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Abstract
In this paper, we implemented the 

 
expansion method for the traveling wave solutions of the 

RLW-Burgers equation and potential KdV equation. By using this scheme, we found some traveling wave 
solutions of the above-mentioned equations.
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Özet
Bu çalışmada, RLW-Burgers ve potansiyel KdV denklemlerinin hareket eden dalga çözümleri için

 
 

açılım metodu sunulur. Bu metot yardımı ile yukarıda bahsedilen denklemlerin bazı hareket eden dalga 
çözümleri bulunur.

Anahtar kelimeler. RLW-Burgers denklemi, Potansiyel KdV denklemi,  açılım metot, Hareket 
eden dalga çözümler.
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1. Introduction
In this work, we will consider to solve the traveling wave solutions of the RLW-

Burgers equation and potential KdV equation by using the 
 
expansion method which 

is introduced by Wang, Li and Zhang [1]. Many authors applied this method to various 
equations [2-7]. 

Nonlinear phenomena play a crucial role in applied mathematics and physics. 
Calculating exact and numerical solutions, in particular, traveling wave solutions, 
of nonlinear equations in mathematical physics plaices an important role in soliton 
theory [8,9]. Recently, it has become more interesting that obtaining exact solutions 
of nonlinear partial differential equations through using symbolical computer programs 
such as Maple, Matlab, Mathematica that facilitate complex and tedious algebraical 
computations. It is too important to find exact solutions of nonlinear partial differential 
equations. These equations are mathematical models of complex physical occurrences 
that arise in engineering, chemistry, biology, mechanics and physics. Various effective 
methods have been developed to understand the mechanisms of these physical models, 
to help physicians and engineers and to ensure knowledge for physical problems and 
its applications. Many explicit exact and numerical methods have been introduced in 
literature [10–29]. Some of them are: Bäcklund transformation, generalized Miura 
transformation, Darboux transformation, Cole–Hopf transformation, tanh method, sine–
cosine method, Painlevé method, homogeneous balance method, similarity reduction 
method and so on.

Traveling wave solutions of many nonlinear differential equations can be stated 
with tanh function terms [30, 31]. The tanh function terms firstly were used on base 
ad hoc in 1990 and 1991 [32, 33]. Then, Malfliet [34] formalized the tanh method in 
1992 and illustrated it with several examples, Parkes and Duffy presented the automatic 
tanh method [35] in 1996, after, Fan defined the extended tanh method [36] in 2000, 
later Elwakil presented the modified extended tanh method [37] in 2002, separately, the 
generalized extended tanh method [38] by Zheng in 2003, the improved extended tanh 
method [39] by Yomba in 2004, the tanh function method [40] by Chen and Zhang in 
2004.
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3. Conclusions
In this work, we consider to solve the traveling wave solutions of the RLW-Burgers 

equation and potential KdV equation by using the 
 
expansion method. The method 

[1] can be used to many other nonlinear equations or coupled ones. In addition, this 
method is also computerizable, which allows us to perform complicated and tedious 
algebraic calculation on a computer.
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