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ABSTRACT 

Pneumonia is a major infectious disease that causes significant deaths worldwide and early diagnosis is crucial. Chest 
X-ray images, widely used in diagnosis, require detailed analysis for accurate results. In this study, deep learning-
based models are used to classify chest X-ray images as normal or pneumonia. A publicly available chest X-ray dataset 
was used and five models (MobileNetV2, ResNet50, VGG19, Xception and ViT) were compared. Among them, 
VGG19 achieved the highest accuracy of 88.14%. Moreover, a proposed hybrid activation function integrated into the 
VGG19 model improved the classification performance, reaching an accuracy of 91.67%. Moreover, performance 
evaluations with different loss functions showed that the proposed hybrid loss function gave the best result with an 
accuracy of 94.71%. Unlike previous studies, this research provides a new perspective for pneumonia detection based 
on deep learning models by presenting a novel combination of hybrid activation and loss functions. 

Keywords: Chest X-Ray, Deep learning, Hybrid activation function, Loss function, Pneumonia 
 

 
Chest X-Ray Görüntülerinde Pnömoni Sınıflandırması İçin Hibrit Aktivasyon ve Kayıp 

Fonksiyonlarının Etkisi 
 

ÖZ 

Pnömoni, dünya çapında önemli ölümlere neden olan önemli bir enfeksiyon hastalığıdır ve erken tanı çok önemlidir. 
Teşhiste yaygın olarak kullanılan göğüs röntgeni görüntüleri, doğru sonuçlar için ayrıntılı analiz gerektirir. Bu 
çalışmada, göğüs röntgeni görüntülerini normal veya pnömoni olarak sınıflandırmak için derin öğrenme tabanlı 
modeller kullanılmıştır. Halka açık bir göğüs röntgeni veri kümesi kullanılmış ve beş model (MobileNetV2, ResNet50, 
VGG19, Xception ve ViT) karşılaştırılmıştır. Bunlar arasında VGG19 %88,14 ile en yüksek doğruluğu elde etmiştir. 
Ayrıca, VGG19 modeline entegre edilen önerilen bir hibrit aktivasyon fonksiyonu, sınıflandırma performansını 
artırarak %91,67'lik bir doğruluğa ulaşmıştır. Ayrıca farklı kayıp fonksiyonlarıyla yapılan performans 
değerlendirmeleri, önerilen hibrit kayıp fonksiyonunun %94,71 doğrulukla en iyi sonucu verdiğini göstermiştir. 
Önceki çalışmalardan farklı olarak bu araştırma, hibrit aktivasyon ve kayıp fonksiyonlarının yeni bir kombinasyonunu 
sunarak derin öğrenme modellerine dayalı pnömoni tespiti için yeni bir bakış açısı sunmaktadır. 

Anahtar Kelimeler: Göğüs röntgeni, Derin öğrenme, Hibrit aktivasyon fonksiyonu, Kayıp fonksiyonu, Zatürre 
 
 
INTRODUCTİON 
 
Chest X-Ray (CXR) is a cornerstone diagnostic tool in 
medical imaging, extensively utilized for detecting a 
wide range of pulmonary and cardiovascular conditions. 
It plays a pivotal role in the identification of lung 
diseases, including pneumonia, which, if left 
undiagnosed or untreated, can result in severe 
complications [1]. In this regard, CXR are particularly 
effective for diagnosing conditions like pneumonia, as 
they enable the detection of infiltrates and opacities 
within the lungs [2]. Despite their effectiveness, the 
interpretation of traditional CXR images can be labor-
intensive and prone to human error, even for seasoned 
radiologists, particularly when dealing with large 

volumes of data. To mitigate these challenges and 
enhance diagnostic efficiency, the adoption of digital 
imaging technologies has become increasingly prevalent, 
offering a means to accelerate the diagnostic process 
while minimizing the risk of oversight. 
Digital CXR offers many advantages over traditional 
film-based methods. Digital systems allow high-
resolution images to be obtained, while at the same time 
facilitating the process of storing and sharing images 
digitally. This is particularly advantageous for healthcare 
facilities in remote areas, as digital images can be quickly 
transferred over the internet and reviewed by remote 
specialists [3]. With the availability of digital images, 
image analysis processes have become automated, saving 
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time and labor, especially when working with large 
patient data. 
At this point, artificial intelligence techniques have an 
important place in the analysis of CXR images. In this 
field, especially deep learning methods and CNNs, which 
stand out among these methods, are used effectively. 
Thanks to their ability to learn and classify complex 
patterns in images, CNNs have achieved highly 
successful results in medical imaging [4]. In early 
diagnosis of diseases such as pneumonia, CNNs can ease 
the workload of radiologists and improve accuracy. 
However, training deep learning models requires large 
amounts of labeled data. In this study, the “Chest X-Ray 
dataset” containing a total of 5,856 labeled images 
classified as normal and pneumonia was used. The 
labeling process was carried out by expert radiologists. 
This is where transfer learning comes into play as an 
approach that allows training models with high accuracy 
even with limited labeled data. Transfer learning is the 
process of adapting a model that has been trained on 
larger datasets to smaller datasets, which provides a 
significant advantage in the field of medical imaging [5]. 
Although various deep learning models have been 
applied to pneumonia detection in previous studies, there 
is still a gap in the literature regarding the combined 
effect of specially designed activation and loss functions 
on classification performance. 
This paper provides an in-depth study of the effectiveness 
of deep learning methods, specifically CNN and transfer 
learning approaches, for analyzing CXR images. In this 
context, the performance of different architectures such 
as MobileNetV2, ResNet50, VGG19, Xception and ViT 
is evaluated. The aim of the study is to optimize these 
methods to accurately classify diseases such as 
pneumonia. The choice of activation and loss functions, 
which play a critical role in improving model 
performance, significantly affects the overall 
performance of the model. Accordingly, the evaluation 
of how different combinations of activation functions and 
loss functions can improve the classification accuracy of 
CXR images is one of the main focuses of this study. In 
conclusion, this study aims to demonstrate how different 
deep learning techniques and functional structures 
contribute to more accurate and efficient diagnostic 
processes in healthcare. 
The remaining sections of this paper are presented in a 
systematic structure. In the second section, a literature 
review is given, comprehensively reviewing the previous 
research that forms the basis of the study. In the third 
section, the dataset used in the study, model 
development, transfer learning, ViT, the proposed 
activation function and the proposed loss functions are 
explained in detail and this content is presented under the 
heading materials and methods. In the fourth section, the 
obtained findings are evaluated, their relation with the 
literature is discussed and the contributions of the study 
are discussed under the title of results and discussion. 
Finally, in the fifth section, general conclusions are 
summarized, the scientific outputs of the study are 

highlighted, and suggestions for future work are 
presented under the conclusion heading. 
 
LITERATURE REVIEW 
 
Pneumonia is a disease caused by inflammation of the 
lungs and early diagnosis is critical. CXR are widely used 
to accurately diagnose pneumonia. These images play an 
important role in the early detection of diseases such as 
pneumonia by providing rapid information about the 
condition of the lungs. Nowadays, the use of artificial 
intelligence and deep learning techniques has led to a 
significant improvement in the analysis of CXR images. 
In the literature, it is emphasized that these techniques 
have improved the success in pneumonia classification 
and new methods should be explored for more effective 
solutions in the future. 
Khan et al. [6] proposed a technique based on deep 
learning to distinguish COVID-19 infections from other 
infections. Three distinct pre-trained architectures 
EfficientNetB1, NasNetMobile, and MobileNetV2 were 
utilized for the classification of COVID-19. The training 
phase was conducted using an expanded dataset, and two 
separate learning strategies were implemented for 
classification. To enhance performance, not only were 
the models optimized, but also the hyperparameters were 
meticulously adjusted. Additionally, refining the 
classification layer further contributed to improved 
accuracy. The proposed approach effectively 
distinguished four categories—COVID-19, viral 
pneumonia, lung opacity, and normal—achieving an 
impressive accuracy rate of 96.13%. 
Shelke et al. [7] proposed a classification model that 
analyzes CXR images for accurate diagnosis of COVID-
19. The model classifies X-rays into four classes: normal, 
pneumonia, tuberculosis (TB), and COVID-19, and 
classifies COVID-19 images as mild, moderate, and 
severe based on severity. The VGG-16 model was used 
for pneumonia, TB and normal classification and 95.9% 
accuracy was achieved. For normal, pneumonia and 
COVID-19 discrimination, 98.9% accuracy was 
achieved using DenseNet-161, and for severity 
classification, ResNet-18 model performed the best and 
achieved 76% accuracy.  
Ibrahim et al. [8] used an AlexNet-based deep learning 
model to classify COVID-19, bacterial pneumonia, non-
COVID-19 viral pneumonia and normal CXR images. 
The model was evaluated under two-class, three-class, 
and four-class classification setups, yielding high 
accuracy rates. Specifically, it attained 94.43% accuracy 
in distinguishing non-COVID-19 viral pneumonia from 
normal cases, 91.43% for bacterial pneumonia versus 
normal, 99.16% for COVID-19 against normal, and 
99.62% for COVID-19 versus bacterial pneumonia. 
Furthermore, the model achieved 94.00% accuracy in the 
three-class scenario and 93.42% in the four-class 
classification task. 
Abbas et al. [9] proposed a deep CNN model called 
DeTraC to classify CXR images for the diagnosis of 
COVID-19. DeTraC incorporates a class decomposition 



MAUN Fen Bil. Dergi., 13, 1, 15-25 Araştırma Makalesi/ Research Article 
MAUN J. of Sci., 13, 1, 15-25                               DOI : 10.18586/msufbd.1625377. 

 

17 
 

mechanism that effectively addresses irregularities in 
image datasets by analyzing class boundaries. 
Experimental findings confirmed its capability to identify 
COVID-19 cases using an extensive dataset compiled 
from multiple hospitals globally. The model achieved an 
accuracy of 93.1% in distinguishing COVID-19 X-ray 
images from normal and severe acute respiratory 
syndrome cases, along with a precision rate of 100%. 
Gielczyk et al. [10] proposed a machine learning-based 
method for classifying CXR images for COVID-19 
diagnosis. In addition, some preprocessing methods such 
as thresholding, blurring and histogram equalization 
were also examined. As a result of the analysis, 97%, 
96% and 99% F1-scores were obtained for three classes 
(healthy, COVID-19 and pneumonia) respectively.  
Alshmrani et al. [11] designed a deep learning 
architecture integrating VGG19 and CNN for multi-class 
classification of COVID-19, pneumonia, lung cancer, 
tuberculosis (TB) and lung opacity. The model was 
trained on a comprehensive dataset containing 3,615 
COVID-19, 6,012 lung opacity, 5,870 
pneumonia, 20,000 lung cancer, 1,400 tuberculosis, 
and 10,192 normal CXR images. The results of the 
experiments showed exceptional performance, with 
an accuracy of 96.48%, 93.75% recall, 97.56% 
precision, 95.62% F1-score, and an AUC of 99.82%. 
Asif et al. [12] proposed an Inception V3-based Deep 
CNN (DCNN) model for automatic detection of COVID-
19 pneumonia from CXR images. The dataset used for 
training included 864 COVID-19, 1,345 viral 
pneumonia, and 1,341 normal X-ray images. 
Using transfer learning, the model achieved a 
classification accuracy of more than 98%, with 97% 
training accuracy and 93% validation accuracy, 
demonstrating its effectiveness in detecting COVID-19 
pneumonia. 
Zhao et al. [13] proposed the AM_DenseNet model to 
classify 14 different chest diseases using X-ray images. 
By incorporating dense connections and attention 
mechanisms, the model enhanced feature extraction 
while mitigating class imbalance through the Focal 
Loss function. Experimental evaluations demonstrated 
its effectiveness, achieving an AUC of 0.8537 for multi-
class classification. 
Okolo et al. [14] developed a Transformer-based deep 
learning model for the classification of CXR images. 
Initially, the ViT model was examined, and 
subsequently, an improved version called Input 
Enhanced ViT (IEViT) was proposed to boost 
performance. Experimental results across four datasets 
showed that the IEViT model surpassed ViT, yielding up 
to 5.82% improvement in F1-score, a 3% increase in 
recall, and a 6.41% rise in precision. 
Kolonne et al. [15] developed a deep learning framework 
based on CXR analysis to distinguish between normal 
cases, pneumonia and COVID-19 pneumonia. 
By augmenting the MobileNetV2 architecture with 
additional layers, the model’s capacity was enhanced. 
The system’s performance, assessed through 5-fold 

cross-validation, demonstrated high reliability, 
achieving 98.65% accuracy and 98.15% recall. 
Souid et al. [16] used a modified version of the 
MobileNetV2 model to detect lung abnormalities from 
CXR images. The model was trained on the NIH Chest 
X-Ray 14 dataset, where it delivered an average AUC of 
0.811 and an accuracy exceeding 90%, confirming its 
effectiveness in medical image classification. 
These studies highlight the advancements in deep 
learning-driven diagnostic tools for lung diseases, 
pneumonia, COVID-19, and other infections. The 
integration of sophisticated architectures not only 
supports fast and precise diagnoses but also 
facilitates early disease detection, ultimately accelerating 
treatment procedures. 
 
MATERIALS AND METHODS 
 
Dataset 
CXR is an essential, widely accessible imaging technique 
used in diagnosing various lung conditions. It is 
particularly crucial for detecting respiratory infections, 
including pneumonia and COVID-19, enabling 
healthcare professionals to diagnose patients early and 
accurately. In this study, we utilized the publicly 
available CXR dataset [17], which consists of 5,840 
CXR images representing both healthy individuals and 
those with pneumonia.  This dataset was obtained from 
the Kaggle platform and is openly accessible for research 
purposes. The dataset is organized into two primary 
folders: train and test, each containing two subfolders 
labeled normal and pneumonia. All images in the dataset 
were pre-processed and resized to a fixed resolution of 
600×600 pixels. Images are in grayscale and JPEG 
format. Sample images from these classes are shown in 
Figure 1. A detailed breakdown of the training and testing 
datasets can be found in Table 1. 
 

 
 
Figure 1. Example images of normal and pneumonia 
classes in the CXR dataset [17]. 
 

Table 1. Summary of the CXR dataset. 
  

Normal Pneumonıa Total 

Test 234 390 624 

Train 1341 3875 5216 

Total 1575 4265 5840 
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Table 1 shows the distribution of test and training data in 
the CXR dataset. There are 5840 images in total, of 
which 1575 are normal and 4265 are pneumonia cases. 
The training data contains more samples than the test 
data. 
 
Model Development 

Deep learning has emerged as an important tool in 
medical image analysis. This method automatically 
extracts meaningful information from complex image 
data, enabling fast and accurate diagnosis of diseases. At 
the core of deep learning lies CNN, which play an 
important role especially in visual recognition tasks. 
CNNs are highly effective in automatically classifying 
patterns in medical images by using convolutional layers 
and pooling operations to extract hierarchical features 
from images. In many studies, CNNs have been shown to 
successfully detect diseases such as pneumonia, 
tuberculosis and COVID-19 from CXR images and 
provide important support to healthcare professionals in 
the diagnosis process [4]. This demonstrates the benefits 
of deep learning-based systems, especially in emergency 
medicine and similar fields where rapid diagnosis is 
critical. 
However, transfer learning plays an important role to 
further improve the performance of deep learning models 
and make them more efficient. Transfer learning allows 
for faster and more accurate training on smaller data sets 
by using pre-trained models that have been trained on 
large and labeled data sets (e.g. ImageNet) [5]. This 
increases the ability of the model to generalize to smaller 
data sets. In recent years, the ViT architecture has also 
gained an important place in the deep learning 
community. Unlike traditional CNNs, ViT has a 
transformer-based structure and excels in modeling long-
range dependencies, especially on large datasets [18]. In 
this study, ViT-based models are used for the 
classification of CXR images, and the performance of the 
model is further improved by transfer learning and the 
aim is to accurately detect diseases. In this context, the 
combination of ViT and transfer learning offers a 
significant advantage over previously used CNN 
methods. 
In this study, experiments were conducted on various 
deep learning architectures to classify pneumonia 
diseases. In the first stage, a comprehensive performance 
evaluation was performed on the CXR dataset using deep 
learning architectures such as MobileNetV2, ResNet50, 
VGG19, Xception and ViT. As a result of the 
experiments, it was observed that the VGG19 model 
achieved the highest accuracy. This finding led to the 
decision to use the VGG19 model for the rest of the 
study. In the second stage, the performances of ReLU, 
Softmax, Sigmoid, LeakyReLU activation functions as 
well as new activation functions developed on VGG19 
were analyzed. Each function is analyzed in terms of 
model accuracy and learning capacity and the best 
performing activation function is identified. In the third 

section, the performances of different loss functions 
(MSE, MAE, Binary Cross-Entropy and the proposed 
loss function) are compared in the output layer of 
VGG19. These steps aim to increase the applicability and 
efficiency of deep learning-based models in the 
classification of pneumonia diseases. Figure 2 presents a 
diagram showing the general workflow of the study. The 
parts marked in red indicate the methods with the most 
successful classification results.  We continue with the 
models and combinations with the highest performance 
in the workflow. 
 

 
 
Figure 2. Workflow diagram of the presented 
architecture 
During the training of the deep learning-based models 
used in this study, the underlying hyperparameters were 
carefully selected. In order to maximize the performance 
of the models during the training process, the same 
hyperparameters were used for each model. The 
hyperparameters used in the study are presented in Table 
2. 
 

Table 2. Hyperparameters used in training models. 
 

Hyperparameters Values 

Epochs 200 

Learning Rate 0.001 

Batch Size 32 
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Optimization Method Adam 

Early Stopping Yes, early stop on loss 
of validation 

Dropout  0.3 

 

Transfer Learning Models 

Transfer learning enables a model to use previously 
learned knowledge in a new task, helping to achieve 
strong performances with limited data. In this study, we 
investigate the performance of four different models 
based on transfer learning: MobileNetV2, ResNet50, 
VGG19 and Xception. 
MobileNetV2 is a lightweight model designed to work 
efficiently on mobile devices with low resource 
requirements. By using depthwise separable 
convolutions, it keeps performance high while reducing 
the number of parameters [19]. ResNet50 enables 
training deep networks with the residual learning 
principle, making it ideal for deeper and more complex 
networks [20]. VGG19 performs powerful feature 
extraction with successive convolution layers and is 
widely used for transfer learning [21]. Xception provides 
more efficient feature extraction using decomposed 
convolutions and provides high accuracy on large 
datasets [22]. 
 

Vision Transformer (ViT) 

ViT is a model based on the transformers architecture, 
different from the traditional CNN for image processing 
tasks. First introduced by Dosovitskiy et al., this method 
processes images into fixed-size patches and converts 
each patch into a vector. These vectors are then passed to 
a transformer model, which learns local and global 
features from the image [18]. The success of ViT is 
especially evident when optimized with large data sets 
and powerful computational resources. Unlike traditional 
CNNs, the self-attention mechanism underlying ViT can 
model the relationships between different parts in images 
much more efficiently [23]. 
Recently, ViT has demonstrated high performance in 
image classification tasks, outperforming CNNs. This is 
mainly because transformer-based structures learn more 
comprehensive and flexible features based on global 
information. The use of ViT in areas such as medical 
imaging has made a huge impact, especially in 
applications that are considered to have limited data. For 
example, the ViT model has been shown to provide 
successful results in the diagnosis of diseases such as 
COVID-19 [24]. However, the challenges of ViT, such 
as large data requirements and training times, may 
require the effective use of transfer learning methods on 
smaller data sets. In this context, the successful 
applications of ViT provide a significant advancement in 
the field of medical imaging. 

 

Proposed Activation Function 

The activation functions used in neural networks 
significantly affect the learning capacity and overall 
performance of the network. Activation functions 
increase the network's ability to model nonlinear 
relationships, allowing for better results on complex data 
[25]. ReLU (Rectified Linear Unit) is a function 
commonly used in deep networks that allows the network 
to learn fast by converting sub-zero inputs to zero [26]. 
Sigmoid and tanh (hyperbolic tangent) functions keep the 
output of the model within a certain range by limiting its 
output; however, these functions can cause problems 
such as gradient disappearance [27]. The Softplus 
function, on the other hand, provides a linear growth 
similar to ReLU, but alleviates the problem of gradient 
fading by offering a smoother transition [28]. Each of 
these activation functions offers various advantages and 
limitations according to the different learning processes 
and needs of the network. 
The proposed hybrid activation function is a combination 
that exhibits different behavior in positive and negative 
regions. For positive values, the Softplus function is 
preferred because Softplus provides a smooth transition 
for zero and small positive inputs and increases slowly 
without increasing the gradients. This feature helps to 
make learning stable and robust when the model has 
negative gradients. The mathematical representation of 
the Softplus activation function is presented in Equation 
1.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥) = ln (1 + 𝑒𝑒𝑥𝑥)   (1) 

For negative values, the Tanh function is used, since 
Tanh provides a symmetric output between -1 and 1, 
giving a wider range of activation for negative inputs. In 
this way, the model follows a stronger and more balanced 
learning process in negative regions. The mathematical 
representation of the Tanh activation function is 
presented in Equation 2. 

𝑇𝑇𝑇𝑇𝑇𝑇ℎ(𝑥𝑥) = 𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥
    (2) 

This combination of Softplus and Tanh offers advantages 
in both positive and negative regions, allowing the model 
to learn in a more flexible and balanced way. Promoting 
stable learning for both small and large values, this 
hybrid function offers an ideal solution for adapting to 
larger data ranges and complex problems. The 
mathematical representation of the hybrid function 
combining Softplus and Tanh activations is presented in 
Equation 3. 

𝑆𝑆(𝑥𝑥) = �
ln(1 + 𝑒𝑒𝑥𝑥)                𝑖𝑖𝑆𝑆   𝑥𝑥 ≥ 0
𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥
                       𝑖𝑖𝑆𝑆   𝑥𝑥 < 0

 (3) 
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Proposed Loss Function 

In image classification tasks, one of the most important 
elements that guide the learning process of the model is 
the loss functions. Loss functions calculate the model's 
errors by measuring the difference between the model's 
predicted values and the actual labels and ensure that 
these errors are minimized [29]. A loss function plays a 
critical role in the optimization process so that the model 
can classify correctly. Traditionally, among the loss 
functions used in classification problems, Cross-Entropy 
loss (CE) is widely preferred to improve the model's 
ability to predict the correct class [30], while methods 
such as contrastive loss allow the model to become more 
generalizable by learning the similarities and differences 
between images [31]. The mathematical representations 
of the cross-entropy loss and contrastive loss functions 
are presented in Equations (4) and (5) respectively. 

𝐿𝐿𝐶𝐶𝐶𝐶(𝑦𝑦, ÿ) = −∑ 𝑦𝑦𝑖𝑖𝐶𝐶
𝑖𝑖=1 log (ÿ𝑖𝑖)  (4) 

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑒𝑒 = 1
2

[𝑦𝑦.𝐷𝐷2(𝑥𝑥1, 𝑥𝑥2) + (1 −
𝑦𝑦). max (0,𝑚𝑚 −𝐷𝐷(𝑥𝑥1, 𝑥𝑥2))2](5) 

In this context, Hybrid Contrastive-CrossEntropy Loss 
(HCCEL) is proposed as a new loss function. HCCEL 
aims to optimize both class accuracy and visual 
similarities by combining cross-entropy loss and 
contrastive loss. HCCEL includes two components: First, 
CE improves the model's ability to predict the correct 
class [30]. This component aims for the model to predict 
the correct probability for each class. Secondly, 
contrastive loss (CL) helps the model learn visual 
similarities between images by making the model zoom 
in on similar images and zoom out on images belonging 
to different classes [31]. By combining these two 
components, HCCEL optimizes class accuracy and 
similarity-driven learning at the same time. The 
mathematical representation of the new hybrid activation 
function formed by the combination of the two loss 
functions is presented in Equation (6). 

𝐿𝐿𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻 = 𝐿𝐿𝐶𝐶𝐶𝐶 + λ. 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑒𝑒   (6) 

The parameter λ is a hyperparameter that determines the 
weight of the Contrastive Loss component. In the 
HCCEL function, this parameter balances between class 

accuracy and visual similarity-based learning. The value 
of λ should be set so that the model both makes accurate 
class predictions and learns visual similarities. A high λ 
value increases the effect of contrastive loss, allowing the 
model to learn more similarities, which often helps to 
learn better visual representations. However, too high a λ 
can lead the model to neglect class accuracy. A low λ can 
only optimize class accuracy, with less emphasis on 
learning visual similarities. Therefore, the correct setting 
of λ is critical for the model to successfully learn both 
objectives. 
The λ value was determined by Grid Search, a systematic 
hyperparameter search method. Grid Search involves 
trying different values of λ with fixed steps in a given 
range (e.g. between 0.1 and 1.0) and evaluating the model 
performance for each value. As a result of the 
comparisons, the highest accuracy was obtained at a 
value of 0.5. 
 
RESULT AND DISCUSSION 

CXR images are an important imaging modality often 
used for medical diagnosis and early detection of 
diseases. These images are used to visually assess the 
condition of the lungs, heart and other chest organs. CXR 
play a critical role in the diagnosis of conditions such as 
lung infections, cancer, heart disease and pneumonia. 
However, these images often contain complex structures 
and are difficult to interpret accurately as many diseases 
with similar symptoms can be visually very close to each 
other. Therefore, the use of artificial intelligence and 
deep learning methods offers great potential for detecting 
subtle differences in CXR images and making accurate 
diagnoses. 
In this study, different deep learning architectures were 
used to classify normal and pneumonia labeled data in 
CXR images. These architectures include MobileNetV2, 
ResNet50, VGG19, Xception and ViT. In the first part of 
the study, the classification performance of these five 
different models on the dataset is comprehensively 
evaluated and presented in Table 3. 
The model’s performance is evaluated using critical 
metrics such as True Positive (TP), True Negative 
(TN), False Positive (FP), and False Negative 
(FN). TP refers to the number of correctly identified 
positive instances, TN represents the correctly classified 
negative cases, FP denotes instances that were 
incorrectly predicted as positive, and FN indicates 
positive samples that were incorrectly classified as 
negative. 

Table 3. Performance metrics on the CXR dataset.

Models True 
Positive 

False 
Positive 

False 
Negative 

True 
Negative 

Accuracy 
(%) 

Recall
(%) 

Precisio
n(%) 

F1-
score(
%) 

MobileNetV
2 

161 73 10 380 86.70 94.15 68.80 79.51 

ResNet50 113 121 26 364 76.44 81.29 48.29 60.59 
VGG19 183 51 23 367 88.14 88.83 78.21 83.18 
Xception 75 159 146 244 51.12 33.94 32.05 32.97 
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Vit 123 111 0 390 82.21 100.00 52.56 58.91 

These values are essential for calculating key 
performance metrics, 
including accuracy, precision, recall, and the F1-score, 
which provide a more nuanced evaluation of the model’s 
performance. Accuracy represents the proportion of 
correctly classified instances out of all 
predictions. Precision measures the proportion of 
predicted positive cases that are truly positive, 
while recall assesses the model's ability to identify actual 
positive instances. The F1-score combines both precision 
and recall to give a balanced view of the model’s overall 
predictive performance. These metrics are especially 
valuable when working with imbalanced datasets, 
ensuring a more reliable evaluation of the model’s 
effectiveness in classification tasks [32]. The 
mathematical formulas for these metrics are outlined in 
Equations (7), (8), (9), and (10). 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴𝑇𝑇𝐴𝐴𝑦𝑦 = (TP+TN)

(TP+TN+FP+FN)
   (7) 

Precision = TP
(TP + FP)

    (8) 

Recall = TP
(TP + FN)

    (9) 

F1 −  Score = 2 x Precision x Recall
(Precision + Recall)

              (10) 
 
In the evaluations performed on the models in Table 4, 
Sigmoid was used as the activation function and 

binary_crossentropy as the loss function. With this 
combination, the classification performances of the 
model were evaluated and performance metrics were 
calculated according to the results obtained. According to 
the accuracy values, VGG19 achieved the highest 
accuracy rate with 88.14%. This model was very 
successful in pneumonia detection. MobileNetV2 ranked 
second with 86.70% accuracy, while ViT performed well 
with 82.21% accuracy. ResNet50 had an average 
performance with 76.44% accuracy, while Xception was 
the least successful with 51.12% accuracy. These results 
show that VGG19 and MobileNetV2 have the best 
classification performance, while Xception performs 
poorly with very low accuracy. The high accuracy and 
balanced performance of VGG19 demonstrates its 
effective classification ability on CXR data. Therefore, 
after comparisons with other models, the VGG19 
architecture was chosen for more in-depth analysis and 
improvements.  
In the second part of the study, the proposed hybrid 
activation function was integrated into the VGG19 model 
in addition to the ReLU, Softmax, Sigmoid, LeakyReLU 
activation functions. With this integration, the 
classification performance of the model is tested with 
different activation functions. The results obtained are 
presented in Table 4. 
 

 
Table 4. Performance metrics of various activation functions on the VGG19 model. 

 
Activation 
Functions 

True 
Positive 

False 
Positive 

False 
Negative 

True 
Negative 

Accuracy 
(%) 

Recall
(%) 

Precisio
n(%) 

F1-
score(
%) 

ReLU 161 73 52 338 79.97 75.59 68.80 72.04 
Softmax 177 57 32 358 85.74 84.69 75.64 79.91 
Sigmoid 183 51 23 367 88.14 88.83 78.21 83.18 
LeakyReLU 152 82 68 322 75.96 69.09 64.69 66.96 
Proposed 
Hybrid  

197 37 15 375 91.67 92.92 84.19 88.34 

 

Table 4 clearly shows the differences between the 
classification performance of the different activation 
functions used on the VGG19 model. The sigmoid 
activation function performs the best with strong metrics 
such as 88.14% accuracy, 88.83% recall and 78.21% 
precision, indicating that the model shows high success 
in true positive predictions. Softmax activation ranked 
second with an accuracy of 85.74% and an F1 score of 
79.91%, again providing a successful classification 
performance. The other activation functions ReLU and 
LeakyReLU achieved lower results with 79.97% and 
75.96% accuracy respectively. These results indicate that 
both functions lead to more errors in classification 
performance and false positive predictions. The proposed 
hybrid activation function provides the highest 

performance with 91.67% accuracy, allowing the model 
to outperform in all metrics. These findings reveal that 
the hybrid activation function offers a significant 
advantage, especially in terms of true positive 
classifications and improving the overall performance of 
the model. The study will continue with the hybrid 
activation function integrated into the VGG19 model, 
which yields the most successful results. 
In the third part of the study, in addition to the hybrid 
activation function integrated into the VGG19 model, 
performance evaluations were performed using MSE, 
MAE, Binary Cross-Entropy and the proposed loss 
function. The performance metrics obtained with each 
loss function are presented in Table 5. 
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Table 5. Performance metrics of various loss functions on the model obtained with VGG19+proposed hybrid loss 
function. 

 
Loss 
Functions 

True 
Positive 

False 
Positive 

False 
Negative 

True 
Negative 

Accurac
y (%) 

Recal
l(%) 

Precisi
on(%) 

F1-
score(%) 

MSE 189 45 28 362 88.30 87.10 80.77 83.81 
MAE 172 62 38 352 83.97 81.90 73.50 77.48 
Binary Cross-
Entropy 

197 37 15 375 91.67 92.92 84.19 88.34 

Proposed 
Hybrid loss 

210 24 9 381 94.71 95.89 89.74 92.72 

When Table 5 is analyzed, the Proposed Hybrid loss 
function provides the most successful results with 
94.71% accuracy. The Binary Cross-Entropy loss 
function ranks second with 91.67% accuracy and shows 
a very strong performance. The MSE loss function has a 
lower accuracy with 88.30% accuracy, while the MAE 
loss function shows the lowest accuracy with 83.97% 
accuracy. These results show that the Proposed Hybrid 
loss function is more effective than the other loss 
functions and provides a better overall performance in the 
classification task. 
In conclusion, this study highlights the effectiveness of 
the developed hybrid activation function and the 

Proposed Hybrid loss function. Both functions improve 
the overall classification performance of the model, 
leading to significant improvements in key performance 
metrics such as accuracy. These findings suggest that 
hybrid structures offer an effective approach for 
performance improvements in deep learning models. 
 
The contributions of the study to the literature enrich the 
field by providing a new perspective to existing research. 
In Table 6, the findings of previous studies in this field 
are examined comparatively with a systematic approach 
and presented in detail. 

 
Table 6.  Summary of studies with CXR in the literature.

Study  Year Dataset Objective 

 

Method 
 

Accuracy (%) 

Khan et al. 
[6] 

2022 COVID-19 
Radiography 
Database 
 

Classifying viral 
pneumonia, lung 
opacity and normal 
images. 
 
 
 

Three pre-trained 
models 
(EfficientNetB1, 
NasNetMobile, 
MobileNetV2) were 
used with fine-tuning 
on an augmented 
dataset. 

EfficientNetB1:96
.13 
NasNetMobile:94
.81 
MobileNetV2:93.
96 

Shelke et 
al. [7] 

2021 Dataset of 2271 
images from 
Clinico 
Diagnostic Lab in 
India. 

Classifying normal, 
pneumonia, 
tuberculosis and 
COVID-19 images. 

DenseNet-161 98.9 

Ibrahim et 
al. [33] 

2024 Novel Corona 
Virus 2019 
Dataset 
 

To classify CXR 
images into four 
categories COVID-
19, non-COVID-19 
viral pneumonia, 
bacterial 
pneumonia, and 
normal 

AlexNet 93.42 

Saraiva et 
al. [34] 

2019 CXR  Dataset Classify pneumonia 
and normal images
  

CNN model is 
proposed. 

94.40 

Gulgun 
and Erol 
[35] 

2020 CXR Dataset Classify pneumonia 
and normal I mages 

The performance of 
three different models 
is compared: 
CNN model,  

CNN Model: 80.4  
CNN Model with 
Data 



MAUN Fen Bil. Dergi., 13, 1, 15-25 Araştırma Makalesi/ Research Article 
MAUN J. of Sci., 13, 1, 15-25                               DOI : 10.18586/msufbd.1625377. 

 

23 
 

CNN Model 
Applying Data 
Augmentation 
Technique,  
VGG16  

Augmentation 
Technique: 93.4  
VGG16: 85.6 

Proposed 
Model 

2025 CXR Dataset Classify pneumonia 
and normal images 

The proposed VGG19 
transfer learning 
architecture 
integrating activation 
and loss function is 
implemented on the 
original dataset. 

94.71 

Table 6 provides a summary of various studies that 
highlight the effectiveness of deep learning models in 
diagnosing COVID-19 and other pulmonary diseases. 
These studies illustrate significant advancements in 
CXR image classification, leveraging diverse datasets 
and model architectures. The findings emphasize the 
continuous progress in developing robust and accurate 
deep learning approaches for medical image analysis. 
Khan et al. [6] examined EfficientNetB1, NasNetMobile 
and MobileNetV2 models on COVID-19 Radiography 
Database and reported that EfficientNetB1 model 
provided 96.13% accuracy rate. Shelke et al. [7], the 
highest success was achieved with 98.9% accuracy using 
the DenseNet-161 model on a dataset containing 2271 
images. Ibrahim et al. [33], 93.42% accuracy was 
achieved using the AlexNet model.  
Saraiva et al. [34], Gulgun and Erol [35] and the proposed 
work were performed on the same CXR dataset. Saraiva 
et al. [34], 94.40% accuracy was achieved with the 
proposed CNN model. Gulgun and Erol [35], the 
performances of the standard CNN model, the CNN 
model with data augmentation, and the VGG16 model 
were compared, and 80.4%, 93.4%, and 85.6% accuracy 
rates were obtained, respectively. In the proposed study, 
the VGG19 transfer learning architecture was applied 
with a special activation and loss function and achieved 
an accuracy of 94.71%. In particular, the proposed model 
outperformed the other methods and demonstrated that 
transfer learning as well as customized functions can 
improve the classification performance. This 
achievement is due to the significant impact of the 
combination of loss function and activation function on 
improving the model performance. In the proposed work, 
the customized activation and loss functions used in 
combination with the VGG19 transfer learning 
architecture improved the accuracy of the model to 
94.71%. This combination provides an effective strategy 
to overcome the local minimum problems often 
encountered in deep learning models and enables the 
model to gain stronger generalization capability. 
The customized loss function minimized the 
classification errors, while the activation functions 
helped the model to make more precise and accurate 
decisions during the learning process. This interaction 
enhanced the model's capacity to provide better 
discrimination and accuracy and played a critical role in 
improving the results. In conclusion, these findings show 

that the combination of loss function and activation 
function is an important tool for optimizing the 
performance of deep learning models and clearly 
demonstrate why the proposed model is more successful 
than other methods. 
 
CONCLUSION 
 
Artificial intelligence and deep learning techniques play 
a crucial role in medical imaging, particularly in the early 
diagnosis and classification of lung diseases. This study 
evaluates the effectiveness of various deep learning 
architectures in distinguishing between normal and 
pneumonia-labeled CXR images. Performance analyses 
were conducted on multiple transfer learning models, 
including MobileNetV2, ResNet50, VGG19, Xception, 
and ViT, to compare their classification capabilities. The 
findings indicate that VGG19 achieved the highest 
accuracy (88.14%), making it the most suitable model for 
further exploration. In the next phase, different activation 
functions ReLU, Softmax, Sigmoid, and LeakyReLU 
along with a proposed hybrid activation function were 
integrated into the VGG19 model. The hybrid activation 
function outperformed others, enhancing the model’s 
accuracy to 91.67%, demonstrating its effectiveness in 
improving classification performance. Further, various 
loss functions, including MSE, MAE, Binary Cross-
Entropy, and the proposed hybrid loss function, were 
incorporated into the VGG19 model alongside the hybrid 
activation function. The proposed hybrid loss function 
yielded the best results, achieving 94.71% accuracy. 
These findings suggest that hybrid loss functions are 
more effective in classification tasks, significantly 
enhancing the model’s overall performance and true 
positive detection rates. 
This study shows that deep learning architectures and 
hybrid structures offer an effective approach to improve 
classification accuracy in medical imaging applications. 
The developed hybrid activation function and loss 
function combinations can be a powerful tool for accurate 
diagnosis and early detection by improving the 
classification accuracy of the model. Future work should 
test these hybrid structures on larger datasets and 
evaluate them more extensively in real-world 
applications. Furthermore, combinations of different 
deep learning architectures and loss functions can be 
explored to further improve the accuracy and 
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generalization ability of the model. However, the study 
also has certain limitations. The models and 
combinations used in the study were only evaluated on a 
single dataset. In addition, the models were only tested 
on static images, and the performance in real-time 
clinical settings has not yet been validated. These 
limitations should be addressed in future studies to better 
validate the robustness and clinical applicability of the 
proposed methods. 
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