ,ω) = ST (ω,ω,ρ) .

Definition 2.5. Let (Ω,ST ) be a TCSMS. If ST satisfies the equality (2.1), then ST is called a symmetric triple-composed
S-metric.

Lemma 2.6. Let (Ω,D) be a DCMS with the additive functions α,β : [0,∞)→ [0,∞) and the function ST : Ω×Ω×Ω→ [0,∞)
be defined as

ST (ρ,ω,υ) = D(ρ,υ)+D(ω,υ), (2.4)

for all ρ,ω,υ ∈Ω. Then (Ω,ST ) is a TCSMS.

Proof. (ST 1)

ST (ρ,ω,υ) = 0
⇐⇒ D(ρ,υ)+D(ω,υ) = 0
⇐⇒ D(ρ,υ) = 0 and D(ω,υ) = 0
⇐⇒ ρ = ω = υ .

(ST 2)

ST (ρ,ω,υ) = D(ρ,υ)+D(ω,υ)

≤ α (D(ρ,a))+β (D(a,υ))+α (D(ω,a))+β (D(a,υ))

≤ α (D(ρ,a))+α (D(ρ,a))+α (D(ω,a))+α (D(ω,a))+β (D(υ ,a))+β (D(υ ,a))

≤ α (D(ρ,a)+D(ρ,a))+α (D(ω,a)+D(ω,a))+β (D(υ ,a)+D(υ ,a))

= α (ST (ρ,ρ,a))+α (ST (ω,ω,a))+β (ST (υ ,υ ,a)) .

Consequently, (Ω,ST ) is a TCSMS with the functions α1 = α2 = α and α3 = β .

If the triple-composed S-metric ST satisfies the equality (2.4), then it is called a generated by a double-composed metric D. In
the following example, we see that a triple-composed S-metric ST which is not generated by any double-composed metric D.

Example 2.7. Let Ω = Rn and the function ST : Ω×Ω×Ω→ [0,∞) be defined as

ST (ρ,ω,υ) = ‖ω +υ−2ρ‖+‖ω−υ‖ ,

for all ρ,ω,υ ∈Rn. Then the function ST is a triple-composed S-metric with non-constant control functions γi : [0,∞)→ [0,∞),
i ∈ {1,2,3} defined as

γ1 (t) = γ2 (t) = 2t and γ3 (t) = t,

for all t ∈ [0,∞). But it is not generated by any double-composed metric D. On the contrary, assume that

ST (ρ,ω,υ) = D(ρ,υ)+D(ω,υ),

for all ρ,ω,υ ∈ Rn. Then we get

ST (ρ,ρ,υ) = 2D(ρ,υ) = 2‖ρ−υ‖=⇒ D(ρ,υ) = ‖ρ−υ‖

and

ST (ω,ω,υ) = 2D(ω,υ) = 2‖ω−υ‖=⇒ D(ω,υ) = ‖ω−υ‖ .

Hence we get

‖ω +υ−2ρ‖+‖ω−υ‖= ‖ρ−υ‖+‖ω−υ‖ ,

a contradiction.
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Definition 2.8. Let (Ω,ST ) be a TCSMS, r > 0 and ρ0 ∈Ω.

(i) The open ball with a center ρ0 and a radius r is defined as

BST (ρ0,r) = {ρ ∈Ω : ST (ρ,ρ,ρ0)< r} .

(ii) The closed ball with a center ρ0 and a radius r is defined as

BST [ρ0,r] = {ρ ∈Ω : ST (ρ,ρ,ρ0)≤ r} .

(iii) The circle with a center ρ0 and a radius r is defined as

CST (ρ0,r) = {ρ ∈Ω : ST (ρ,ρ,ρ0) = r} .

Remark 2.9. The closed ball can be considered as a disc with a center ρ0 and a radius r on a TCSMS as follows:

DST (ρ0,r) = {ρ ∈Ω : ST (ρ,ρ,ρ0)≤ r} .

Definition 2.10. Let (Ω,ST ) be a TCSMS and A⊂Ω.

(i) If there is ρ > 0 such that

BST (ρ0,ρ)⊂ A,

for each ρ ∈ A then A is called an open subset of ρ .

(ii) A is called ST -bounded if there is ρ > 0 such that

ST (ρ,ρ,ω)< ρ ,

for all ρ,ω ∈ A.

Lemma 2.11. Let (Ω,ST ) be a TCSMS with the symmetric ST and non-constant control functions γi : [0,∞)→ [0,∞),
i ∈ {1,2,3} such that γi (t)< t for all t ∈ (0,∞). If ρ > 0 and ρ ∈Ω, then the ball BST (ρ,ρ) is an open subset of Ω.

Proof. Let ω ∈ BST (ρ,ρ). Hence we get

ST (ω,ω,ρ)< ρ .

If we take µ = ST (ρ,ρ,ω) and ρ ′ = ρ−µ

2 , then we prove

BST

(
ω,ρ ′

)
⊆ BST (ρ,ρ) .

Let υ ∈ BST (ω,ρ ′). So we have

ST (υ ,υ ,ω)< ρ
′.

Using the definition of ST and the hypothesis, we obtain

ST (υ ,υ ,ρ) ≤ γ1 (ST (υ ,υ ,ω))+ γ2 (ST (υ ,υ ,ω))+ γ3 (ST (ρ,ρ,ω))

≤ ST (υ ,υ ,ω)+ST (υ ,υ ,ω)+ST (ρ,ρ,ω)

< ρ−µ +µ = ρ

and so

BST

(
ω,ρ ′

)
⊆ BST (ρ,ρ) .

Consequently, BST (ρ,ρ) is an open subset of Ω.

Definition 2.12. Let (Ω,ST ) be a TCSMS and A ⊂ Ω. Let τST be the set of all A ⊂ Ω with ρ ∈ A if and only if there exists
ρ > 0 such that

BST (ρ,ρ)⊂ A.

Then τST is a topology induced by ST on Ω.

Definition 2.13. Let (Ω,ST ) be a TCSMS and {ρn} be sequence in Ω.
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(i) {ρn} converges to ρ if and only if ST (ρn,ρn,ρ)→ 0 as n→ ∞, that is, for each ε > 0, there exists n0 ∈ N such that for
all n≥ n0, ST (ρn,ρn,ρ)< ε and it is denoted by

lim
n→∞

ρn = ρ .

(ii) {ρn} is a Cauchy sequence if lim
n,m→∞

ST (ρn,ρn,ρm) exists and is finite, that is, for each ε > 0, there exists n0 ∈ N such

that

ST (ρn,ρn,ρm)< ε ,

for each n,m≥ n0.
(iii) (Ω,ST ) is called complete if every Cauchy sequence is convergent to some point in Ω.

Lemma 2.14. Let (Ω,ST ) be a TCSMS with the symmetric ST and non-constant continuous control functions γi : [0,∞)→
[0,∞), i ∈ {1,2,3} satisfying

3

∑
i=1

γi (0) = 0.

If the sequence {ρn} in Ω converges to ρ , then ρ is unique.

Proof. Let {ρn} converges to ρ and ω . Then we have

lim
n→∞

ST (ρn,ρn,ρ) = 0

and

lim
n→∞

ST (ρn,ρn,ω) = 0.

Using the triangle inequality, we get

ST (ρ,ρ,ω)≤ γ1 (ST (ρ,ρ,ρn))+ γ2 (ST (ρ,ρ,ρn))+ γ3 (ST (ω,ω,ρn)) .

Since αi are continuous, using the above inequality and the symmetry property, we obtain

ST (ρ,ρ,ω) ≤ γ1

(
lim
n→∞

ST (ρn,ρn,ρ)
)
+ γ2

(
lim
n→∞

ST (ρn,ρn,ρ)
)
+ γ3

(
lim
n→∞

ST (ρn,ρn,ω)
)

= γ1 (0)+ γ2 (0)+ γ3 (0) = 0.

Therefore, we get ρ = ω .

Lemma 2.15. Let (Ω,ST ) be a TCSMS with non-constant continuous control functions γi : [0,∞)→ [0,∞), i ∈ {1,2,3}
satisfying

γi (t)< t,

for all t ∈ (0,∞) and γi (0) = 0. If the sequence {ρn} in Ω converges to ρ , then {ρn} is Cauchy.

Proof. Let

lim
n→∞

ρn = ρ .

Then for each ε > 0, there exist n1,n2 ∈ N such that

n≥ n1 =⇒ ST (ρn,ρn,ρ)<
ε

4

and

n≥ n2 =⇒ ST (ρm,ρm,ρ)<
ε

2
.

If we take n0 = max{n1,n2}, then for every n,m≥ n0, using the triangle inequality of ST , we get

ST (ρn,ρn,ρm) ≤ γ1 (ST (ρn,ρn,ρ))+ γ2 (ST (ρn,ρn,ρ))+ γ3 (ST (ρm,ρm,ρ))

<
ε

4
+

ε

4
+

ε

2
= ε .

Therefore, {ρn} is Cauchy.
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Lemma 2.16. Let (Ω,ST ) be a TCSMS with the symmetric ST and non-constant continuous control functions γi : [0,∞)→
[0,∞), i ∈ {1,2,3} satisfying

γi (t)< t,

for all t ∈ (0,∞) and γi (0) = 0. If there exist {ρn} and {ωn} such that

lim
n→∞

ρn = ρ and lim
n→∞

ωn = ω ,

then

lim
n→∞

ST (ρn,ρn,ωn) = ST (ρ,ρ,ω) .

Proof. Let

lim
n→∞

ρn = ρ and lim
n→∞

ωn = ω .

Then for each ε > 0, there exist n1,n2 ∈ N such that

n≥ n1 =⇒ ST (ρn,ρn,ρ)<
ε

4

and

n≥ n2 =⇒ ST (ωn,ωn,ω)<
ε

4
.

If we take n0 = max{n1,n2}, hence for every n≥ n0, we get

ST (ρn,ρn,ωn) ≤ γ1 (ST (ρn,ρn,ρ))+ γ2 (ST (ρn,ρn,ρ))+ γ3 (ST (ωn,ωn,ρ))

< 2ST (ρn,ρn,ρ)+ST (ωn,ωn,ρ)

≤ 2ST (ρn,ρn,ρ)+ γ1 (ST (ωn,ωn,ω))+ γ2 (ST (ωn,ωn,ω))+ γ3 (ST (ρ,ρ,ω))

< 2ST (ρn,ρn,ρ)+2ST (ωn,ωn,ω)+ST (ρ,ρ,ω)

<
ε

2
+

ε

2
+ST (ρ,ρ,ω) = ε +ST (ρ,ρ,ω)

and

ST (ρn,ρn,ωn)−ST (ρ,ρ,ω)< ε . (2.5)

On the other hand, using the symmetry property, we obtain

ST (ρ,ρ,ω) ≤ γ1 (ST (ρ,ρ,ρn))+ γ2 (ST (ρ,ρ,ρn))+ γ3 (ST (ω,ω,ρn))

< 2ST (ρn,ρn,ρ)+ST (ω,ω,ρn)

≤ 2ST (ρn,ρn,ρ)+ γ1 (ST (ω,ω,ωn))+ γ2 (ST (ω,ω,ωn))+ γ3 (ST (ρn,ρn,ωn))

< 2ST (ρn,ρn,ρ)+2ST (ωn,ωn,ω)+ST (ρn,ρn,ωn)

<
ε

2
+

ε

2
+ST (ρn,ρn,ωn) = ε +ST (ρn,ρn,ωn)

and

ST (ρ,ρ,ω)−ST (ρn,ρn,ωn)< ε . (2.6)

Using the inequalities (2.5) and (2.6), we get

|ST (ρn,ρn,ωn)−ST (ρ,ρ,ω)|< ε ,

that is,

lim
n→∞

ST (ρn,ρn,ωn) = ST (ρ,ρ,ω) .
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3. Some Fixed-Point Theorems

In this section, we prove two fixed-point theorems.

Theorem 3.1. Let (Ω,ST ) be a TCSMS with the symmetric ST and non-constant continuous control functions γi : [0,∞)→
[0,∞), i ∈ {1,2,3}. Let T : Ω→Ω be a self-mapping satisfying

ST (T ρ,T ρ,T ω)≤ hST (ρ,ρ,ω) , (3.1)

for all ρ,ω ∈Ω and h ∈ (0,1). Let us define a sequence {ρn} by

ρn = T n
ρ0,

for ρ0 ∈Ω. Assume that the following conditions are satisfied:

(a) γi are continuous and non-decreasing functions with

3

∑
i=1

γi (0) = 0

and γ3 is sub-additive.

(b) lim
m,n→∞

[
n−2
∑

j=m
γ

j−m
3 γ1

(
h jST (ρ0,ρ0,ρ1)

)
+

n−2
∑

j=m
γ

j−m
3 γ2

(
h jST (ρ0,ρ0,ρ1)

)
γ

n−m−1
3

(
hn−1ST (ρ0,ρ0,ρ1)

) ]
= 0,

where γ
j−m

3 γ1
(
h jST (ρ0,ρ0,ρ1)

)
, γ

j−m
3 γ2

(
h jST (ρ0,ρ0,ρ1)

)
and γ

n−m−1
3

(
hn−1ST (ρ0,ρ0,ρ1)

)
are the composite func-

tions.

Then T has a unique fixed point.

Proof. Let ρ0 ∈
. Let us define a sequence {ρn} with

ρn = T n
ρ0 = T ρn−1,

for all n ∈ N. Using the inequality (3.1), we get

ST (ρn,ρn,ρn+1) = ST (T ρn−1,T ρn−1,T ρn)

≤ hST (ρn−1,ρn−1,ρn)

= hST (T ρn−2,T ρn−2,T ρn−1)

≤ h2ST (ρn−2,ρn−2,ρn−1)

...
≤ hnST (ρ0,ρ0,ρ1) .

For n≥ m, using the triangle inequality, we obtain

ST (ρm,ρm,ρn) ≤ γ1 (ST (ρm,ρm,ρm+1))+ γ2 (ST (ρm,ρm,ρm+1))+ γ3 (ST (ρn,ρn,ρm+1))

= γ1 (ST (ρm,ρm,ρm+1))+ γ2 (ST (ρm,ρm,ρm+1))+ γ3 (ST (ρm+1,ρm+1,ρn))

≤ γ1 (ST (ρm,ρm,ρm+1))+ γ2 (ST (ρm,ρm,ρm+1))

+γ3

[
γ1 (ST (ρm+1,ρm+1,ρm+2))+ γ2 (ST (ρm+1,ρm+1,ρm+2))

+γ3 (ST (ρm+2,ρm+2,ρn))

]
= γ1 (ST (ρm,ρm,ρm+1))+ γ2 (ST (ρm,ρm,ρm+1))

+γ3γ1 (ST (ρm+1,ρm+1,ρm+2))+ γ3γ2 (ST (ρm+1,ρm+1,ρm+2))

+γ
2
3 (ST (ρm+2,ρm+2,ρn)) ,

γ
2
3 (ST (ρm+2,ρm+2,ρn)) ≤ γ

2
3

[
γ1 (ST (ρm+2,ρm+2,ρm+3))+ γ2 (ST (ρm+2,ρm+2,ρm+3))

+γ3 (ST (ρm+3,ρm+3,ρn))

]
= γ

2
3 γ1 (ST (ρm+2,ρm+2,ρm+3))+ γ

2
3 γ2 (ST (ρm+2,ρm+2,ρm+3))+ γ

3
3 (ST (ρm+3,ρm+3,ρn)) ,

γ
3
3 (ST (ρm+3,ρm+3,ρn)) ≤ γ

3
3

[
γ1 (ST (ρm+3,ρm+3,ρm+4))+ γ2 (ST (ρm+3,ρm+3,ρm+4))

+γ3 (ST (ρm+4,ρm+4,ρn))

]
= γ

3
3 γ1 (ST (ρm+3,ρm+3,ρm+4))+ γ

3
3 γ2 (ST (ρm+3,ρm+3,ρm+4))+ γ

4
3 (ST (ρm+4,ρm+4,ρn))
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and so we have

ST (ρm,ρm,ρn) ≤ γ1 (ST (ρm,ρm,ρm+1))+ γ2 (ST (ρm,ρm,ρm+1)) (3.2)
+γ3γ1 (ST (ρm+1,ρm+1,ρm+2))+ γ3γ2 (ST (ρm+1,ρm+1,ρm+2))

+γ
2
3 γ1 (ST (ρm+2,ρm+2,ρm+3))+ γ

2
3 γ2 (ST (ρm+2,ρm+2,ρm+3))

+γ
3
3 γ1 (ST (ρm+3,ρm+3,ρm+4))+ γ

3
3 γ2 (ST (ρm+3,ρm+3,ρm+4))

+ · · ·+ γ
n−m−2
3

 γ1 (ST (ρn−2,ρn−2,ρn−1))
+γ2 (ST (ρn−2,ρn−2,ρn−1))
+γ3 (ST (ρn−1,ρn−1,ρn))


= γ1 (ST (ρm,ρm,ρm+1))+ γ2 (ST (ρm,ρm,ρm+1))

+γ3γ1 (ST (ρm+1,ρm+1,ρm+2))+ γ3γ2 (ST (ρm+1,ρm+1,ρm+2))

+γ
2
3 γ1 (ST (ρm+2,ρm+2,ρm+3))+ γ

2
3 γ2 (ST (ρm+2,ρm+2,ρm+3))

+γ
3
3 γ1 (ST (ρm+3,ρm+3,ρm+4))+ γ

3
3 γ2 (ST (ρm+3,ρm+3,ρm+4))

+ · · ·+ γ
n−m−2
3 γ1 (ST (ρn−2,ρn−2,ρn−1))

+γ
n−m−2
3 γ2 (ST (ρn−2,ρn−2,ρn−1))+ γ

n−m−1
3 (ST (ρn−1,ρn−1,ρn))

=
n−2

∑
j=m

γ
j−m

3 γ1
(
ST
(
ρ j,ρ j,ρ j+1

))
+

n−2

∑
j=m

γ
j−m

3 γ2
(
ST
(
ρ j,ρ j,ρ j+1

))
+ γ

n−m−1
3 (ST (ρn−1,ρn−1,ρn)) .

Using the inequalities (3.1), (3.2) and the conditions (a), (b), we have

ST (ρm,ρm,ρn) ≤
n−2

∑
j=m

γ
j−m

3 γ1
(
h jST (ρ0,ρ0,ρ1)

)
+

n−2

∑
j=m

γ
j−m

3 γ2
(
h jST (ρ0,ρ0,ρ1)

)
+ γ

n−m−1
3

(
hn−1ST (ρ0,ρ0,ρ1)

)
.

Let m,n→ ∞, we get

lim
m,n→∞

ST (ρm,ρm,ρn) = 0.

Hence {ρn} is a Cauchy sequence in Ω. Since Ω is a complete TCSMS, then {ρn} converges to a point υ ∈Ω, that is,

lim
n→∞

ST (ρn,ρn,υ) = 0.

Now we prove that υ is a fixed point of T . Using the triangle inequality, we have

ST (υ ,υ ,T υ) ≤ γ1 (ST (υ ,υ ,ρn))+ γ2 (ST (υ ,υ ,ρn))+ γ3 (ST (T υ ,T υ ,ρn))

= γ1 (ST (υ ,υ ,ρn))+ γ2 (ST (υ ,υ ,ρn))+ γ3 (ST (T υ ,T υ ,T ρn−1))

≤ γ1 (ST (υ ,υ ,ρn))+ γ2 (ST (υ ,υ ,ρn))+ γ3 (hST (υ ,υ ,ρn−1)) .

Using the hypothesis, we obtain

ST (υ ,υ ,T υ) ≤ lim
n→∞

[
γ1 (ST (υ ,υ ,ρn))+ γ2 (ST (υ ,υ ,ρn))

+γ3 (hST (υ ,υ ,ρn−1))

]
≤ γ1

[
lim
n→∞

ST (υ ,υ ,ρn)
]
+ γ2

[
lim
n→∞

ST (υ ,υ ,ρn)
]
+ γ3

[
lim
n→∞

ST (υ ,υ ,ρn−1)
]

= γ1 (0)+ γ2 (0)+ γ3 (0) = 0.

Finally, we show that υ is a unique fixed point of T . On the contrary, suppose that T has two fixed points υ , t ∈Ω such that
υ 6= t. Using (3.1), we have

ST (T υ ,T υ ,Tt) = ST (υ ,υ , t)≤ hST (υ ,υ , t) ,

a contradiction with h ∈ (0,1). It should be ST (υ ,υ , t) = 0, that is, υ = t.

Remark 3.2. Let us take γi (t) = t for i ∈ {1,2,3} and t ∈ [0,∞), then we obtain classical Banach fixed-point theorem on
S-metric spaces (see [14] for more details).

Definition 3.3. Let (Ω,ST ) be a TCSMS.
(i) A covering of Ω is a collection of sets whose union is Ω.
(ii) An open covering of Ω is a collection of open sets whose union is Ω.
(iii) The TCSMS Ω is called compact if every open covering has a finite subcovering.
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Theorem 3.4. Let (Ω,ST ) be a TCSMS with the symmetric ST and non-constant continuous control functions γi : [0,∞)→
[0,∞), i ∈ {1,2,3}. Let T : Ω→Ω be a self-mapping satisfying

ST (T ρ,T ρ,T ω)< ST (ρ,ρ,ω) ,

for all ρ,ω ∈Ω and the sequence {ρn} be defined as in Theorem 3.1. Suppose that the following conditions are satisfied:

(a) γi are continuous and non-decreasing functions with

3

∑
i=1

γi (0) = 0

and γ3 is sub-additive.

(b) lim
m,n→∞

[
n−2
∑

j=m
γ

j−m
3 γ1 (ST (ρ0,ρ0,ρ1))+

n−2
∑

j=m
γ

j−m
3 γ2 (ST (ρ0,ρ0,ρ1))+ γ

n−m−1
3 (ST (ρ0,ρ0,ρ1))

]
= 0,

where γ
j−m

3 γ1 (ST (ρ0,ρ0,ρ1)), γ
j−m

3 γ2 (ST (ρ0,ρ0,ρ1)) and γ
n−m−1
3 (ST (ρ0,ρ0,ρ1)) are the composite functions.

Then T has a unique fixed point.

Proof. For the existence point, we note that the map

ρ 7−→ ST (ρ,ρ,T ρ)

attems its minimum ρ0 ∈Ω. Using the symmetry property, we get

ρ0 = T ρ0,

since otherwise

ST (T (T ρ0) ,T (T ρ0) ,T ρ0)< ST (T ρ0,T ρ0,ρ0) = ST (ρ0,ρ0,T ρ0) ,

a contradiction. It is easily seen the uniqueness of ρ0 ∈ ρ .

Remark 3.5. Let us take γi (t) = t for i ∈ {1,2,3} and t ∈ [0,∞), then we obtain classical Nemytskii-Edelstein’s fixed-point
theorem on S-metric spaces (see [14] for more details).

4. An Application to the System of Linear Equations

Let Ω = Rn and the function ‖.‖ : Rn→ [0,∞) be defined as

‖ρ‖= |ρ| ,

for all ρ ∈ Rn. Using the function ST given in Example 2.7, we have

ST (ρ,ω,υ) = |ω +υ−2ρ|+ |ω−υ | ,

for all ρ,ω,υ ∈ Rn (similar function was given in [23] for S-metric spaces).
The function ST : Rn×Rn×Rn→ [0,∞) is defined by

ST (ρ,ω,υ) =
n

∑
i=1
|ωi +υi−2ρi|+

n

∑
i=1
|ωi−υi| ,

or all ρ,ω,υ ∈ Rn, where

ρ = (ρ1,ρ2, . . . ,ρn) ,

ω = (ω1,ω2, . . . ,ωn)

and

υ = (υ1,υ2, . . . ,υn) .

Then ST is a triple-composed S-metric with non-constant control functions γi : [0,∞)→ [0,∞), i ∈ {1,2,3} defined as

γ1 (t) = γ2 (t) = 2t and γ3 (t) = t,
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for all t ∈ [0,∞).
If

n

∑
i=1

∣∣αi j
∣∣≤ h < 1 (1≤ j ≤ n) ,

then the system of linear equations

α11ρ1 +α12ρ2 + · · ·+α1nρn = β1
α21ρ1 +α22ρ2 + · · ·+α2nρn = β2

...
...

...
αn1ρ1 +αn2ρ2 + · · ·+αnnρn = βn

has a unique solution. To show this, let us define the self-mapping T by

T ρ = Aα ρ +β ,

for all ρ ∈ Rn, where

β = (β1,β2, . . . ,βn)

and

Aα =


α11 α12 · · · α1n
α21 α22 · · · α2n

...
...

...
...

αn1 αn2 · · · αnn

 .

Then T satisfies the conditions of Theorem 3.1. Indeed, for ρ,ω ∈ Rn, we obtain

ST (T ρ,T ρ,T ω) = 2
n

∑
i=1

∣∣∣∣∣ n

∑
j=1

αi j (ρ j−ω j)

∣∣∣∣∣
≤ 2

n

∑
i=1

n

∑
j=1

∣∣αi j
∣∣ ∣∣ρ j−ω j

∣∣
= 2

n

∑
j=1

n

∑
i=1

∣∣αi j
∣∣ ∣∣ρ j−ω j

∣∣
=

n

∑
j=1

2
∣∣ρ j−ω j

∣∣ n

∑
i=1

∣∣αi j
∣∣≤ hST (ρ,ρ,ω) .

Consequently,the system of linear equations has a unique solution.

5. Conclusion and Future Works

In this study, we develop triple-composed S-metric spaces, a novel generalized metric space. We examine some fundamental
characteristics of this new space and demonstrate two fundamental fixed-point theorems. To demonstrate the viability of the
space we propose, we provide some illustrative cases and an application to the system of linear equations. Future research
could establish some new generalized fixed-point theorems and examine the geometric characteristics of the fixed-point set on
a triple-composed S-metric space. On the other hand, the concept of a triple-composed Sb-metric space can be defined as a new
generalized metric space.
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