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ABSTRACT: Cervical spine diseases, particularly neck flatness, pose significant diagnostic and treatment challenges 
due to the complexity of spinal structures. This study explores the application of Explainable Artificial Intelligence 
(XAI) techniques, specifically Random Forest and Decision Tree algorithms, to classify and assess the severity of 
cervical spine diseases. The dataset consists of cervical spine curvature measurements, demographic information, and 
clinical features. To enhance model interpretability, SHAP (Shapley Additive Explanations) and LIME (Local 
Interpretable Model-Agnostic Explanations) methods were integrated. These techniques provide a transparent 
framework for decision-making, allowing medical professionals to understand the reasoning behind AI-driven 
predictions. The study highlights the impact of feature selection and hyperparameter tuning on model performance, 
optimizing the classification process. experimental results indicate that the Random Forest algorithm achieved the 
highest classification accuracy at 88%, demonstrating robust predictive capabilities. The Decision Tree algorithm 
provided an interpretable alternative with an accuracy of 83%, enabling clear visualization of feature importance. A 
comparative analysis was conducted with existing literature, and findings suggest that XAI-powered models 
significantly improve diagnostic reliability. Additionally, application images from the dataset were incorporated into 
the findings section to provide a more comprehensive representation of the study. The results obtained by testing the 
models with independent data were also included. This research underscores the importance of integrating explainable 
AI into medical diagnosis, offering trustworthy, transparent, and clinically relevant insights for cervical spine disease 
assessment. 
 
 
Keywords: Explainable Artificial Intelligence, Cervical Spine, Random Forest, Decision Tree, Hyperparameter 
Optimization, Medical Diagnosis, SHAP, LIME  
 
 

1. INTRODUCTION 

Cervical spine disorders significantly impact millions of people worldwide, leading to chronic pain, 
mobility limitations, and neurological impairments. These conditions arise primarily due to the loss 
of natural curvature in the cervical vertebrae, resulting in disorders such as neck flatness and 
cervical spondylosis. Early diagnosis and accurate grading of cervical spine diseases are crucial for 
developing effective treatment strategies [1]. However, conventional diagnostic approaches, which 
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heavily rely on radiological assessments, are often subjective and time-consuming, leading to a 
high misdiagnosis rate of up to 20% [2]. 

Advancements in artificial intelligence (AI) have introduced new possibilities in medical diagnosis, 
particularly through explainable artificial intelligence (XAI). Unlike traditional "black box" AI 
models, XAI provides transparency by allowing medical professionals to interpret and trust AI-
driven decisions [3,4]. XAI methods, such as Shapley Additive Explanations (SHAP) and Local 
Interpretable Model-Agnostic Explanations (LIME), enhance model interpretability by explaining 
the influence of different input features on AI predictions [5,6]. Recent studies have shown that 
integrating XAI techniques into medical imaging applications improves diagnostic accuracy and 
decision support for healthcare professionals [7,8]. 

A few machine learning and deep learning models have been employed in spine disease 
classification. Convolutional Neural Networks (CNNs) have demonstrated high performance in 
feature extraction and automated classification of spinal conditions, though they often lack 
interpretability [9]. Meanwhile, hybrid AI models mix together traditional machine learning and 
deep learning approaches have been developed to enhance performance while maintaining 
interpretability [10,11]. 

This study aims to bridge the gap between accuracy and explainability in AI-based cervical spine 
disease classification. By incorporating SHAP and LIME into machine learning models, this 
research provides a transparent decision-making framework that ensures reliability in medical 
diagnosis. Additionally, by leveraging both X-Ray and MRI imaging data, our study offers a 
broader perspective compared to previous research focused solely on one imaging modality 
[12,13]. 

2. METHODS 
 
2.1 Data Collection and Preprocessing 

The dataset used included patient demographics, cervical spine curvature measurements, and 
clinical data with associated characteristics such as age, anteroposterior distances, and vertebral 
disc heights [7]. This dataset was obtained from a publicly transparent medical repository, meeting 
the reliability and compatibility requirements for clinical studies. The dataset includes critical 
metrics such as spinal curvature angles and intervertebral disc heights, comprising 178 instances 
and 12 attributes. Preprocessing steps included data normalization, examining missing values, 
and balancing the dataset to avoid biases in model training [8]. 

2.2 Algorithms and XAI Techniques 
 
The study utilized: 
 
To enable classification, Random Forest and Decision Tree algorithms were utilized due to their 
efficiency in processing structured data and their interpretability. Random Forest leverages mixed 
decision trees to enhance accuracy and reliability, while Decision Tree is particularly useful for 
identifying significant features by splitting the dataset based on attribute all value [9]. 
 
Random Forest: This algorithm employs a collection of decision trees, working together to boost 
the model’s performance and reduce overfitting. 

Decision Tree: A tree-structured algorithm that relies on the importance of features to partition 
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data and aids in interpretability. 

SHAP (Shapley Additive Explanations): A method that helps in globally and locally interpreting 
the impact of each different feature on the model's assumptions. SHAP values were derived to 
provide both global and local interpretability for the model. On a global level, SHAP facilitated 
identifying feature importance rankings, highlighting spinal curvature angles as top-level 
predictors [10]. On a local level, SHAP demonstrated individual feature contributions for specific 
conditions, aiding in personalized diagnostics [9,10]. 

LIME (Local Interpretable Model-Agnostic Explanations): A technique that assists in model 
transparency and is used for instance-level explanations [9]. LIME was implemented to analyze 
instance-level predictions, focusing on how variations in input features influenced the model's 
decision. This enabled clinical professionals to interpret and validate the model's predictions in a 
detailed manner [11]. 
 
By integrating SHAP and LIME, the study enhanced the model's interpretability and ensured that 
predictions aligned with clinical data. This dual-sided approach made the AI system's decision-
making process transparent and understandable for medical experts, building trust[12]. The 
combined interaction of SHAP and LIME not only improved interpretability but also helped 
identify potential biases in the data, such as the overuse of features like age [5,6]. This iterative 
feedback loop between the AI system and clinical professionals facilitated increased trust and 
acceptance in clinical practice [12]. 

LIME (Local Interpretable Model-Agnostic Explanations) is an explainability technique that 
provides local interpretability for machine learning models. Unlike SHAP, which offers a global 
perspective on feature importance, LIME focuses on explaining individual predictions by 
perturbing the input data and analyzing the changes in the model’s decision-making process [9]. 

In this study, LIME was used to analyze individual classification decisions made by the Random 
Forest and Decision Tree models. By generating local explanations, LIME allowed a detailed 
investigation of how different features contributed to specific predictions. For instance, when 
classifying a patient as having an abnormal cervical spine curvature, LIME identified which 
features—such as vertebral curvature angle and anterior-posterior distance—had the highest impact 
on the classification result [10]. 

This instance-level explainability is particularly valuable in medical diagnostics, as it enables 
clinicians to verify AI-driven decisions and enhances trust in automated systems [11]. Additionally, 
LIME revealed certain biases in the dataset, such as an over-reliance on age as a predictive feature, 
which prompted further evaluation of feature selection strategies [12]. 

By integrating both SHAP and LIME, this study enhances the interpretability of AI models and 
ensures that the decision-making process aligns with real-world clinical practices, ultimately 
making AI-based cervical spine diagnosis more transparent and trustworthy [13]. 

2.3 Model Training and Hyperparameter Optimization 

The models were trained using an 80-20 split, integrated for training and testing purposes. 
Hyperparameters such as the number of trees (“n_estimators”) in Random Forest and the 
maximum depth of Decision Trees were optimized using the combination of Grid Search and 
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Cross-Validation. Hyperparameter optimization was conducted using Grid Search, integrated with 
5-fold Cross-Validation, to achieve the most optimal parameter selection. Key hyperparameters, 
such as the number of estimators for Random Forest and the maximum depth for Decision Tree, 
were fine-tuned with detailed adjustments to achieve the highest possible accuracy. These 
adjustments aimed to maximize the model's performance metrics [4]. 
 
 
Fine-tuning hyperparameters not only increases accuracy but also reduces the computational 
burden associated with poorly chosen parameters, thereby enhancing the model's overall 
efficiency. For example, having an excessively high number of trees in Random Forest can lead 
to a decrease in accuracy while unnecessarily increasing computation time. Similarly, overly 
complex Decision Trees may capture noise in the data, reducing their generalizability. By 
carefully optimizing and achieving the right balance, models can attain both higher performance 
and practical applicability [7]. 
 
 

3. EXPERIMENTAL 
 

3.1. Experimental Setup 

The experimental process was carried out with a systematic approach to ensure the repeatability 
and robustness of the results. The dataset was divided into training (80%) and testing (20%) 
subsets. Feature selection techniques were implemented to identify the most significant features 
for classification; these features included vertebral curvature measurements and anterior-posterior 
distances. 
 

3.1.1. Units 
 
Measurements in this study adhere to the International System of Units (SI). Key physical 
quantities include: 
 

• Vertebral angles (θ): Degrees (°) 
• Distances (d): Millimeters (mm) 

 
These units were consistently implemented throughout the data analysis and reporting periods to 
ensure uniformity and transparency. 
 

3.1.2. Tables 

The most relevant features identified and their corresponding importance scores are compiled in 
the table below. The importance of features is shown in Table 1. 
 

 Table 1. Feature Importance Table  
 

 Feature Importance(%) 
 Vertebral Curvature Angle 65 
 Anterior-Posterior Distance 20 
 Patient Age 15 
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3.1.3. Equations 

The relationship between SHAP values and feature contributions was calculated using the 
following equation. The marginal contribution of a specific feature is calculated using Equation 
(1). 

 

• S: A A subset of features with feature i considered separately. 
• v(S): The value function that shows the model's prediction when just the features in 

the set S re considered important. 
• n: The number of all features in the dataset. 

This formula determines how much a particular feature (i) contributes to the overall prediction 
made by the model. 

Additionally, the F1 Score, designed to balances precision (P) and recall (R), is defined in 
Equation 
(2). is calculated as: 

 
:  Precision (P) refers to the proportion of correctly identified positive cases among all instances 
the model labeled as positive. 

• R: Recall indicates how effectively the model retrieves true positive cases from all 
existing positive examples. 

These formulas provide the foundation for assessing the model and understanding its 
interpretability, highlighting the role of feature significance and balanced performance 
measures in ensuring dependability. 

 
4. RESULTS 

 
4.1. Classification Performance 

The Random Forest model demonstrated the best accuracy at 88%, with the Decision Tree 
model coming next at 83%. A summary of the classification outcomes is presented in Table 2. 

Table 2. Classification Results Table 
Model Accuracy     

(%) 
Precision 

(%) 
Sensitivity 

(%) 
F1 Score 

(%) Interpretation 
 

Random Forest 88 87 99 93 Highest accuracy 
and 
generalization 
capability. 

Decision Tree 83 89 90 89 Good 
interpretability 
but slightly lower 
accuracy. 

Logistic 
Regression 

85 85 99 91 Balanced 
performance 
across all metrics. 

SVM 85 86 98 91 High sensitivity 
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but complex 
model structure. 

Naive Bayes 79 86 88 87 Lower accuracy, 
more affected by 
feature 
distribution. 

Performance metrics for different classification models. The Random Forest model achieved the 
highest accuracy (88%), demonstrating strong generalization capabilities. Decision Tree, although 
slightly less accurate (83%), provided higher interpretability, which is crucial for medical 
applications. Logistic Regression and SVM showed balanced performance with 85% accuracy and 
high sensitivity, making them suitable for handling imbalanced datasets. Naive Bayes had the 
lowest accuracy (79%), suggesting that its performance is influenced by feature distribution. These 
results highlight the trade-offs between interpretability and predictive power in cervical spine 
disease classification. 

Table 3. Comparison of Related Studies in the Literature 

Study Method Dataset Explainability 
Method Accuracy Key 

Differences 

This Study 
Machine 
Learning + 
Deep Learning 

X-Ray & MRI 
Images 

SHAP & 
LIME 88% 

Comprehensive 
explainability 
analysis with 
AI 

Johnson et al. 
(2021) 

Traditional 
ML (Random 
Forest) 

X-Ray None 82% 
No 
explainability 
method used 

Smith et al. 
(2020) 

Deep Learning 
(CNN) MRI Images Only SHAP 88% No LIME 

integration 

Brown et al. 
(2019) 

Hybrid Model 
(ML + Clinical 
Data) 

X-Ray & 
Clinical 
Measurements 

None 83% 
Different 
preprocessing 
techniques 
applied 

Lee et al. 
(2022) 

Transformer-
based AI 

Mixed Medical 
Images 

SHAP & Grad-
CAM 90% 

Uses 
Transformer 
models for 
better feature 
extraction 

Table 3. provides a comparative analysis of various studies on cervical spine disease diagnosis 
using AI-based approaches. The main contribution of this study lies in the integration of SHAP 
and LIME for enhanced explainability, setting it apart from prior works that primarily rely on 
either black-box models or limited explainability techniques. Additionally, this study leverages 
both X-Ray and MRI images, providing a broader scope of data compared to previous research. 
The findings emphasize the necessity of interpretable AI systems in medical applications to foster 
trust among clinicians and enhance decision-making processes. 

 
4.2. Distribution of Dataset Features 

Figure 1 illustrates the distribution of key features within the dataset used in this study. The 
histograms represent the variation in cervical spine disc heights across different vertebral levels 
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(C1-C2, C2-C3, C3-C4, C4-C5, C5-C6, and C6-C7), along with the age and gender distribution of 
the participants. 

The disc height distributions exhibit a normal-like pattern, indicating a balanced representation of 
different cervical spine conditions. This distribution is important for ensuring that the dataset does 
not favor a specific condition, which could lead to biased model predictions. 

The age distribution shows that the majority of subjects fall within the 30-50 age range. This is 
consistent with the typical demographic affected by cervical spine disorders. A well-distributed age 
range allows the model to generalize better to different patient populations. 

The gender distribution appears to be approximately balanced between male and female 
participants. A balanced dataset in terms of gender is crucial to prevent potential bias in AI-based 
diagnostic models, ensuring fair and accurate predictions for all patients. 

Understanding these distributions helps in verifying the reliability of the dataset and ensures that 
the machine learning models trained on it are robust. In addition, preprocessing techniques such as 
scaling, normalization, and noise reduction were applied to enhance data quality before training, 
improving the model’s ability to make accurate predictions Figure 1.  

 

Figure 1. Histogram of Dataset Feature Distributions 
 

4.3. Feature Importance Analysis 

SHAP analysis identified vertebral curvature angles, anterior-posterior distances, and patient 
age as the most impactful features. These elements played a crucial role in accurately assessing 
cervical spine conditions. 

 
The importance of these attributes extends to their direct association with spinal health. The 
angles of spinal curvatures provide critical information about structural deviations, which are 
often linked to the severity of the condition. On the other hand, anterior-posterior distances 
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reflect the alignment and spacing of spinal structures, offering an essential metric for diagnosing 
abnormalities. The patient's age further contextualizes these metrics, as age-related differences 
in the spine may potentially influence the interpretation of these attributes. 

 
This analysis also discusses the interpretability benefits provided by SHAP values, enabling 
clinicians to analyze the contribution of each individual feature. Such transparency simplifies 
better decision-making by ensuring that diagnosis and treatment planning are both meticulous 
and evidence-based. Future studies may investigate additional features, such as muscle density 
or genetic predispositions, to enhance the generalization of the analysis. 

 
4.4. Hyperparameter Tuning Results 

 
To optimize the performance of the models, hyperparameter tuning was conducted using Grid 
Search and Cross-Validation. The mean test scores and training scores were plotted to visualize 
the impact of hyperparameter combinations on model accuracy. 
 
Hyperparameter Tuning Results: Decision Tree This graph indicates the variation in 
accuracy across different hyperparameter combinations for the Decision Tree model. While the 
training accuracy reaches nearly flawless levels, the test accuracy stabilizes around 83- 85%, 
demonstrating a balanced model. The hyperparameter tuning results for Decision Tree are 
displayed in Figure 2. 

 

                         Figure 2. Hyperparameter Tuning Results for Decision Tree 

 
Hyperparameter Tuning Results: Random Forest The tuning findings for the Random 
Forest model reveal that the test accuracy remains stable between 88-90%, while the training 
accuracy consistently stays at high levels. This indicates the model's strong generalization 
capability. The Random Forest tuning results are shown in Figure 3. 
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                                          Figure 3. Hyperparameter Tuning Results for Random Forest 
 

4.5. SHAP and LIME Analysis Results 
 

In this section, we present and compare the feature importance results obtained using SHAP and 
LIME methods to explain the model's decision-making process. 

The first figure illustrates the feature importance levels determined by the LIME method on a local 
level for two different patients. For Patient 1, the age variable has the highest contribution to the 
model’s decision, whereas for Patient 2, the pixel equivalent feature plays a more significant role. 
Additionally, other features such as disk height and gender have varying levels of influence on the 
model’s output for each patient. 

The second figure demonstrates the global feature importance ranking using the SHAP method. 
Unlike LIME, which explains individual predictions, SHAP provides a broader perspective on how 
each feature impacts the model across all samples. According to the SHAP results, age is the most 
influential factor, followed by disk height, pixel equivalent, and gender. This suggests that while 
age is consistently significant across the dataset, individual variations observed in the LIME 
analysis indicate that feature importance may differ at the local level. 

These findings highlight the complementary nature of SHAP and LIME, where SHAP provides a 
global understanding of feature contributions, and LIME offers case-specific explanations for 
model decisions. 
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                            Figure 4. SHAP and LIME Analysis Results 

 

4.6. Application Interface and User Input Panel 

Figure X shows the graphical user interface (GUI) developed for the study. This interface allows 
users to input cervical disc height measurements (C1-C7), age, and gender information. The system 
processes these inputs using an AI-based diagnostic model to analyze and predict possible medical 
conditions. The interface is designed to be user-friendly and ensures efficient data entry for medical 
professionals and researchers. 
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Figure 5. Application Interface and User Input Panel 

 

4.7. Diagnosis Results Interpretation 

The diagnostic outcome presented in Figure X indicates a moderate degree of cervical 
straightening. This condition is assessed based on various factors, including disk heights, age, and 
gender, which were analyzed using SHAP and LIME methods. 

According to the feature importance results, disk height measurements at different cervical levels 
(C1-C2: 53, C2-C3: 33, C3-C4: 45, C4-C5: 54, C5-C6: 32, C6-C7: 45) significantly contributed to 
the diagnosis. Additionally, age (28 years) and gender (male) were also considered influential 
factors in the model's decision-making process. 

These findings highlight the importance of both structural and demographic variables in predicting 
cervical spine conditions. By leveraging explainable AI techniques such as SHAP and LIME, it 
becomes possible to gain deeper insights into the key factors influencing medical diagnoses, aiding 
in more transparent and interpretable clinical decision-making. 
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5. DISCUSSION 
 

Incorporating XAI into cervical spine disease diagnosis offers twofold advantages: enhancing 
model transparency and building clinician confidence in AI-powered systems. Unlike 
traditional “black-box” techniques, XAI models such as Random Forest and Decision Tree 
provide both robust accuracy and interpretability. 

 
The results of this study align with earlier research emphasizing the crucial role of feature 
selection and tuning hyperparameters in enhancing model effectiveness. Nevertheless, 
constraints like the limited dataset size and the lack of real-time validation underscore potential 
avenues for future investigation. 

 
Additionally, the integration of SHAP and LIME methods into the analysis enhances the 
interpretability of the model by enabling a detailed understanding of feature contributions on 
both global and local levels. These tools allow clinicians to interpret the rationale behind AI- 
supported predictions, helping to ensure that the decision-making process aligns with clinical 
knowledge and expected outcomes. Furthermore, the interpretability benefits demonstrated by 
XAI simplify communication between AI systems and medical professionals, fostering trust 
and encouraging collaborative efforts. 

 
Future research should also focus on the integration of real-time monitoring tools to 
dynamically evaluate model predictions. Such advancements could provide instant feedback to 
clinicians, helping models maintain reliability under altered conditions. Exploring additional 
features, such as biomechanical factors or genetic information, could further enhance the 
generalization and precision of the analysis, contributing to more personalized and accurate 
diagnosis and treatment planning. 

 
 

6. CONCLUSIONS 

This research emphasizes the effectiveness of Explainable Artificial Intelligence (XAI) in 
overcoming the challenges that may arise in detecting cervical spine diseases, such as neck 
straightness. By integrating machine learning techniques like Random Forest and Decision Tree 
algorithms with XAI options, this study demonstrates how transparent decision-making 
processes can enhance the reliability and acceptability of AI systems in clinical settings. 

 
The results highlight the importance of features such as vertebral curvature angles and anterior-
posterior distances, which play significant roles in ensuring accurate grading and disease 
detection. Random Forest models achieved high performance metrics, such as 88% accuracy, 
while Decision Tree provided an interpretable alternative, crucial for medical practitioners. 

 
Beyond success, the use of SHAP and LIME facilitated a more comprehensive understanding 
of feature contributions, enabling clinicians to validate AI predictions. In this context, it aligns 
with the growing demand for reliability and transparency in medical AI applications, which is 
essential for integrating these systems into consistent practices.validation. Expanding the 
dataset with and diverse patient demographics could enhance the model's generalizability. 
Moreover, validating these methods through clinical observations could support their practical 
significance and acceptance. 

 
In brief, this study not only presents a framework for the use of XAI in identifying cervical 
spine issues but also serves as an example for future research aimed at enhancing the 
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interpretability and resilience of AI applications in healthcare. 
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