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ABSTRACT 

Considering today's technological developments, it can be said that academic interest in intelligent systems that provide 

data about human living spaces has increased significantly. In the energy sector, the growing availability of data from 

smart evaluation systems and advanced devices, combined with progress in energy modeling software, has notably 

enhanced the effectiveness of energy modeling and efficiency improvement efforts. Calibration of Building Energy 

Simulation (BES) models is crucial for ensuring the accuracy required for implementing and evaluating energy efficiency 

strategies. Organizations such as ASHRAE 14-2014, IPMVP and FEMP are developing model validation methods in 

this context. This study addresses methodological challenges and reduces uncertainties encountered during the 

calibration processes of  BES models. The primary objective of the research is to contribute to optimizing energy 

efficiency strategies. Integrating systematic calibration approaches and uncertainty assessment methods is anticipated to 

enable more accurate energy performance analyses. Methodologically, the study presents an approach to resolve errors 

in validation measurements within calibration processes. On the empirical side, the applicability of the systematic 

calibration methodology was successfully tested using forty days of hourly recorded indoor temperature data and indoor 

temperature data obtained from the EnergyPlus program via DesignBuilder; and validated with N(MBE) and CV(RMSE) 

uncertainty indices.As a result of the analysis, it was determined that the total final energy consumption (heating, DHW, 

electricity) of the building in question was 128.31 kWh/m², and approximately 72% of this was heating energy. 

Calibration results indicated that N(MBE) was 1.68% and CV(RMSE) was 13.86%, both within the thresholds set by 

ASHRAE 14, FEMP and IPMVP. This result shows that in terms of applicability, the calibrated model can be a practical 

tool that can be successfully used in energy efficient retrofit proposal development and implementation research.  
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1. INTRODUCTION 
Globally, energy consumption continues to rise exponentially due to increasing population, 

economic growth, and energy demand [1]. This increase necessitates countries and communities 

to take measures on energy consumption, develop policies and strategies, and manage the growing 

energy demand sustainably while combating the climate crisis. As a critically important resource, 

energy is indispensable due to its diverse applications ranging from industry to transportation and 

agriculture to buildings. Consequently, ensuring energy efficiency in areas of high energy usage 

and achieving energy savings are vital for countries and communities to meet their energy security 

goals [2]. 

 

The World Economic Forum (WEF) emphasized the energy-saving potential of industrial, 

transportation, and building sectors, which constitute 94% of global energy demand, in its 

"Transforming Energy Demand" report published on January 8, 2024. The report highlights that 

by improving existing buildings, which account for approximately 30% of global energy demand 

and about one-third of global greenhouse gas emissions, building energy intensity can be reduced 

by around 38%, thereby lowering global energy demand by 12%. Additionally, the report 

underscores that among the three sectors, buildings have the most significant potential for energy 

savings [3]. 

 

Given the economic, social, and environmental impacts of energy consumption in buildings, 

energy-efficient retrofitting practices are becoming increasingly important. Building simulation 

models play a critical role in assessing the energy performance of buildings, estimating energy 

consumption, and analyzing the effects of various design or operational strategies to minimize 

these impacts [4], [5]. 

 

These models not only evaluate the energy performance of buildings but also play a significant 

role in improving energy efficiency from the design stage to the operational phase of buildings, 

reducing operational costs, and achieving sustainable building design goals. They are 

mathematical and dynamic tools created based on inputs such as the structural features of the 

building, the characteristics of mechanical systems, climatic data, user behavior, and occupancy 

[5]. 

Building Energy Simulation (BES) programs are software tools that enable rapid assessment of 

the environmental performance of new and existing buildings. BES has been developed and 
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enhanced for practical purposes such as architectural design, HVAC design and operation, retrofit 

analysis, building operational optimization, urban-scale energy efficiency analysis, Life Cycle 

Assessment (LCA), and Life Cycle Cost (LCC) analysis [6]. The model's accuracy is a decisive 

factor for all these applications, making it essential to employ calibrated models [7]. 

 

A review of the relevant literature reveals a substantial number of studies focusing on the 

calibration of building energy models. However, significant deficiencies have been observed that 

may adversely affect the calibration outcomes, particularly regarding the accurate calculation of 

uncertainty indices, conceptual clarity, and the practical demonstration of methods. 

Cacabelos, Eguía, Febrero, and Granada [8] developed a multi-stage calibration methodology and 

applied it to the HVAC system of a public library to validate the procedure. However, although 

the N(MBE) index was presented using the correct formula, it was labeled as MBE or MBE (%), 

leading to a conceptual inconsistency. Similarly, Brunelli, Castellani, Garinei, Biondi, and 

Marconi [9] proposed a multi-objective optimization procedure for sustainable building design, 

but misapplied the MBE formula during the model validation phase. Raftery, Keane, and 

O’Donnell [10] introduced an evidence-based methodology for calibrating whole-building energy 

models; however, the mathematical formulas used to calculate uncertainty indices were omitted, 

and only the final values were reported. This hinders the traceability of the verification process. 

Choi, Joe, Kwak, and Huh [11] investigated the actual behavior of a multi-story double-skin façade 

in an office building in South Korea during the heating season. Yet, in the validation of the 

simulation model, they neglected the impact of cancellation errors in the MBE analysis. Sahin, 

Arsan, Tuncoku, Broström, and Akkurt [12] presented an interdisciplinary approach for the 

energy-efficient retrofitting of a historical building, but did not normalize the MBE value during 

the validation phase of the case study. 

 

The common feature among these studies is the presence of various shortcomings and 

misapplications in the calculation of uncertainty indices used during the validation process. In this 

context, the present study provides a novel contribution to the literature by addressing such 

widespread errors, particularly in the calculation of frequently used indices such as N(MBE) and 

CV(RMSE).  

This research aims to minimize methodological challenges and uncertainties encountered during 

the calibration processes of building energy simulation models. To this end, it examines the 

definition and scope of calibration, analyzes uncertainty evaluation methods for calibrated models, 
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defines the steps of the calibration methodology for model validation, and applies these steps to a 

residential building. 

 

2. BUILDING ENERGY SIMULATION MODEL CALIBRATION 

Variables such as user behavior, which has one of the most significant impacts on building energy 

consumption, can cause substantial differences between model simulation and real-world data. In 

their systematic review of key aspects of building energy simulation calibration, Chong et al. [6] 

identify the “leading causes of discrepancies between predicted and actual energy performance” 

in the literature as follows: 

• “Specification uncertainty due to assumptions arising from information gaps. 

• Model inadequacy resulting from simplifications and abstractions of actual physical 

building systems. 

• Operational uncertainty caused by the lack of feedback regarding actual building usage and 

operations. 

• Scenario uncertainty stemming from the specification of model conditions such as weather 

and building occupancy” [6]. 

When looking at these factors, it can be said that most of them are uncertainties related to internal 

processes that are directly related to building design and operation. On the other hand, weather 

conditions are related to external factors that create scenario uncertainty in the modeling process 

as the effect of climatic variables and environmental conditions on the simulation. Building energy 

simulations are usually based on a specific climate data set obtained from meteorological stations, 

satellite observations or climate data banks, and therefore the climate data used in simulations is 

an important factor that greatly affects the accuracy and reliability of building energy modeling. 

From a computational simulation and engineering perspective, the concept of calibration is not 

about proving the accuracy of a scientific theory but rather assessing and measuring whether the 

model is acceptable and suitable for the intended purpose. At this point, the calibration approach 

gains importance as a measure of the accuracy of the building model and, consequently, the 

simulation data. Calibration is “adjusting numerical parameters by matching simulation results 

with actual data to establish model reliability” [6]. 

 

This specific application of building simulation is called calibrated simulation (CS). This term 

corresponds to “fine-tuning or calibrating simulation inputs so that observed energy consumption 
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aligns closely with those predicted by the simulation program” [13]. In this way, predictions 

closely match observed energy use. Ultimately, the calibration process is a procedure that “relies 

on user knowledge, experience, statistical expertise, engineering measurement, and a considerable 

amount of trial and error” [14]. 

 

The building energy model calibration process can generally be divided into three stages: 

Modeling and data collection: Developing the building simulation model and collecting real-time 

data such as energy consumption, indoor environmental conditions, and climate data necessary for 

calibration. 

Comparison and Error Analysis: Running the simulation model, comparing the outputs with 

accurate data, and determining error rates. 

Iteration and Verification: Adjusting the parameters in the simulation model to align with accurate 

data until the error rates between simulation and measured results reach an acceptable level, re-

simulating and verifying the model. 

 

Calibration is defined in ASHRAE Guideline 14 as "the process of reducing model uncertainty by 

comparing the predicted output of the model under a specific set of conditions with actual 

measured data for the same set of conditions" [15].  As such, a calibrated model can reproduce 

measured data under the same set of conditions, with its accuracy measured through an uncertainty 

analysis. 

 

ASHRAE Guideline 14 [15] describes uncertainty analysis as "the process of determining the 

degree of confidence in the true value when measurement procedures and/or calculations are used" 

[7]. The three primary sources explaining how this "degree of confidence," or uncertainty, is 

determined are: 

 

“ASHRAE Guideline 14, published by the American Society of Heating, Refrigerating, and Air-

Conditioning Engineers” [15].  

“Federal Energy Management Program (FEMP) Measurement and Verification Guidelines” [16]. 

“International Performance Measurement and Verification Protocol (IPMVP)” [17]. 

 

These sources use simplified methods to measure uncertainty in savings calculations. The primary 

uncertainty indices employed are [8], [9], [10], [11], [12]: 
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Normalized Mean Bias Error (NMBE); 

Coefficient of Variation of the Root Mean Square Error (CV(RMSE)). 

 

Other uncertainty indices used in the literature include RMSE (Root Mean Square Error), MBE 

(Statistical Mean Bias Error), GOF (Goodness of Fit), and the cost function fi. However, this study 

employs NMBE and CV(RMSE), which are most used and can complement each other effectively 

when addressing calibration errors in combination.  

 

NMBE (%) measures the difference between measured and simulated data for each hour and serves 

as a good indicator of overall bias in the model. It can be either negative or positive, with positive 

values indicating that the model underestimates measured data and negative values indicating 

overestimation. However, an essential issue with this index is its susceptibility to cancellation 

errors, where the sum of positive and negative values reduces the overall value. Therefore, it is not 

recommended to use this index alone. CV(RMSE) (%), on the other hand, captures compensatory 

errors between measured and simulated data and determines how well a model fits the data. It is 

always “positive and not susceptible to cancellation errors” [18].Combining both indices is 

considered more accurate to prevent potential calibration errors. 

 

During calibration, two primary datasets are required: the "simulation dataset" from the generated 

building model and the "measured dataset" from the real building monitoring system. The building 

model dataset consists of a large amount of data, from which the most influential parameters must 

be selected “to find a match between simulated and measured energy consumption” [8]. These can 

include monthly energy consumption data from utility bills or hourly measured indoor 

environment data. 

 

 

 

 

2.1. Calculation and Evaluation of Uncertainty Indices  

N(MBE) is the normalized form of Mean Bias Error (MBE). MBE is the mean of errors across a 

sample space. It is generally a good indicator of the overall behavior of simulated data concerning 

the regression line of the sample [7] (Equation 1). 
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𝑀𝐵𝐸 =
∑ (𝑚𝑖−𝑛

𝑖=1 𝑠𝑖)

𝑛−𝑝
× 100 (%)                                                                                                         (1)             

 

Accordingly, the N(MBE) index must be scaled to make MBE results comparable. It is calculated 

by dividing the MBE index by the mean of the measured values (�̅�) and provides the global 

difference between actual and predicted values. By substituting the mean measured value (�̅�)  into 

the formula and simplifying by taking p=0, the N(MBE) formula is derived (Equation 2). 

According to this formula, the calculation is completed by first adding the difference between the 

measured and simulated energy consumption in the time intervals of the considered period (e.g., 

monthly) and then dividing this result by the total of the estimated energy consumption. It is 

important to note that, in the literature, the N(MBE) formula (Equation 2) is often referred to as 

MBE. However, as detailed above, the uncertainty index is taken into account for calibration, and 

this index is mentioned as (𝑀𝐵𝐸), (Normalized Mean Deviation Error) in Standards/Protocols 

(ASHRAE 14, FEMP, IPMVP). 

 

𝑁(𝑀𝐵𝐸) =
1

�̅�
∙

∑ (𝑚𝑖−𝑛
𝑖=1 𝑠𝑖)

𝑛−𝑝
× 100 (%) →  �̅� =

∑ (𝑚𝑖)𝑛
𝑖=1

𝑛
                   

𝑁(𝑀𝐵𝐸) =
∑ (𝑚𝑖−𝑛

𝑖=1 𝑠𝑖)

∑ (𝑚𝑖)𝑛
𝑖=1

× 100 (%)                                                                                                                    (2)                                                          

Where: 

- m: measured energy data over the time interval. 

- s: simulated energy data for the same time interval. 

- n: number of observations. 

- p: number of adjustable model parameters, ideally zero for calibration purposes. 

When calculating N(MBE), p = 0 is recommended [19] as cited by [20]. 

 

Another uncertainty index, CV(RMSE), is derived by normalizing the RMSE value. Firstly, the 

sum of squared differences between measured and simulated values is divided by the number of 

observations. The square root of this result gives the RMSE (Equation 3). Finally, dividing the 

RMSE by the mean of measured values (�̅�) yields CV(RMSE) (Equation 4). 

𝑅𝑀𝑆𝐸 = √
∑ (𝑚𝑖−𝑠𝑖)2𝑛

𝑖=1

𝑛−𝑝
× 100 (%)                                                                                                        (3)                                                           

𝐶𝑉(𝑅𝑀𝑆𝐸) =
1

�̅�
√

∑ (𝑚𝑖−𝑠𝑖)2𝑛
𝑖=1

𝑛−𝑝
× 100 (%)                                                                                       (4)                                                         
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Where: 

- m: measured energy data over the time interval. 

- s: simulated energy data for the same time interval. 

- n: number of observations. 

- �̅�: mean of measured values. 

- p: number of adjustable model parameters, ideally zero for calibration purposes. 

-  

For CV(RMSE) calculation, p = 1 is recommended [19] as cited by [20]. 

 

A threshold limit must be met in the N(MBE) and CV(RMSE) values to consider a model as 

calibrated. Depending on the time interval for calibration (monthly or hourly) and compliance with 

the requirements of the considered Standard/Protocol (ASHRAE 14, FEMP, IPMVP), the threshold 

limit varies slightly (Table 1). 

 

Table 1. Statistical criteria thresholds for calibration [15], [16], [17]. 

 Statistical 

Indicators 

(%) 

ASHRAE FEMP IPMVP 

Monthly  N(MBE) ±5 ±5 ±20 

CV(RMSE) 15 15 - 

Hourly N(MBE) ±10 ±10 ±5 

CV(RMSE) 30 30 20 

 

2.2. Approaches to Calibration and Challenges Encountered 

The first research on building energy model calibrations was conducted in the late 1970s by 

Diamond and Hunn, who calibrated seven different building types ( a restaurant, a single-story 

office building, a retail store, a hospital, a multi-story office building, a school, and a solar-heated 

and cooled building)  using one-year monthly energy bills [21]. Over time, existing calibration 

methods have been improved, and many new techniques and approaches have been introduced 

into the literature, particularly in the last two decades. 

 

The classification of standard approaches to calibrate simulation models against measured data is 

given by Reddy [22] as follows: 
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• “Manual, Iterative, and Pragmatic Intervention Calibration, where the procedure 

adopted to calibrate the parameters iteratively is user-specific, and the inputs and 

parameters are adjusted through trial and error, and therefore largely intuitive. 

• Based on Informative Graphical Comparison Calibration, visuals, which involve using 

specific types of visual graphs created with specialized toolsets,  in addition to the manual, 

iterative, and pragmatic calibration approach, are beneficial for hourly data calibration, 

where analysts face numerous data points and find it challenging to pinpoint exact 

discrepancies; 

• Based on Special Tests and Analytical Procedures Calibration, which includes 

interventions such as intrusive Blink Tests, STEM Tests, Signature Analysis Methods, 

Macro Parameter Estimation Methods, and unique approaches involving monitoring data, 

• Analytical/Mathematical Calibration is an optimization problem based on minimizing the 

monthly (or even hourly) mean square errors between measured and simulated energy 

usage data.”[22]  

These methods can be used independently or in combination to support each other. 

 

It should be noted that building energy model calibration is heavily dependent on user knowledge 

and experience. It is also challenging and time-consuming, based on trial, error, and expertise-

requiring process. 

   

However, the lack of any generally accepted standard in calibration procedures and methods makes 

this process more difficult and complex. Coakley et al. [18] identified the fundamental problems 

related to calibration under seven main issues:  

 

• “Standards: The lack of a universally accepted standard for calibration leads users to 

perform calibration based on their experiences. 

• Cost: The energy modeling process requires substantial time and cost. 

• Simplification: Simulations require many inputs, but measuring and obtaining all these 

data is impossible. 

• Inputs: The model's accuracy depends on the data quality used. When it is not possible to 

measure all inputs accurately, achieving reasonable accuracy becomes difficult. 

• Uncertainty: Some inputs impact the modeling process more than others. The uncertainty 

of these inputs affects the accuracy of the results. 
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• Identification: Identifying the causes of inconsistencies between simulations and actual 

measurements is often an under-defined process based on expert knowledge. 

• Automation: The lack of a method to automate the calibration process results in the need 

for manual interventions, making it more difficult and time-consuming.” [18].  

 

In addition, there are some errors related to the verification measurements used in the validation 

and calibration of building energy models. These technical errors can prevent the correct 

assessment of whether the energy models are calibrated, especially regarding the use and 

representation of the MBE and N(MBE) formulas. Ramos Ruiz and Fernandez Bandera [7] have 

revealed these errors in a very comprehensive study and compiled them with examples as follows: 

 

1. Although the MBE mathematical formula is correct, converting it to a percentage has not 

been explained [23]. 

2.  The MBE value has been expressed as a percentage, but the necessary normalization 

procedures have not been applied [12]. 

3. In the MBE analysis, the cancellation errors' effect was ignored, and direct use was made 

[11]. 

4. The MBE values are percentages without a mathematical formula. This makes the 

verification process impossible [10]. 

5. The mathematical formula used to calculate MBE is incorrect [9]. 

6. MBE Although the mathematical formula is correct, the methodological explanation has 

been incorrect [24]. 

7. As the most common error, the N(MBE) index was given with the correct formula, but it 

was called the MBE or MBE (%). This leads to a confusion of concepts [8]. 

 

In addition, while it is stated in [19] (as cited in [20]) that the p-value in the formula should be 

taken as p=1 when calculating CV(RMSE), it has been observed that the use of p=0 is quite 

common in the literature. 

 

In the sections so far, the definition and scope of calibration, its importance in evaluating building 

energy performance, and the stages of calibration of a BES model have been given; uncertainty 

assessment methods used to assess the accuracy of a calibrated model have been introduced; tools 

and techniques used for calibration of BES models have been presented, and difficulties 
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encountered in the calibration process of a building model errors in calculations have been 

mentioned. 

In the next section, as an example, the energy simulation model of an existing residential building 

with ground + 3 floors located in Samsun–Havza was calibrated and verified. 

 

3. METHOD 

3.1. Case Study-Calibration of the Building Simulation Model 

The method of this study is based on the calibrated simulation approach, one of the three 

approaches outlined in ASHRAE 14-2002. This guideline is a reference for determining acceptable 

minimum performance levels in energy demand and building savings. The three approaches 

Whole-building metering, retrofit isolation metering, and Whole-building calibrated simulation- 

include minimum compliance requirements to ensure acceptable error rates. The method consists 

of five steps: 

 

1. Defining the steps of the calibration process. 

2. Collecting data related to the building. 

3. Developing a numerical energy model. 

4. Comparing simulation results with measurement results. 

5. Improving the energy model until it reaches an acceptable error margin. 

 

The energy model was developed within this framework by inputting the data obtained during the 

creation and validation phases into the Design Builder and EnergyPlus programs. Analytical 

calibration was applied based on accurate data collected through measurements and observations. 

The process was completed following the steps outlined below (Figure 1). 



Int J Energy Studies                                                                                              2025; 10(2): 595-617  

606 
 

 

 

Figure 1. Flowchart of the model creation and calibration process  

 

3.2. Introduction of the Existing Building and Development of the Energy Model 

As part of the study, a residential building constructed in 1988 and located in parcel 54/1 in the 

Havza district of Samsun was selected to represent a significant portion of the building stock in 

the area (Figure 1). This building, constructed without insulation during the pre-2000 period when 

the TS 825 standard was not mandatory for buildings, underwent a suboptimal external cladding 

application in recent years. 

Initially, the implementation project for the building was accessed. The selected building has a 

base area of 243 m². The structure consists of a basement, ground floor, and three additional floors, 

built with a reinforced concrete skeleton system. Each floor contains one Type T1 (3+1) apartment 

with an area of 116 m² and one Type T2 (2+1) apartment with an area of 95 m² (Figures 2 and 3). 
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Figure 2.  Residential building for case study 

 

    

Figure 3. Typical floor plan 
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The ground floor comprises five partitioned retail spaces with a total area of 216 m². The ceiling 

heights of the typical floors are 3 m, while the ground floor and basement have ceiling heights of 

3.5 m and 2.6 m, respectively. The building is on a corner plot with northern and western facades 

and adjacent buildings on the other sides. Typical floors have 30% glazed facades, whereas the 

ground floor has 60%. Using this data, the Design Builder program modeled the building geometry 

(Figure 4). 

 

 

 

Figure 4. 3D model of the selected building 

 

Subsequently, the detailed building information provided in Table 2 was entered into the program, 

preparing the simulation model. 

 

Table 2. Structural and Technical Information of the Building 

Building 

Geometry 

Orientation Northeast 

Number of Floors Basement + 4 floors 

Facade Area (excluding basement) (m²) 581.69 

Windows 

Transparency Ratio of Typical Floor Facades (%)| 

Transparency Ratio of Ground Floor Facades (%) 
30 

 60 

Building Area (m2) 1065,73 

General 

Description of 

the Building 

Structure Type/Material 
Reinforced 

concrete skeleton 

Outer Wall Material Brick 

Air Tightness Level 0,5 
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Occupancy Density (person/m²) 0,0188 

Building Age 36 

General Features 

of Building 

Technology and 

Systems 

Building System 

Heating Individual boiler 

Heating Equipment Radiator 

Heating Fuel Natural gas 

Heating System Efficiency 0,85 

Hot Water System Boiler 

Hot Water Fuel Natural gas 

Hot Water System 

Efficiency 
0,85 

Cooling - 

Ventilation Natural 

Thermal Transmittance 

Coefficients of Opaque 

Components 

Uwall  (W/m²K) 1,258 

Uroof (W/m²K) 1,425 

Ufloor (W/m²K) 1,932 

Transparent Component 

Properties 

Window Area (m²) 148.94 

Uwindow (W/m²K) 2.72 

 

Information was collected regarding the occupants' daily routines, equipment, and lighting habits. 

Additionally, the operational schedules of the mechanical systems in the building were determined. 

These insights, obtained through on-site observations and interviews with the building occupants, 

were input into the simulation program to perform the simulation. 

 

Table 3. Current energy performance 

Annual total heating energy demand (kWh)       98258,06 

Annual total cooling energy demand (kWh) -  

Annual total energy demand (kWh) 136746,1 

Total building area (m²) 1065,73 

Heating energy demand per m² (kWh/m²)          117,60 

Heating energy demand per m² for heated spaces (kWh/m²)  92,20 

Total energy demand per m² (kWh/m²)             128,31 
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According to the simulation results presented in Table 3, the total final energy consumption 

(heating, domestic hot water, electricity) is 128.31 kWh/m². Heating accounts for the largest share 

at approximately 72%. The heating energy demand per m² for heated spaces is 92.20 kWh/m². 

 

3.2. The Calibration Process  

As emphasized in Chapter 2; using accurate, up-to-date, and locally relevant climate data plays a 

critical role in ensuring the accuracy and reliability of the simulation model. Therefore, in order to 

obtain a more precise and realistic simulation model, the study utilized PVGIS (Photovoltaic 

Geographical Information System), an online program that provides information on solar radiation 

and photovoltaic system performance for much of Europe, Africa, Asia, and America. By entering 

the building’s latitude and longitude information into the system, microclimate data specific to the 

building's location was obtained on a daily, monthly, and yearly basis, which was then 

incorporated into the DesignBuilder database. 

 

The indoor temperature data required for calibration were recorded hourly over approximately 

forty days using temperature and humidity measurement devices placed in the living area of an 

apartment (T2) on the second floor. 

 

The simulation results obtained with the EnergyPlus program of the case study in which the energy 

simulation model was created were calibrated using indoor temperature measurement data. 

Calculations were carried out using the N(MBE) and CV(RMSE) formulas detailed above. 

 

The operations were conducted on 1008 data obtained by hourly measurements in the existing 

building between April 20, 2024, and May 31, 2024. 

 

The uncertainty parameters given in Table 4 on the building energy model were changed manually 

and iteratively within appropriate value ranges, and each time, a new simulation was performed to 

ensure that the measured and simulated values were within the appropriate range. The calibrated 

values resulting from the repeated operations are shown in Table 4. 

 

Table 4. Uncertainty parameters and the calibrated values  

Uncertainty Parameters Value Range Calibrated Value 

Heating System Efficiency 85-95 85 
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Air Tightness (ac/h) 0,1-0,5 0,5 

Heating Setpoint (°C) 23-25 23 

 

According to Equation 2, the total difference between each measured and simulated data was 

divided by the total of the measured data, and the N(MBE) value was found to be -1.68 percent 

(Table 5). 

 

Table 5. Calculation of N(MBE) 

∑ (𝑚𝑖 −𝑛
𝑖=1 𝑠𝑖) -331,51 

∑ (𝑚𝑖)
𝑛
𝑖=1  19651,50 

∑ (𝑚𝑖 −𝑛
𝑖=1 𝑠𝑖)/ ∑ (𝑚𝑖)

𝑛
𝑖=1  -0,0168 

×100(%) -1,68 

Subsequently, the CV(RMSE) value was calculated. First, the squared differences between each 

measured and simulated data were summed and divided by 1,007, the total number of data points 

minus one, as per Equation 3. The square root of this result yielded the RMSE value. Then, as seen 

in Equation 4, the RMSE was divided by the mean of the measured values (�̅�) to calculate the 

CV(RMSE) value as 13.86% (Table 6). 

 

Table 6. Calculation of CV(RMSE) 

∑ (𝒎𝒊 − 𝒔𝒊)
𝟐/(𝒏 − 𝒑)

𝒏

𝒊=𝟏
 

7353,45 /1007 

√∑ (𝒎𝒊 − 𝒔𝒊)𝟐
𝒏

𝒊=𝟏
/(𝒏 − 𝒑) 

2,70 

𝟏
�̅�⁄  √∑ (𝒎𝒊 − 𝒔𝒊)𝟐

𝒏

𝒊=𝟏
/(𝒏 − 𝒑) 

0,1386 

×100(%) 13,86 

𝒑 = 𝟏 

𝒏 = 𝟏𝟎𝟎𝟖 

�̅� = 𝟏𝟗, 𝟒𝟗𝟓𝟓 
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Based on the indoor temperature measurement data, the N(MBE) and CV(RMSE) values were 

within the acceptable thresholds (Table 7). Therefore, the calibration process was considered 

completed. 

 

Table 7. Evaluation of Uncertainty Index Results 

Statistical Indicators  N(MBE) CV(RMSE) 

Value (%) -1,68 13,86 

Hourly ASHRAE ±10 30 

FEMP ±10 30 

IPMVP ±5 20 

Result                                                Acceptable 

 

Compared to similar studies, the calibration of the energy simulation results in Table 3 shows 

consistent performance based on statistical indicators. As highlighted in Reddy’s analysis, the 

primary challenges encountered during the calibration process stem from user behavior and 

operational uncertainties. 

 

Additionally, lack of information, simplification of the physical model, and operational 

uncertainties were the parameters that were iteratively varied at appropriate intervals to improve 

the accuracy of the model, which were highlighted as the main reasons for the differences between 

model simulation and accurate data in the systematic review by Chong et al. [6]. 

 

In cases where the measurement results are above the threshold values that must be provided or 

where it is desired to increase the accuracy, iterations can be performed by making appropriate 

changes to these inputs. 

 

This study also serves as a comprehensive guide to addressing various methodological issues in 

calibrating building energy models, as identified by Ramos Ruiz and Fernandez Bandera [7]. The 

NMBE value was calculated as -1.68% with the mathematical formula and percentage conversion 

explicitly defined, ensuring the proper normalization process. Hourly measurements were 

conducted with 1,008 data points, considering the impact of cancellation errors. The verification 

process concerned the thresholds specified in the ASHRAE 14, FEMP, and IPMVP standards was 
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completed. This study's methodology and mathematical formulas were clearly defined, eliminating 

conceptual ambiguities. 

 

 

4. CONCLUSION AND RECOMMENDATIONS  

The growing interest in energy consumption optimization and measurement and verification 

protocols highlights the importance of calibrated energy models. Understanding the validation 

requirements of building energy models is critically important in this context. However, the 

academic literature has identified errors and inconsistencies in the validation measurements 

(uncertainty indices) used in model calibration processes. In this regard, this study focuses on 

reducing the methodological challenges and uncertainties/inconsistencies in the calibration 

processes of building energy simulation models, which are crucial for evaluating building energy 

performance. 

 

This study contributes to the theoretical and practical aspects of calibrating building energy 

simulation models, a highly parameterized process. Fundamental concepts related to the 

calibration of building energy simulation models, calculating and evaluating uncertainty indices, 

common approaches to calibration, and the challenges encountered have been comprehensively 

addressed. Through a case study, systematic calibration approaches and the integration of 

uncertainty evaluation methods have been applied to validate the energy simulation model of an 

existing building. This process has resulted in a manual application example for performing 

building energy simulation model calibrations more effectively and reliably, yielding a model 

capable of conducting precise energy performance analyses. 

 

The lack of a universally accepted standard for building simulation model calibration, the reliance 

on user knowledge and experience, the presence of numerous inputs and uncertainties, and the 

necessity for manual intervention are factors that further complicate the process, while the main 

reason for the inconsistencies between the sources is that the researchers misuse different 

uncertainty calculation criteria.  This error directly affects the accuracy of the building energy 

simulation model calibration.  

 

As a result, this study, which addresses the inconsistencies and errors between similar studies in 

the academic literature and presents a correct example application with a case study, is a basic 
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example for handling Building Energy Simulation model calibrations more reliably and 

effectively. These findings can contribute to the creation of strategies that will ensure more 

efficient use of energy by providing a guide for both energy efficient retrofit processes in existing 

buildings and energy modeling in new buildings. 

In future studies, in addition to manual studies that will consider more comprehensive inputs, 

especially user behavior, with larger sample groups, it is recommended to disseminate automatic 

calibration examples that will increase both process efficiency and accuracy levels by providing 

the capacity to evaluate a wide parameter area. In particular, the integration of machine learning 

and artificial intelligence algorithms can accelerate the calibration process, minimize user errors 

and increase model accuracy. Thus, the energy modeling process can be made more adaptive, and 

more precise results specific to different building types and climate conditions can be obtained. In 

addition, there is a need to develop calibration systems based on real-time data flow that can 

provide more reliable analyses by updating energy simulations with instant data. 

On the other hand, comprehensively addressing the uncertainties in the calibration process, 

integrating user behavior into energy simulations, and deepening uncertainty analyzes are 

important research areas that will allow energy efficiency targets to be determined more effectively 

by increasing the accuracy of calibration. 
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NOMENCLATURE 

ASHRAE : American Society of Heating, Refrigerating, and Air-Conditioning Engineers 

BES : Building Energy Simulation  

CV(RMSE) : Coefficient of Variation of the Root Mean Square Error 

FEMP : Federal Energy Management Program 

GOF: Goodness of Fit 

HVAC: Heating Ventilating and Air Conditioning  

IPMVP: International Performance Measurement and Verification Protocol 

LCA : Life Cycle Assessment  

LCC : Life Cycle Cost 

MBE: Statistical Mean Bias Error 

N(MBE) : Normalized Mean Deviation Error 

RMSE: Root Mean Square Error 

 

ACKNOWLEDGMENT 

This study was supported by the European Union ERA-NET (GEOTHERMICA & JPP Smart 

Energy Systems) (project number: 210447-4401), the Scientific and Technological Research 

Council of Turkey (TÜBİTAK) (project number: 222N354) and Gazi University Scientific 

Research Projects Coordination Unit (BAP) (project number: FPD-2024-8830). We would like to 

thank ERA-NET, TÜBİTAK and Gazi University for their support to the project. 

 

DECLARATION OF ETHICAL STANDARDS 

The authors of the paper submitted declare that nothing which is necessary for achieving the paper 

requires ethical committee and/or legal-special permissions. 

 

CONTRIBUTION OF THE AUTHORS  

Sinem Tozlu: Analysed the case, wrote and edited the manuscript. 

Ayşenur Coşkun: Analysed the case, wrote the manuscript. 

Semra ARSLAN SELÇUK: Supervised the whole process. 

Fatma Zehra ÇAKICI: Supervised the whole process. 

 

CONFLICT OF INTEREST 

There is no conflict of interest in this study.   



Int J Energy Studies                                                                                              2025; 10(2): 595-617  

616 
 

REFERENCES 

[1] Li S, Meng J, Zheng H, Zhang N, Huo J, Li Y, Guan D. The driving forces behind the change 

in energy consumption in developing countries. Environmental Research Letters 2021; 16(5), 

054002. 

[2] Tadeu S, Tadeu A, Simões N, Gonçalves M, Prado R. A sensitivity analysis of a cost optimality 

study on the energy retrofit of a single-family reference building in Portugal. Energy Efficiency 

2018; 11:1411-1432. 

[3] World Economic Forum (WEF). (2024). Transforming energy demand 2024. Retrieved from 

https://www.weforum.org/publications/transforming-energy-demand 

[4] Wang S, Yan C, Xiao F. Quantitative energy performance assessment methods for existing 

buildings. Energy and buildings 2012; 55: 873-888. 

[5] Lamberts R, Hensen JLM. (Eds.). Building performance simulation for design and operation. 

Spoon Press, London, UK, 2011.  

[6] Chong A, Gu Y, Jia H. Calibrating building energy simulation models: a review of the basics 

to guide future work. Energy and Buildings 2021; 253: 111533.  

[7] Ramos Ruiz G, Fernandez Bandera C. (2017). Validation of calibrated energy models: common 

errors. Energies 2017; 10(10): 1587. https://doi.org/10.3390/en10101587 

[8] Cacabelos A, Eguía P, Febrero L, Granada E. (2017). Development of a new multi-stage 

building energy model calibration methodology and validation in a public library. Energy and 

Buildings, 146, 182-199. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.04.071  

[9] Brunelli C, Castellani F, Garinei A, Biondi L, Marconi M. (2016). A procedure to perform 

multi-objective optimization for sustainable design of buildings. Energies, 9(11), 915. 

https://www.mdpi.com/1996-1073/9/11/915 

[10] Raftery P, Keane M, O’Donnell J. Calibrating whole building energy models: an evidence-

based methodology. Energy Build 2011; 43: 2356–2364. 

[11] Choi W, Joe J, Kwak Y, Huh JH. Operation and control strategies for multi storey double skin 

facades during the heating season. Energy Build 2012; 49: 454–465. 

[12] Sahin CD, Arsan ZD, Tuncoku SS, Broström T, Akkurt GG. A transdisciplinary approach on 

the energy efficient retrofitting of a historic building in the Aegean Region of Turkey. Energy 

Build 2015; 96: 128–139. 

[13] Fabrizio E, Monetti V. Methodologies and advancements in the calibration of building energy 

models. Energies 2015; 8(4): 2548–2574. https://doi.org/10.3390/en8042548 



Int J Energy Studies                                                                                              2025; 10(2): 595-617  

617 
 

[14] Reddy TA, Maor I, Panjapornpon C. Calibrating detailed building energy simulation 

programs with measured data—part I: General methodology (RP-1051). Hvac&R Research 2007; 

13(2): 221–241. https://doi.org/10.1080/10789669.2007.10390951. 

[15] American society of heating, ventilating, and air conditioning Engineers (ASHRAE). 

Guideline 14-2014: Measurement of energy and demand savings. Atlanta, GA: American Society 

of Heating, Ventilating, and Air Conditioning Engineers, 2014. 

[16] Webster L, Bradford J, Sartor D, Shonder J, Atkin E, Dunnivant S, Schiller S. M&V 

guidelines: Measurement and verification for performance-based contracts (Version 4.0). U.S. 

Department of Energy Federal Energy Management Program, 2015. 

[17] Cowan, J. International performance measurement and verification protocol: Concepts and 

options for determining energy and water savings - vol. I. International Performance Measurement 

& Verification Protocol, 2002. 

[18] Coakley D, Raftery P, Keane M. A review of methods to match building energy simulation 

models to measured data. Renewable and Sustainable Energy Reviews 2014; 37: 123–141.  

[19] Reddy TA, Maor I, Jian S, Panjapornporn C. (2006). Procedures for reconciling computer-

calculated results with measured energy data. Ashrae Research Project 2006; 1051: 1-60. 

[20] Robertson J, Polly B, Collis J. Evaluation automated model calibration techniques for 

residential building energy simulation. National Renewable Energy Lab.(NREL), Golden, CO 

(United States), 2013. 

[21] Diamond SC, Hunn BD. Comparison of DOE-2 computer program simulations to metered 

data for seven commercial buildings. Los Alamos National Laboratory (LANL), Los Alamos, NM 

(United States), 1981. 

[22] Reddy A. Literature review on calibration of building energy simulation programs: Uses, 

problems, procedure, uncertainty, and tools. Ashrae Transactions 2006; 112: 226-240. 

[23] Yang Z, Becerik Gerber B. A model calibration framework for simultaneous multi-level 

building energy simulation. Applied Energy 2015; 149: 415–431. 

[24] Muneer T, Younes S. The all-sky meteorological radiation model: Proposed improvements. 

Applied Energy 2006; 83: 436–450. 

 


