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I. INTRODUCTION 

Event cameras are powerful new sensors that have microseconds level temporal resolution and high dynamic range 

without motion blur. Their strength is in asynchronously detecting brightness changes rather than directly 

capturing brightness images [1]. Event cameras have created a major change in the field of computer vision with 

their features, such as asynchronous detection of events, high dynamic range (HDR). These features allow event 

cameras to detect changes much faster and more accurately than traditional cameras and therefore are considered 

a revolutionary development in computer vision technologies [2-5]. When events are caused by the apparent 

motion of objects, event-based cameras sample visual information based on scene dynamics and are therefore more 

naturally suited than traditional cameras to capture motion, especially at high speeds where traditional cameras 

suffer from motion blur [6]. Over the last few years, their exceptional features have led to exciting vision 

applications with high speed and low latency. However, these sensors are still rare and expensive to obtain, which 

slows down the progress of the research community. There is a huge demand for inexpensive, high-quality 

real/synthetic, labeled events dataset for algorithm prototyping, deep learning, and algorithm benchmarking to 

address these issues [7]. In particular, low-latency perception, HDR scenes, and motion blur remain a profound 

problem for perception systems based on standard frame-based cameras. Instead of capturing intensity images 

synchronously, i.e., at regular time intervals, event cameras measure intensity changes asynchronously in the form 
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 Event cameras are promising sensors that show many advantages over frame-based cameras. Unlike 
conventional cameras, whose pixels share a common exposure time, event-based cameras represent a novel 
bio-inspired technology capable of capturing scenes with a high dynamic range and without motion blur. Due 
to their working principle, an event is generated when a pixel's brightness changes. Therefore, no event data 
is generated in a scenario where there is no relative motion between the event camera and the scene. However, 
in this study, we present a new method to enable event generation with a static event camera on a scene with 
static objects, aiming to eliminate the requirement of relative motion between event camera and the scene. By 
projecting custom designed grayscale pattern sequences onto static scenes, we successfully triggered a 
controlled event generation without requiring camera or object motion. Instead of a direct black-to-white 
transition, we used a sequence of contrast compatible grayscale projection pattern to regulate event rates and 
prevent bandwidth overload. To prevent event loss over time, we equalized all timestamps to the first 
timestamp. Since events in event cameras gradually lose their impact and reset over time, this adjustment 
prevents the decay of event information and ensures a continuous and stable event generation. Despite the 
absence of motion, we achieved reasonable results in image quality metrics such as MSE, LPIPS, SSIM. In 
this way, we aim to expand the usage areas of event cameras and make significant progress in data collection 
processes, especially for static camera and scenes. 
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of an event stream. [6]. The events are produced based on the logarithmic pixel intensity function 𝐿𝐿𝑥𝑥𝑥𝑥(𝑡𝑡), which 

represents the instantaneous light intensity (brightness) at a specific pixel (𝑥𝑥 ,𝑦𝑦) at a given time 𝑡𝑡. However, 𝐿𝐿𝑥𝑥𝑥𝑥(𝑡𝑡) 

is not directly produced by the camera. Instead, the camera outputs a sequence of events in the format (𝑥𝑥, 𝑦𝑦, 𝑡𝑡, 𝑝𝑝). 

Here, (𝑥𝑥,𝑦𝑦) denotes the image coordinates, 𝑡𝑡 indicates the time of the event, and 𝑝𝑝 represents the polarity (𝑝𝑝 = 

±1), which indicates whether the intensity change at that pixel is a decrease or an increase [8]. 

An event (𝑒𝑒𝑘𝑘 ≐ 𝒙𝒙𝑘𝑘 , 𝑡𝑡𝑘𝑘, 𝑝𝑝𝑘𝑘) is triggered when the brightness increment (𝛥𝛥𝐿𝐿(𝒙𝒙𝑘𝑘 , 𝑡𝑡𝑘𝑘)) at a pixel (𝒙𝒙𝑘𝑘 ≐ (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘)T ) 

reaches a predefined contrast threshold (±𝐶𝐶) [9]. The brightness increment is given in the Equation 1. 

 

𝛥𝛥𝐿𝐿(𝒙𝒙𝑘𝑘 , 𝑡𝑡𝑘𝑘) ≐ 𝐿𝐿(𝒙𝒙𝑘𝑘 , 𝑡𝑡𝑘𝑘)− 𝐿𝐿(𝒙𝒙𝑘𝑘 , 𝑡𝑡𝑘𝑘 − 𝛥𝛥𝑡𝑡𝑘𝑘)                                                   (1) 

 

When the contrast threshold is reached, the situation becomes as in Equation 2. 

 

𝛥𝛥𝐿𝐿(𝒙𝒙𝑘𝑘 , 𝑡𝑡𝑘𝑘) = 𝑝𝑝𝑘𝑘 .𝐶𝐶                 (2) 

 

Conventional cameras measure absolute brightness information, whereas event cameras provide information about 

brightness changes or their temporal derivatives [9]. Equation 3 indicates that events offer information about the 

temporal derivative of brightness changes at a pixel. 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (𝒙𝒙𝑘𝑘 , 𝑡𝑡𝑘𝑘) ≈  𝑝𝑝𝑘𝑘𝐶𝐶
𝛥𝛥𝜕𝜕𝑘𝑘 

.                                                                  (3)

       

Due to their exceptional nature, event cameras promise to unlock robust and high-speed perception in situations 

currently out of reach of standard cameras [7]. However, a significant drawback of event cameras is that it is not 

possible to obtain information from a scene where the camera and the scene is static. The main aim of this study 

is to propose a technique to expand the area of use of event cameras particularly in scenarios where they cannot 

generate data (e.g. in a static scene (i.e. no motion) with a static event camera). Actually, the event cameras are 

not intended to be used in purely static scenarios. However, there are specific use cases where capturing or 

reconstructing a static view of the scene is necessary and useful, even in the absence of activity. For example, 

applications such as background modelling, camera calibration, visual localization, mapping, or object recognition 

require a conventional image or intensity frame. In dynamic scenarios, reconstruction can be performed from 

accumulated events. But when the camera and scene are static, no events are generated, which creates a challenge 

for reconstructing the background or ambient environment. In such cases, our proposed method can be utilized to 

trigger events that can be used for scene image reconstruction. 

This study presents a novel method that eliminates the requirement of a relative motion between the camera and 

the scene so that it enables event generation in such a case. Our method aims to allow effective data collection in 
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static environments with an event camera, even in the absence of motion in the scene and the camera. The main 

flow diagram of the study is given in Figure 1. 

 

 
Figure 1. Main flow diagram of LCD projector -based event generation and model evaluation 

 

II. METHOD  

2.1. Image Reconstruction of a Scene from Event Data 

Event cameras differ from traditional video cameras by producing data only when there is apparent motion or 

brightness change in the scene. Therefore, they do not directly output an image of the scene. However, there are 

methods in the literature such as E2VID and FireNet [1, 10] in order to reconstruct the image of the scene from 

the event data. E2VID transforms the event stream into a sequence of event tensors organized as a 3D 

spatiotemporal voxel grid, composed of fixed groups of events. This sequence is then processed by an iterative 

UNet model to reconstruct image frames. The E2VID architecture integrates elements of both UNet and LSTM, 

forming a fully convolutional and recurrent design. While UNet focuses on processing spatial details, LSTM 

captures and interprets temporal context [10-13]. 

FireNet, a fully convolutional network with recursive connections, is designed for convenience. Compared to 

E2VID, FireNet's compact and fast neural network architecture is a proof of this. Tailored for image reconstruction 
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from event data, it uses significantly fewer parameters, resulting in lower computational overhead. The use of 

recursive connections further enhances its efficiency, making FireNet a particularly advantageous choice for 

computational demands [14]. The features of the utilized E2VID and FireNet models are presented in the Table 1 

[1]. 

 

Table 1. Features of E2VID and FireNet models 
Feature E2VID FireNet 
Downsampling Yes No 
Memory (Mb) 43 0.16 
Recurrent Units LSTM GRU 
Max. Kernel Size 
No. Parameters (k)  

5x5 
10700 

3x3 
38 

 

2.2. Proposed Framework for Event Generation from a Static Scene and Camera  

In this study, we propose a new framework for event generation from a static scene using an Liquid Crystal Display 

(LCD) projector to systematically control event production. The primary goal of this framework is to efficiently 

regulate the event generation rate in the proposed LCD projector based event data collection process. To collect 

the event data, a DVXplorer event camera (iniVation AG, Switzerland) was utilized. The camera features a spatial 

resolution of 640 × 480 pixels, a temporal resolution of 200 µs, and a high dynamic range up to 110 dB. It supports 

event output rates of up to 165 million events per second, with a typical latency of less than 1 ms. These 

specifications make it suitable for capturing subtle brightness changes in static scenes with high precision. The 

device also includes an integrated 6-axis IMU and supports synchronization through USB 3.0 and external trigger 

connectors. During event data collection, the built-in noise filtering feature provided by the DV (iniVation) 

software was enabled to reduce burst noise at the sensor level. After recording, the event data stored in .aedat4 

files were exported into a text-based format containing timestamp, spatial coordinate, and polarity information 

using Python with the dv library. All data processing steps, including timestamp equalization and event stream 

reconstruction, were performed using independently developed Python scripts. A DC illumination source was used 

to illuminate a static scene, providing a consistent baseline illumination. To regulate the event rate and prevent 

excessive event generation, a sequence of pattern gradually transitioning from dark to light were projected onto 

the scene using an LCD projector. The Wanbo T2 Max projector, employed in this study, features a Full HD 1080p 

resolution, 450 ANSI lumens brightness, a 2000:1 contrast ratio, and automatic keystone correction. Its optical 

system utilizes a full glass coated lens with an LED light source, ensuring high image clarity and stable illumination 

during the pattern projection process. The projector's compact design and precise focusing capability provided 

effective and controlled event generation from the static scene. Two different pattern sequences were designed to 

regulate event generation in a controlled manner. In the first pattern sequence, the entire slide background was 

filled starting with pure black (RGB: 0,0,0) and incrementally transitioned towards white by increasing the RGB 

values by 25 units at each step, culminating in full white (RGB: 255,255,255) at the final frame. In the second 

sequence, a small gray rectangle was gradually expanded across a black background in successive slides, 

increasing the area of brightness while maintaining a slow and progressive transition. This approach was chosen 

to prevent a sudden surge in event generation, which could exceed the camera’s bandwidth and cause system 

bottlenecks. By implementing a controlled contrast transition, the pattern design was optimized to ensure gradual 

and continuous stimulation of events without exceeding the camera’s bandwidth, thereby achieving a balanced, 
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efficient, and stable event data collection process. To minimize unwanted noise and improve data quality, a noise 

filter [15] was applied within the processing software during event data collection before recording, which 

corresponds to the Background Activity Noise Filter module of the DV software. This filter evaluates the temporal 

and spatial coherence of events within a local pixel neighborhood. An event is retained if it is “supported” by at 

least one other event within its 8-pixel neighborhood and within a 2-millisecond time window. In our 

configuration, the support threshold was set between 1 and 8, polarity checking was disabled, and default settings 

were used without further manual adjustment. This filtering, applied in real time, helped removing isolated noise 

events while maintaining signal integrity for the reconstruction phase. It should be noted that different noise 

filtering methods and parameters may affect the results slightly. Dynamic parameter optimization for noise 

filtering in event-based image reconstruction can be performed by adjusting filter parameters (e.g. threshold values, 

time windows, etc.) iteratively to maximize reconstruction quality. However, since the primary focus of the work 

is on static scene event generation and reconstruction rather than noise filtering algorithm comparison, alternative 

denoising methods and the effect of noise filter parameter tuning were not investigated within the scope of this 

study. Nevertheless, future studies may explore the effects of applying advanced denoising algorithms such as 

BM3D filtering [16], non-local means denoising [17], and wavelet-based thresholding [18] on reconstruction 

quality. Moreover, inspired by recent works such as Noise2Image [19], where photon noise characteristics were 

leveraged for static scene recovery, more systematic analyses of noise filtering strategies could further enhance 

event-based imaging. 

Furthermore, to reconstruct temporally distributed event occurrences as if they had occurred simultaneously, all 

timestamps were equalized to the first timestamp. Since event cameras gradually reset event data over time, this 

adjustment ensured continuous event retention and prevented information decay. Specifically, for each recorded 

event represented as (x, y, t, p), where x and y denote spatial coordinates, t denotes the timestamp, and p denotes 

the polarity, the timestamp t was replaced with t₀, the timestamp of the first recorded event. This adjustment 

effectively removed temporal variations across the event set, ensuring that the data appeared to originate from a 

single synchronized capture. Since event cameras gradually reset event information over time, timestamp 

equalization also prevented the decay of event relevance and ensured continuous event retention. This step was 

critical to maintaining spatial consistency and enhancing the quality of reconstructed images in the subsequent 

processing stages. 

To evaluate the effectiveness of our method with a nonstatic case we collected data by triggering event generation 

by moving an occluder object (e.g. a white board) in front of the camera as illustrated in Figure 1. This manual 

movement allowed the camera to capture event data based on the apparent motion of the scene. The event data 

collected using this method serves as the ground truth for evaluating the effectiveness of our framework. 

For a quantitative comparison, we used E2VID and FireNet to reconstruct images from both the collected ground 

truth dataset and the LCD projector-based event data. We then quantitatively evaluated the reconstruction quality 

by calculating SSIM, PSNR, LPIPS, and MSE metrics between the reconstructed frames, using the ground truth 

as a reference. The experimental setup is illustrated in Figure 2. The visual representations of the pattern sequences 

we used are provided in Figure 3. 
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Figure 2. Experimental setup for using pattern sequences (upper) and ground truth (lower) 

 

 
Figure 3. Images of the pattern sequences used 

 

2.3. Performance Metrics 

In our experimental evaluations, we employed widely used performance metrics from the literature to assess and 

compare the effectiveness of our approach. The following subsections provide details on these metrics and their 

relevance to our study. 
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2.3.1. Structural similarity index measure (SSIM) 

The Structural Similarity Index (SSIM) is a widely recognized metric for assessing the similarity between two 

images. It is regarded as closely aligned with the human visual system's (HVS) perception of quality. Unlike 

conventional methods based on error accumulation, SSIM evaluates image distortion with a comprehensive 

approach, considering three key components: correlation loss, luminance variation, and contrast variation. The 

SSIM value is always between 0 and 1. 0 means no similarity between the images, and 1 means the images are 

completely identical [20, 21]. Formula of SSIM is given in Equation 4 [21]. 

 

                            
                          (4) 

 
 
 

 
2.3.2. Mean squared error (MSE) 

MSE is the most common estimator of image quality measurement metrics. MSE is a nonnegative value, where 

values closer to zero represents a better quality. A higher MSE means more error or difference. It is widely used 

to provide dispersion between true  and predicted values, especially in fields such as image processing, machine 

operations, and signal processing [22, 23]. The formula for MSE is given in Equation 5. 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
� (𝑦𝑦𝑖𝑖  −  ŷ𝑖𝑖

 ) 2𝑛𝑛
𝑖𝑖=1                                                                                  (5) 

 

2.3.3. Peak signal to noise ratio (PSNR) 

Peak Signal-to-Noise Ratio (PSNR) is a widely used metric to assess the quality of digital images. It's important 

to note that a higher PSNR value indicates higher image quality. PSNR is usually calculated as the logarithmic 

term of the decibel scale due to signals having a wide dynamic range. This dynamic range varies between the 

largest and smallest possible values and can vary depending on their quality. PSNR is primarily calculated via 

Mean Square Error (MSE). The PSNR value approaches infinity as the MSE approaches zero, indicating that a 

higher PSNR value provides higher image quality. PSNR refers to situations where the numerical differences 

between images are large [20, 22]. Formula of PSNR is given in Equation 6. 

  

𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃 = 20. 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑀𝑀𝑀𝑀𝑀𝑀
√𝑀𝑀𝑀𝑀𝑀𝑀

�                                    (6) 

 

2.3.4. Learned perceptual image patch similarity (LPIPS) 

The Learned Perceptual Image Patch Similarity (LPIPS) metric is a perceptual similarity measure that utilizes deep 

features extracted from trained neural networks to assess visual similarity between images. This metric evaluates 

  SSIM(x, y) =
�2μxμy + c1��2σxy + c2�

(μx
2 + μy2 + c1) (σx2 + σy2 + c2)
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relative image similarity. Unlike traditional metrics such as Mean Square Error (MSE) or Peak Signal-to-Noise 

Ratio (PSNR), which generally do not align with human perception, LPIPS has demonstrated a remarkable ability 

to align closely with human perception [24]. 

 

III. RESULTS AND DISCUSSIONS 

This study investigates an approach to expand the data collection capacity of event cameras. The unique approach 

of creating an event in a static scene with no motion using a fixed event camera sets it apart. The use of pattern 

sequences projected through an LCD projector is a technique that provides controlled illumination and prevents 

instantaneous generation of high number of events that may possibly exceed the bandwidth. This approach aims 

to optimize the data collection process with event cameras. The quality scores calculated as a result of applying 

the E2VID and FireNet algorithms to the data obtained through the DV software are given in Table 2 and Table 3. 

For E2VID, the images of Pattern Sequences 1 and Pattern Sequences 2 corresponding to the none and step decay 

functions are presented in Figure 4. For FireNet, the images of Pattern Sequences 1 and Pattern Sequences 2 

corresponding to the exponential decay function are provided in Figure 5. The ground truth images with equalized 

timestamps are shown in Figure 6. 

To better clarify the transition functions mentioned above, the decay mechanisms used in this study are defined as 

follows [25]: 

• None Decay: No decay is applied to pixel intensity over time. After an event updates a pixel, its intensity 

remains unchanged unless another event occurs. 

• Step Decay: After frame generation, all pixel potentials are immediately reset to a predefined neutral 

value, effectively clearing the accumulated contributions at once. This behavior is mathematically 

formulated in Equation (7) : 

 

 𝐼𝐼(𝑡𝑡) =  �
𝐼𝐼0,           𝑡𝑡 ≤  𝑡𝑡0 }
𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛,    𝑡𝑡 >  𝑡𝑡0 

                                                                                  (7) 

 

where 𝑡𝑡0, is the frame generation time and 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛, is the neutral potential value. 

• Exponential Decay: Pixel intensity decreases gradually over time following an exponential law, which 

is defined in Equation (8): 

  𝐼𝐼(𝑡𝑡) =  𝐼𝐼0 × 𝑒𝑒𝑥𝑥𝑝𝑝 �− 𝜕𝜕
𝜏𝜏
�                                                                 (8) 

where I0  is the initial intensity, t is the elapsed time, and 𝜏𝜏 is the decay time constant that governs the speed of 

attenuation. These decay strategies were specifically selected to manage the event accumulation dynamics and to 

prevent potential issues such as bandwidth saturation during the controlled event generation process. 
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Figure 4.  Frame of pattern sequences 1 (left) for none decay function and pattern sequences 2 (right) for the step decay function (E2VID) 

 
 

 
Figure 5.  Frame of pattern sequences 1 (left) and pattern sequences 2 (right) for the exponential decay function (FireNet) 

         

 
Figure 6.  Frames of ground truth for the exponential decay function using E2VID (left) and FireNet (right) 

 

Table 2. Result of E2VID on event camera dataset 
Data Decay 

Function  
MSE  PSNR 

(dB)  
SSIM      

 
LPIPS             

 
Pattern Sequences 1 None 0.0254 15.96  0.7860 0.3064 
Pattern Sequences 2 None 0.0414 13.82 0.7743 0.3167 
Pattern Sequences 1 Exponential 0.0154 18.11 0.8357 0.3444 
Pattern Sequences 2 
Pattern Sequences 1 
Pattern Sequences 2 

Exponential 
Step 
Step 

0.0064 
0.0091 
0.0062 

21.95 
20.42 
22.07 

0.8439 
0.8474 
0.8495 

0.2805 
0.2723 
0.2608 
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Table 3. Result of FireNet on event camera dataset 
Data Decay 

Function  
MSE  PSNR 

(dB)  
SSIM      

 
LPIPS             

 
Pattern Sequences 1 None 0.0289 15.38 0.4451 0.5944 
Pattern Sequences 2 None 0.0232 16.35 0.5649 0.5538 
Pattern Sequences 1 Exponential 0.0341 14.67 0.4683 0.6196 
Pattern Sequences 2 
Pattern Sequences 1 
Pattern Sequences 2 

Exponential 
Step 
Step 

0.0151 
0.0289 
0.0195 

18.21 
15.38 
17.10 

0.5688 
0.4179 
0.5643 

0.5493 
0.6210 
0.5779 

 

The results demonstrate that using the proposed projection-based event generation method, reconstructed images 

can be obtained when employing existing E2VID and FireNet methods. Consistent with findings in the literature, 

E2VID also tends to produce better image reconstruction results in our experiments. While the tables indicate that 

reasonable image reconstructions can be achieved, challenges remain, particularly in terms of noise and distortion, 

as reflected in the PSNR values (~15 dB to 22 dB). These findings highlight both the strengths and limitations of 

the proposed method, pointing to potential areas for future improvements. 

To better contextualize our findings within the existing literature, a comparison with the recently proposed 

Noise2Image method [19] is provided. Noise2Image aims to reconstruct static scenes by leveraging spontaneous 

photon noise events captured by event cameras, without the use of active illumination. In contrast, our approach 

stimulates event generation through systematically projected contrast patterns, offering controlled event 

production rather than relying on noise characteristics. Although the underlying methodologies differ, the PSNR 

(~17–25 dB) and SSIM (~0.5–0.74) values reported in Noise2Image are comparable to our results (~15–22 dB 

PSNR and ~0.44–0.84 SSIM). This comparison suggests that the proposed controlled-illumination framework 

achieves reconstruction quality in line with recent developments, while providing an alternative event generation 

strategy for static scene recovery. In addition to PSNR and SSIM, the MSE and LPIPS metrics further characterize 

the reconstruction quality. Moderate MSE values observed (~0.0062 to ~0.0414) indicate that while pixel-wise 

intensity errors are present, they remain within acceptable ranges for event-based reconstruction, where 

asynchronous data collection inherently introduces noise. Similarly, LPIPS scores (~0.26 to ~0.62) suggest 

perceptual discrepancies between reconstructed and ground-truth images, particularly regarding fine texture details 

and local contrast. It should also be noted that capturing event data from static scenes poses inherent challenges 

due to the absence of natural brightness changes. Although controlled contrast patterns are projected onto the 

scene, surface reflections and scattering can cause localized, unintended brightness variations. These phenomena 

may generate noise-like events even under carefully designed illumination conditions. As a result, moderate 

reconstruction errors reflected in the MSE and LPIPS values are expected outcomes of static scene recovery using 

event cameras. These observations are consistent with the qualitative inspection of reconstructed images shown in 

Figures 4, 5, and 6. 

The proposed framework offers potential contributions to both academic research and industrial applications. 

Academically, it enables controlled event data collection from static scenes, providing a valuable experimental 

platform for studying and benchmarking event-based image reconstruction algorithms. This can facilitate the 

development of more robust event processing models and datasets. Industrially, the approach could be applied to 

enhance monitoring systems operating under low-light or static conditions, such as long-term surveillance 

cameras, automotive perception systems with static field-of-view sensors, or optical quality control in 

manufacturing lines. By regulating event generation in static settings, the proposed method helps ensure reliable 
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data acquisition without overloading sensor bandwidth, paving the way for practical implementations of event 

cameras in broader application domains However, the proposed method is primarily designed for static scenes and 

may encounter limitations under dynamic conditions. When objects move during pattern projection, the 

superposition of motion-induced and pattern-induced events can introduce artifacts, impairing the reconstruction 

quality. Similarly, highly reflective surfaces may cause optical scattering, while extremely low-contrast regions 

may generate insufficient or excessive events, both of which affect the reliability of the reconstructed images. 

These factors highlight that although the method offers a controlled framework for static scene recovery, its 

applicability may be constrained in more complex or dynamic environments. 

 

IV. CONCLUSIONS 

In this study, a framework method is proposed in order to enable event data gathering in scenarios with a static 

event camera in a static scene. An analysis was conducted using event data obtained from an event camera, 

leveraging custom designed grayscale pattern sequences projected onto a static scene. The generated event data 

were processed using the E2VID and FireNet methods to reconstruct the image of the scene and the performance 

of our proposed method is evaluated. It is observed that the event data collected with our method yields a 

reasonable reconstruction of the scene both with E2VID and FireNet. Although the PSNR values obtained in this 

study were quite low, and the reconstructed images did not reach a high quality visual representation of the scene, 

this study demonstrates the possibility to obtain measurements with a static event camera in a static scene. Results 

indicate that further improvements in reconstruction algorithms are necessary to enhance event-based imaging. 

Additionally, the careful selection of contrast-compatible grayscale tones instead of abrupt black-to-white 

transitions allowed for better event rate control, preventing excessive event generation and potential system 

bottlenecks. Furthermore, the implementation of timestamp equalization helped prevent event loss over time. 

Despite its limitations, the findings suggest that event cameras have the potential to expand their application areas 

including static scenes with a static event camera. 

Future research can focus on improving image quality by exploring alternative reconstruction techniques, 

advanced denoising methods, and dynamic parameter optimization strategies. These efforts aim to enhance the 

usability of event cameras in static environments more effectively. Finally, based on the results of these 

experiments, it can be concluded that an LCD projector-based approach, when combined with timestamp 

equalization and optimized contrast transitions, may serve as an effective method for generating events from static 

objects in applications utilizing static event cameras. 

While the proposed method aims to expand the application areas of event cameras to static scenes, it should be 

noted that direct comparison with traditional dynamic scene event camera applications is not methodologically 

appropriate due to the fundamentally different nature of event generation. In this study, performance comparisons 

were made with the recent Noise2Image approach [19], which also targets static scene recovery, albeit with 

different underlying methodologies. Both works share the common objective of reconstructing intensity 

information from static scenes where conventional event triggering mechanisms are absent. Given the novelty of 

static scene applications for event cameras, the available literature for direct comparison is currently limited. Future 

research could focus on developing broader benchmarks and systematic evaluations for static event-based imaging. 
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