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Abstract 

This study investigates the adsorption of Pb2+ ions from aqueous solutions onto pine bark (Pinus brutia Ten.) using non-linear regression analysis 

to evaluate kinetic and equilibrium data. Adsorption experiments were conducted over a range of initial concentrations, and the equilibrium data 

were fitted to various two-parameter isotherm models, including Langmuir, Freundlich, Temkin, Dubinin-Radushkevich (D-R), and Jovanovic, 

as well as advanced three-parameter models like Dubinin -Astakhov (D-A), Tóth, Sips, Redlich-Peterson (R-P), and Brouers-Sotolongo (B-S). 

Kinetic data were analyzed using pseudo-first order (PFO), pseudo-second order (PSO), Elovich, Avrami, and Brouers-Sotolongo (B-S) models. 

Non-linear regression was performed using Microsoft Excel Solver, a readily accessible tool that eliminates the need for expensive software. 

Model parameters were optimized, and the goodness of fit was evaluated using multiple error functions, including SSE, ARE, HYBRID, MPSD, 

and MAE. 

Results indicate that the Brouers-Sotolongo (B-S) model provided the best fit for both kinetic and isotherm data, reflecting the heterogeneous 

surface characteristics of the adsorbent. The adsorption process was found to involve a combination of physical and chemical interactions, as 

evidenced by the B-S kinetic constants (αBS and nBS) and the half-reaction time (τ1/2). Among the equilibrium models, three-parameter isotherms, 

particularly the B-S, Tóth, and Sips models, showed superior performance over two-parameter models, highlighting the complex nature of 

adsorption mechanisms in this system.  

This study underscores the efficacy of pine bark as a low-cost and eco-friendly adsorbent for heavy metal removal and demonstrates the utility 

of non-linear regression and advanced error analysis in adsorption studies. This approach is thought to improve the precision of model selection 

and the understanding of adsorption mechanisms, contributing to the literature. 

Keywords:  Adsorption, error function, excel solver, isotherm, kinetics and equilibrium data, non-linear regression 

1. Introduction

The process of adsorption is a cornerstone of 

environmental protection technologies, particularly for 

the removal of pollutants from aqueous environments. It 

is a versatile and efficient technique employed in 

wastewater treatment, heavy metal recovery, and the 

purification of drinking water. As the demand for 

cleaner water and more sustainable industrial practices 

grows, optimizing adsorption processes becomes 

increasingly important. The accurate interpretation of 

adsorption equilibrium and kinetic data is essential for 

designing efficient adsorbents and scaling up industrial 

applications. While traditional models provide 

foundational insights, recent advancements in 

computational techniques and error analysis have 

significantly enhanced the accuracy and predictive 

power of adsorption studies [1–3]. 

Adsorption equilibrium data, typically analyzed 

through isotherm models like Langmuir, Freundlich, 

Temkin, and Dubinin-Radushkevich, describe the 

relationship between the adsorbate concentration in the 

solution and the amount adsorbed onto the surface of the 

adsorbent. These models provide essential information 
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about the adsorption capacity, surface heterogeneity, 

and the affinity of the adsorbate towards the adsorbent. 

However, the fitting of experimental data to these 

models can sometimes yield large deviations, especially 

when dealing with complex systems or heterogeneous 

adsorbents [4]. Researchers have therefore employed 

advanced techniques, including non-linear regression 

and error analysis, to enhance the reliability of 

adsorption isotherm model fitting. This is crucial 

because the accuracy of model predictions directly 

impacts the effectiveness of the adsorbent in real-world 

applications [4–6]. 

Non-linear regression, particularly when 

implemented through accessible tools like Microsoft 

Excel Solver, enables more precise fitting of data to 

isotherm models by minimizing the residuals (sum of 

squared errors). This approach reduces systematic bias 

often encountered with linearized versions of the 

models, where data transformations can distort the 

relationships between variables [7,8]. The use of error 

metrics such as the root mean square error (RMSE), 

coefficient of determination (R²), and adjusted R² can 

further guide the selection of the most appropriate 

model, ensuring that it best describes the experimental 

data [9,10].  

Adsorption kinetics studies the time-dependent 

behavior of adsorbate molecules on adsorbent surfaces. 

Traditional models, such as the pseudo-first order and 

pseudo-second order kinetic models, are commonly 

used to describe the rate of adsorption. However, these 

models often assume simple, linear adsorption 

mechanisms and do not always capture the complexities 

of real systems, where multiple factors (e.g., diffusion 

limitations, surface heterogeneity, chemical interactions) 

may influence the adsorption rate [11]. Recent studies 

have proposed hybrid kinetic models that combine 

multiple rate-limiting steps to better represent complex 

adsorption systems [12]. In these models, non-linear 

regression is again critical for fitting experimental data, 

as it provides a direct way to optimize parameters 

without introducing biases that can arise from 

linearization [13]. Non-linear regression methods, on the 

other hand, provide a more accurate and robust 

approach for fitting adsorption data, especially when 

dealing with complex adsorption behaviors [5]. 

Error analysis is particularly important when 

interpreting kinetic data. One key aspect is the 

propagation of error through model parameters. For 

example, when fitting experimental data to kinetic 

models, small measurement errors or uncertainties in the 

initial concentration of adsorbates can lead to significant 

discrepancies in the estimated rate constants [14]. To 

mitigate these issues, researchers often use methods 

such as bootstrapping or Monte Carlo simulations to 

assess the robustness of their kinetic models and 

quantify the uncertainty in parameter estimates. These 

approaches allow for a more comprehensive 

understanding of how errors in the experimental setup 

may influence the interpretation of adsorption dynamics 

[15]. 

While traditional methods of data analysis remain 

valuable, the increasing complexity of adsorption 

systems has driven the adoption of advanced 

computational tools. Non-linear regression, enabled by 

software like Microsoft Excel Solver, is one such tool that 

offers a more accessible and cost-effective alternative to 

more specialized programs like MATLAB, OriginPro, or 

Python. Solver works by adjusting the parameters of a 

predefined model to minimize the error between 

predicted and experimental data. This optimization 

approach eliminates the need for data transformations 

and offers a more direct way to assess model fit. 

Moreover, recent studies have shown that Solver, when 

combined with error analysis techniques, can achieve 

results that are comparable to those obtained with more 

advanced software packages, making it an attractive 

option for researchers in the field of adsorption [10,16]. 

In this study, the adsorption data of Pb2+ ions from 

aqueous solution onto pine bark (Pinus brutia Ten.) [17] 

were analyzed using non-linear regression models. The 

primary objective is to compare and interpret the kinetic 

and equilibrium data obtained from experiments by 

fitting them to widely used adsorption models, 

including pseudo-first order, pseudo-second order, 

Elovich, Avrami, and Brouers-Sotolongo (B-S) for kinetic 

analysis, and Langmuir, Freundlich, Temkin, Dubinin-

Radushkevich (D-R), Jovanovic, Dubinin-Astakhov (D-

A), Redlich-Peterson (R-P), Sips, Toth, and Brouers-

Sotolongo (B-S) models for adsorption equilibrium. To 

evaluate the goodness of fit, several error functions were 

applied, including sum of squared errors (SSE), average 

relative error (ARE), hybrid fractional error (HYBRID), 

Marquardt’s percent standard deviation (MPSD), and 

mean absolute error (MAE). The use of Microsoft Excel 

Solver for non-linear regression fitting is demonstrated, 

emphasizing its simplicity, accessibility, and cost-

effectiveness, especially when compared to other more 

complex and expensive software options. 

Through this study, the goal is not only to provide a 

comprehensive comparison of these adsorption models 

but also to address some of the inconsistencies and 

inaccuracies found in the literature regarding the 

application of adsorption models. A significant issue in 

the literature is the frequent misapplication and 

misinterpretation of mathematical models, which can 

lead to misleading conclusions. By employing non-linear 

regression and performing error analysis, this study 

aims to provide more accurate and reliable results, 

contributing to a better understanding of Pb2+ adsorption 

processes and advancing the knowledge in this area. 
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Another aim of this study is to facilitate data analysis by 

enabling the Solver add-in in the low-cost and readily 

available Microsoft Excel and to propose it as a strong 

alternative to expensive software used for this purpose. 

2. Material and method 

2.1. Materials used and calculations 

The preparation and characterization of the adsorbent, 

pine bark (Pinus brutia Ten.), are detailed in the literature 

[17]. The chemicals, materials, apparatus, and solutions 

employed in the adsorption tests are also described in 

the same reference. 

The Pb2+ concentrations adsorbed onto the pine bark 

(qe or qt, mg/g) were calculated using the equation in 

Formula (1), based on the difference between the initial 

(Co, mg/L) and residual (Ce, mg/L) Pb2+ concentrations in 

the solution.  

 

q
e  

or q
t
=

(Co − Ce)∙V

m
                                                               (1) 

 

Where qe represents the amount of Pb2+ adsorbed per 

unit mass of adsorbent at equilibrium (mg/g), qt denotes 

the amount of Pb2+ adsorbed per unit mass of adsorbent 

at a specific time (mg/g), V is the solution volume (L), 

and m is the mass of the adsorbent (g). 

2.2. Statistical evaluation 

Each adsorption test was performed at least three times, 

and the average values were used. Microsoft Office 365 

Excel was employed for data analysis and error function 

evaluations, while the Excel Solver add-in was utilized 

for non-linear regression analyses. 

3. Theory 

In this study, Pb2+ adsorption onto pine bark was 

investigated through equilibrium and kinetic analyses 

using non-linear regression methods. For the kinetic 

evaluation, the mathematical equations of the pseudo-

first order (PFO), pseudo-second order (PSO), Elovich, 

Avrami, and Brouers-Sotolongo (B-S) models were 

applied. The adsorption equilibrium was analyzed using 

the mathematical equations of isotherm models, 

including Langmuir, Freundlich, Temkin, Dubinin-

Radushkevich (D-R), Jovanovic, Dubinin-Astakhov (D-

A), Redlich-Peterson (R-P), Sips, Toth, and Brouers-

Sotolongo (B-S). 

3.1. Adsorption kinetics models 

3.1.1. Pseudo-first order (PFO) kinetic model 

PFO kinetic model, proposed by Lagergren (1898), 

describes the adsorption rate based on the assumption 

that the rate of change in adsorption capacity is 

proportional to the difference between the adsorption 

capacity at equilibrium and the amount of adsorbed 

solute at any given time [18]. 

The equation for this model is: 

 

𝑞t = 𝑞e(1 − 𝑒−𝑘1𝑡)                                                                      (2) 

 

where: 

• qt is the amount of solute adsorbed at time t (mg/g), 

• qe is the amount of solute adsorbed at equilibrium 

(mg/g), 

• k1 is the rate constant of the pseudo-first order kinetic 

(1/min). 

3.1.2. Pseudo-second order (PSO) kinetic model 

The PSO model, proposed by Ho (2006), assumes that the 

rate of adsorption is proportional to the square of the 

difference between the equilibrium adsorption capacity 

and the amount of solute adsorbed at any given time. 

This model is widely used for its accuracy in modeling 

the adsorption of pollutants in aqueous solutions [19]. 

The equation for this model is: 

 

𝑞t =
𝑞e

2𝑘2𝑡

𝑞e𝑘2𝑡 + 1
                                                                             (3) 

 

where k2 is the rate constant of the pseudo-second order 

kinetic (g/mg∙min). 

This model often fits well with adsorption data from 

aqueous solutions, especially for systems where the 

adsorption process is dominated by chemisorption [19]. 

3.1.3. Elovich kinetic model 

The Elovich adsorption kinetic model is an empirical  

rate equation that shows adsorption energy grows 

linearly with surface coverage. This model holds that 

adsorption occurs at specified places, adsorbed ions 

interact, and the adsorbate concentration remains 

constant. It is suitable for both gas adsorption and 

wastewater treatment [20]. 

The equation for this model is: 

 

𝑞t =
1

𝛽E

𝑙𝑛(1 + 𝛼E𝛽E𝑡)                                                               (4) 

 

where: 

• αE is the initial adsorption rate (mg/g∙min), 

• βE is related to the adsorption capacity (g/mg), 

 



Gundogdu and Bulut   Turk J Anal Chem, 7(2), 2025, 108–131   

111 

 

3.1.4. Avrami kinetic model 

The primary goal of the Avrami model is to understand 

the rate and mechanism of crystallization or reaction 

processes. The Avrami kinetic model is also widely used 

in the processes of pollutant removal from aqueous 

environments through adsorption. Adsorption refers to 

the transition of pollutants from the liquid phase to a 

solid adsorbent surface. This process typically exhibits 

kinetic characteristics similar to crystallization and other 

physical-chemical reactions, which is why the Avrami 

model is suitable for understanding the rate and 

mechanism of adsorption reactions [21–23]. 

The Avrami equation is: 

 

q
t
= q

e
[1 − exp(−kAtnA)]                                                    (5) 

 

where kA is the rate constant, and nA is the Avrami 

exponent, a parameter that determines the adsorption 

mechanism and geometry. The unit of the rate constant 

kA depends on the time unit (t) used. 𝑘A ≈ 𝑡−𝑛A 

• n = 1: One-dimensional adsorption on the surface or 

edge.  

• n = 2: Two-dimensional adsorption (e.g., on planar 

surfaces).  

• n = 3: Three-dimensional adsorption (e.g., in porous 

structures).  

• n = 4: Three-dimensional adsorption with continuous 

nucleation (e.g., continuous formation of new 

adsorption sites) [23]. 

3.1.5. Brouers-Sotolongo (B-S) kinetic model 

This model goes beyond traditional first and second-

order kinetic models by including a fractal time 

parameter and a fractional order parameter. It provides 

better data fitting and helps in understanding the nature 

of processes. This model is especially useful for better 

understanding complex reactions and adsorption 

processes. 

The Brouers-Sotolongo (B-S) kinetic model is 

represented by the following equation: 

 

𝑞n,α(𝑡) = 𝑞e [1 − (1 + (𝑛BS − 1) (
𝑡

𝜏C

)
𝛼BS

)

−1

(𝑛BS−1)

]     (6) 

 

Where qn,α(t) ) is the amount of substance adsorbed at 

time (t). qe is the equilibrium adsorption capacity. nBS is 

the fractional order parameter. αBS is the fractal time 

parameter, and τC is the characteristic time constant. 

The parameter nBS allows the model to interpolate 

between different kinetic orders, providing flexibility in 

describing various kinetic processes. The parameter αBS 

accounts for the complexity and irregularity of the 

kinetic process over time. τC, this is a scaling factor that 

adjusts the time scale of the process. 

The half-reaction time, denoted as τ1/2, represents the 

duration required to absorb half of the equilibrium 

amount. It is calculated using the following equation: 

 

[1 + (𝑛BS − 1) (
𝑡

𝜏C

)
𝛼BS

]

−1

(𝑛BS−1)

=
1

2
                                       (7) 

 

which gives 

 

𝜏1/2 = 𝜏C [
2(𝑛BS−1) − 1

𝑛BS − 1
]

1

𝛼

                                                          (8) 

 

τ1/2 represents the half-life time, which is the time 

required for the quantity of the substance to reduce to 

half of its initial value. 

The B-S model is particularly useful in describing 

complex adsorption processes and drug release kinetics, 

offering a more accurate fit to experimental data 

compared to traditional kinetic models [24–27]. 

3.2. Adsorption isotherm models 

3.2.1. Two-parameter isotherms  

3.2.1.1. Langmuir adsorption isotherm: 

The Langmuir adsorption isotherm assumes that 

adsorption occurs on a homogeneous surface with a 

finite number of identical sites. Each site can hold only 

one molecule, and the adsorption process is reversible. It 

is one of the most commonly used models for describing 

monolayer adsorption [28,29]. 

The non-linear Langmuir equation is: 

 

𝑞e =
𝑞m𝐾L𝐶e

1 + 𝐾L𝐶e

                                                                              (9) 

 

where: 

• qe is the amount adsorbed at equilibrium (mg/g), 

• qm is the maximum adsorption capacity (mg/g), 

• KL is the Langmuir constant related to adsorption 

enthalpy (L/mg), 

• Ce is the equilibrium concentration of solute (mg/L). 

3.2.1.2. Freundlich adsorption isotherm: 

The Freundlich model is an empirical model that 

describes adsorption on heterogeneous surfaces. Unlike 

Langmuir, it does not assume uniform adsorption sites, 

adsorption is more favorable at lower concentrations, 

and Freundlich allows for multilayer adsorption. It is 

applicable to systems with a wide range of energy. 
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The non-linear equation is: 

 

𝑞e = 𝐾F𝐶e

1

𝑛F                                                                                 (10) 

 

where KF is the Freundlich constant related to adsorption 

capacity (L/g), and 1/nF is an empirical constant 

representing the intensity or heterogeneity of 

adsorption. If (1/nF)<1, adsorption is favorable, and 

(1/nF)>1, adsorption is less effective. This model is widely 

used in environmental chemistry for predicting the 

adsorption behavior of various solutes [4,30]. 

Linear adsorption (𝑛F=1): The adsorption follows a 

simple linear relationship, indicating no cooperative or 

competitive effects. 

Chemical interaction (𝑛F<1): Adsorption involves 

strong chemical interactions between the adsorbate and 

the surface. 

Physical interaction (𝑛F>1): The adsorption process is 

dominated by weaker physical forces, such as van der 

Waals interactions [4]. 

3.2.1.3. Temkin adsorption isotherm: 

The Temkin adsorption isotherm considers the 

interactions between the adsorbent (surface) and the 

adsorbate (molecule). This isotherm assumes that the 

heat of adsorption decreases linearly with increasing 

coverage of the surface. It is particularly useful for 

describing adsorption processes at low to moderate 

concentrations [31]. The model takes into account the 

non-uniform energy distribution on the surface and 

performs particularly well in the medium concentration 

range. 

The Temkin isotherm equation is expressed as: 

 

𝑞e =
𝑅𝑇

𝑏M

𝑙𝑛(𝐾M𝐶e)                                                                     (11) 

 

where R is the universal gas constant with a value of 

8.314 J/(mol∙K). T represents the temperature in Kelvin. 

bM is the Temkin constant related to the heat of sorption, 

measured in J/mg, and KM is the Temkin isotherm 

constant, measured in L/g [32]. 

3.2.1.4. Dubinin-Radushkevich (D-R) adsorption isotherm:  

The D-R isotherm is used to describe adsorption on 

microporous materials and is often applied to study the 

adsorption of gases and small molecules. Unlike 

Langmuir, it does not assume monolayer adsorption. It 

is based on the potential energy distribution on the 

surface of the adsorbent [32]. 

The non-linear equation for the D-R model is: 

 

𝑞e = 𝑞mexp(−𝐾DR𝜀2)                                                              (12) 

𝜀 = 𝑅𝑇𝑙𝑛 (1 +
1

𝐶e

)                                                                   (13) 

where: 

• KDR is a constant related to the adsorption energy 

(mol²/kJ²), 

• ℰ is the Polanyi potential (kJ/mol),  

• R is the universal gas constant, 

• T is the temperature (K). 

 

This model is particularly useful for describing the 

adsorption of small molecules on solid adsorbents, 

especially in low-concentration regimes [33]. 

3.2.1.5. Jovanovic adsorption isotherm: 

The Jovanovic adsorption isotherm is an extension of the 

Langmuir model, focusing on monolayer adsorption 

without lateral interactions between adsorbed 

molecules. It considers mechanical contact between 

adsorbing and desorbing molecules, making it suitable 

for systems involving localized adsorption. The 

isotherm can describe both physical and chemical 

adsorption processes and transitions to Henry's Law at 

low concentrations [32].  

Jovanovic’s mathematical equation is: 

 

𝑞e = 𝑞m(1 − 𝑒−𝐾J𝐶e)                                                                (14) 

 

where KJ is the Jovanovic constant in L/mg [34]. The 

mathematical equation of the Jovanovic isotherm model 

shows significant similarity to the equation of the 

pseudo-first order kinetic model (Eq. 2). 

3.2.2. Three-parameter isotherms 

3.2.2.1. Dubinin-Astakhov (D-A) adsorption isotherm: 

The D-A adsorption isotherm is a widely used model for 

describing adsorption in microporous materials, such as 

activated carbon and zeolites. It is an extension of the D-

R isotherm, incorporating energy heterogeneity of the 

adsorbent surface. This model is commonly applied to 

describe the adsorption of organic or inorganic 

compounds from aqueous solutions [35]. 

The isotherm is mathematically expressed as: 

 

𝑞e = 𝑞m exp [− (
𝜀

√2𝐸
)

𝑛DA

]                                                    (15) 

 

Where ℇ is the Polanyi potential in kJ/mol (see Eq. 

(13)), as in the D-R equation. E is the characteristic 

adsorption energy (kJ/mol), indicating the energy barrier 

of the adsorption process, and nDA is the exponent 

reflecting the heterogeneity of the adsorbent surface [36]. 
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In the D-A adsorption isotherm, the nDA parameter is 

known as a heterogeneity factor that expresses the 

surface heterogeneity of the adsorbent. This parameter 

reflects the homogeneity or heterogeneity of the pore 

distribution on the surface where adsorption occurs. The 

nDA value indicates how diverse the pore sizes on the 

surface are; higher nDA values indicate a wider pore size 

distribution. The nDA value typically ranges between 2 

and 10. This range can vary depending on the surface 

heterogeneity and pore structure of the adsorbent. 

A high 𝐸 value suggests chemisorption, while a low 

𝐸 value is indicative of physisorption [37]. 

3.2.2.2. Redlich-Peterson (R-P) adsorption isotherm: 

The R-P adsorption isotherm is a hybrid model that 

combines features of the Langmuir and Freundlich 

isotherms. It is designed to describe adsorption on both 

homogeneous and heterogeneous surfaces and is 

particularly effective for systems operating over a wide 

concentration range. 

The isotherm is mathematically expressed as: 

 

𝑞e =
𝐾RP𝐶e

1 + 𝛼RP𝐶e
𝛽RP

                                                            (16) 

 

where KRP and αRP are the R-P constant (L/g) and R-P 

energy constant (L/mg or L/mmol), respectively. βRP is 

the empirical parameter (0<βRP≤1), reflecting the 

heterogeneity of the adsorbent surface. When βRP=1, the 

isotherm reduces to the Langmuir model. When βRP<1, 

the isotherm resembles the Freundlich model. Lower βRP 

values indicate greater surface heterogeneity. 

The isotherm can describe adsorption on both 

homogeneous and heterogeneous surfaces and fits 

experimental data over a wide concentration range. The 

R-P isotherm is widely used in liquid-phase adsorption 

systems, particularly for modeling the adsorption of 

heavy metal ions, organic pollutants, and other 

contaminants from aqueous solutions [4,38,39]. 

3.2.2.3. Sips adsorption isotherm: 

The Langmuir and Freundlich isotherms are 

undoubtedly the most recognized models in adsorption 

studies. The Sips isotherm integrates features of both 

models. It was introduced to overcome the limitations of 

the Freundlich model at higher adsorbate concentrations 

and to describe adsorption behavior in heterogeneous 

systems. At low concentrations, the Sips isotherm 

behaves similarly to the Freundlich model, while at high 

concentrations, it approaches the Langmuir isotherm. 

The mathematical equation of the Sips adsorption 

isotherm is given in Eq. (17).  

𝑞e =
𝑞m𝐾S𝐶e

𝛽S

1 + 𝐾S𝐶e
𝛽S

                                                                         (17) 

 

where KS is Sips equilibrium constant (L/mg), and βS is 

Sips model exponent [32,39].   

3.2.2.4. Tóth adsorption isotherm: 

In 1971, József Tóth proposed an isotherm model to 

provide both experimental and mathematical insights 

into gas adsorption. The Tóth model gained widespread 

recognition due to its accurate description of adsorption 

across the entire pressure range, effective parameter 

interpretation, and its ability to serve as a basis for 

deriving other isotherm equations [34,40]. 

The three-parameter Tóth isotherm, an empirical 

extension of the Langmuir model, was developed to 

improve alignment with experimental data. It effectively 

describes adsorption on heterogeneous surfaces at both 

low and high concentration extremes [4]. 

While originally formulated for gas adsorption, the 

Tóth isotherm has also proven applicable to adsorption 

phenomena in solution [41]. The mathematical 

expression for the Tóth isotherm is provided in Eq. (18). 

 

𝑞e =
𝑞m𝐾T𝐶e

[1 + (𝐾T𝐶e)
𝑛T]

1

𝑛T

                                                            (18) 

 

where KT is the Tóth equilibrium isotherm constant 

(L/mg), and nT is a dimensionless parameter. The model 

simplifies to the Langmuir isotherm when nT=1. Thus, nT 

serves as an indicator of the system's heterogeneity; as nT 

deviates from 1, the degree of heterogeneity in the 

adsorption system increases. 

3.2.2.5. Brouers–Sotolongo (B-S) isotherm model: 

This isotherm is constructed as a modified exponential 

function to describe adsorption on heterogeneous 

surfaces, inspired by Langmuir’s suggestion to adapt his 

isotherm for nonuniform adsorbent surfaces. The model 

assumes that the adsorbent’s surface is divided into 

distinct patches, each containing active sites with 

identical energy levels. The B-S equation is specifically 

designed to account for these features, making it suitable 

for complex adsorption scenarios involving surface 

heterogeneity. 

The mathematical equation of the B-S isotherm model is: 

 

𝑞e = 𝑞m [1 − 𝑒
(−𝐾BS𝐶e

𝛼BS)
]                                                      (19) 

 

where the parameter KBS ensures that the exponential 

term is dimensionless. Therefore, the unit of KBS must 

cancel out the unit of 𝐶e
𝛼BS. If qe and qm are expressed in 



Gundogdu and Bulut   Turk J Anal Chem, 7(2), 2025, 108–131   

114 

 

mg/g, and Ce is in mg/L, then the unit of KBS can be 

determined as (
𝐿

𝑚𝑔
)

𝛼BS
. 

The parameter αBS represents the distribution of 

adsorption energy and reflects the degree of 

heterogeneity of the adsorbent surface at a specific 

temperature. It characterizes how adsorption energy 

varies across different active sites, providing insights 

into the energy profile and structural diversity of the 

adsorbent [42,43]. 

3.3. Error function 

Error analysis plays a crucial role in comparing 

experimental data with theoretical results, as it helps 

assess the accuracy and reliability of the model. In 

experimental fields such as adsorption studies, error 

analyses are used not only to evaluate how well the data 

fit the model but also to test the accuracy and validity of 

the model. The choice of error analysis method depends 

on the nature of the data and the complexity of the 

model. Generally, a combination of different error 

analysis methods is preferred to ensure reliable results 

and to prevent misinterpretations of model 

performance. 

The following section outlines several common error 

analysis methods, providing concise definitions and 

their associated formulas [4,16,34,44–49]. The symbols 

used in these formulas and their meanings are as 

follows: 

 

• qe,exp,i : Experimental adsorption capacity at 

equilibrium for the i-th data point (mg/g). 

• qe,cal,i :  Calculated adsorption capacity at equilibrium 

for the i-th data point based on the model (mg/g) 

• 𝑞
e,exp

 : Mean of experimental data (mg/g) 

• 𝑞
e,cal

 : Mean of calculated data (mg/g) 

• N : Total number of experimental data points. 

• p : Number of independent variables in the model. 

• R2 : Coefficient of determination, representing the 

proportion of variance explained by the model. 

3.3.1. Sum of squared errors (SSE) 

The sum of squared errors (SSE) provides the total of the 

squared differences between calculated and 

experimental data. SSE is used to determine how close 

the model is to the experimental data. This method 

minimizes the sum of squared errors to optimize the 

model parameters.  

 

𝑆𝑆𝐸 = ∑(𝑞e,exp,𝑖 − 𝑞e,cal,𝑖)
2

𝑁

𝑖=1

                                           (20) 

 

SSE is simple to compute and interpret, and SSE 

offers a clear sense of the total error in the model. 

However, large errors are disproportionately penalized 

due to the squaring of the differences by SSE. In addition, 

SSE should be used in conjunction with other methods 

for a more comprehensive assessment.   

3.3.2. Average relative error (ARE) 

ARE is a measure of how well a model predicts 

experimental data, expressed in terms of the relative 

error between calculated and experimental values. It 

evaluates the percentage deviation of calculated values 

from experimental ones, averaged across all data points. 

 

𝐴𝑅𝐸 =
1

𝑁
∑ |

𝑞e,exp,𝑖 − 𝑞e,cal,𝑖

𝑞e,exp,𝑖

|

𝑁

𝑖=1

× 100                         (21) 

 

ARE represents the error in percentage form, making 

it suitable for comparing datasets with different units or 

scales. It is easy to interpret, as it provides a clear 

measure of percentage deviation. Unlike RMSE or SSE, 

ARE does not excessively penalize large errors due to the 

absence of squaring. However, when qe,exp,i values are 

small, ARE can become disproportionately large or even 

undefined. Additionally, larger deviations in qe,exp,i are 

weighted more heavily due to their relative nature. ARE 

is also sensitive to outliers and noise in experimental 

data. 

3.3.3. Hybrid fractional error (HYBRID) 

The HYBRID function is an error function used to 

evaluate the accuracy of a model by combining both 

absolute and fractional errors. It is commonly used in 

adsorption tests to assess the differences between 

experimental and calculated values. 

 

𝐻𝑌𝐵𝑅𝐼𝐷 =
1

𝑁 − 𝑝
∑ [

(𝑞e,exp,𝑖 − 𝑞e,cal,𝑖)
2

𝑞e,exp,𝑖

] × 100

𝑁

𝑖=1

         (22) 

 

The HYBRID function combines both absolute and 

fractional errors, providing a more accurate measure of 

model performance. It is suitable for datasets with 

varying magnitudes and scales, and helps penalize 

errors relative to the experimental values, offering a 

more balanced evaluation. However, it is sensitive to 

small or zero values in the experimental data, which can 

result in inflated error values. Additionally, it can be 

more complex to interpret compared to simpler metrics 

like MAE or RMSE. 
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3.3.4. Marquardt’s percent standard deviation (MPSD) 

Marquardt’s Percent Standard Deviation (MPSD) is an 

error analysis metric used to evaluate the fit of a model 

to experimental data. It is particularly useful in 

adsorption studies, where it helps quantify the deviation 

between experimental and calculated values in terms of 

a percentage. MPSD is similar to RMSE but is 

normalized by the experimental values, making it less 

sensitive to large magnitudes in the data. 

 

𝑀𝑃𝑆𝐷 = 100 × √
1

𝑁 − 𝑝
∑(

𝑞e,exp,𝑖 − 𝑞e,cal,𝑖

𝑞e,exp,𝑖

)

2𝑁

𝑖=1

            (23) 

 

MPSD expresses error as a percentage, making it 

easily interpretable and comparable across different 

datasets. By accounting for variations in the magnitude 

of experimental values, it reduces bias from large 

datasets. MPSD is particularly effective for comparing 

different models or adsorption isotherms to identify the 

best fit. However, similar to ARE, MPSD can be 

disproportionately influenced when qe,exp,i values are 

small, potentially leading to large errors or undefined 

values. Additionally, MPSD requires knowledge of the 

number of parameters (p), making it less straightforward 

than simpler metrics such as SSE or RMSE. MPSD can 

also be sensitive to outliers in experimental data. 

3.3.5. Mean absolute error (MAE) 

MAE calculates the average of the absolute errors 

between experimental and calculated values. It directly 

quantifies the magnitude of errors without considering 

their direction. 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑞e,exp,𝑖 − 𝑞e,cal,𝑖|

𝑁

𝑖=1

                                             (24) 

 

MAE directly represents the magnitude of errors and 

does not excessively penalize larger errors, offering a 

balanced approach. However, it does not differentiate 

between large and small errors in terms of their impact. 

Additionally, MAE lacks sensitivity to variations in error 

size across different parts of the data. 

3.3.6. Coefficient of determination (R²) 

R² measures how well the model explains the variance in 

the data. A value close to 1 indicates a good fit, while 

values near 0 suggest poor model performance. The 

coefficient of determination (R²) is also equal to the 

square of the correlation coefficient (R). 

 

𝑅2 =

[
 
 
 ∑ (𝑞e,exp,𝑖 − 𝑞

e,exp
) (𝑞𝑒,𝑐𝑎𝑙,𝑖 − 𝑞

e,cal
)

√∑(𝑞e,exp,𝑖 − 𝑞
e,exp

)
2
∑(𝑞e,cal,𝑖 − 𝑞

e,cal
)

2

]
 
 
 
2

    (25) 

 

R² provides a quick measure of model accuracy and 

is both widely used and easily interpretable. However, it 

can be misleading for non-linear data or when the model 

is poorly specified. A high R² value does not necessarily 

guarantee accurate predictions, particularly for non-

linear models. 

3.3.7. Adjusted R-squared (Adjusted R² or R²-adj) 

The Adjusted R² statistic is used to evaluate the goodness 

of fit of a model (e.g., isotherm or kinetic model) to the 

experimental qe data. It adjusts for the number of 

parameters in the model, providing a more accurate 

assessment of how well the model describes the 

adsorption process while penalizing unnecessary 

complexity. 

 

𝑅2-adj = 1 − [
(1 − 𝑅2)(𝑁 − 1)

𝑁 − 𝑝 − 1
]                                         (26) 

 

Adjusted R² prevents overfitting by accounting for 

the number of parameters, allows for better comparison 

between different adsorption models, and provides a 

more reliable measure of model fit. However, Adjusted 

R² is still sensitive to outliers, does not imply causality, 

and can be difficult to interpret in complex models. 

4. Results and discussions 

4.1. Minimization process with Excel Solver 

Fig. 1 and Fig. 2 illustrate the minimization process for 

non-linear regression solutions in Excel Solver. Fig. 1 

demonstrates the minimization/optimization process in 

the Solver using the HYBRID function for the two-

parameter Langmuir isotherm. Fig. 2 illustrates the 

process for the three-parameter Redlich-Peterson (R-P) 

model using the SSE function. 

In the Excel sheet, follow the sequence: File – More 

options – Options – Add-ins – Solver Add-in to add the 

Solver command to the menus. Then, navigate to the 

Data tab and run the Solver command. 

In columns A and B in Fig. 1 and Fig. 2, the 

experimental Ce (Ce,exp) and corresponding experimental 

qe values (qe,exp) are placed. Column C represents the qe 

values (qe,cal) calculated by the model at the end of the 

process. Columns D and E contain the calculations for 

the error function, which minimizes the differences 

between qe,exp and qe,cal. 
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In Fig. 1, Cells A14 and B14 contain the Langmuir 

model constants (KL and qm). The primary objective of the 

minimization process is to estimate these constants with 

the highest accuracy. To achieve this, the error function 

seeks to minimize the differences between qe,exp and qe,cal. 

In other words, KL and qm values must be assigned to 

cells A14 and B14 such that the error function value in 

cell E14 is minimized. 

Before running Solver, it is necessary to assign initial 

estimates to cells A14 and B14. (A14, B14, and C14 in    

Fig. 2) This is because Solver cannot operate if these cells 

are empty, as the calculated qe,cal values (C3–C11) would 

be undefined. Once initial estimates are assigned, Solver 

will use a trial-and-error method to minimize the 

differences between qe,exp and qe,cal through the selected 

error function, ultimately determining the most accurate 

values for KL and qm (KRP, αRP, and βRP for R-P isotherm in 

Fig. 2). 

Once the necessary cells are filled, Solver is run, and 

the “Solver Parameters” dialog box appears on the 

screen, as shown in Fig. 1 and Fig. 2. Click the arrow 

button next to the “Set Objective” bar and select the cell 

containing the value of the error function to be 

minimized (E14) as the target. Since error functions 

perform minimization, select the “Min” option in the 

dialog box. 

Next, click the arrow button to the right of the “By 

Changing Variable Cells” bar and select the model 

parameters cells (A14:B14 for the Langmuir model, 

A14:C14 for the R-P model). If there are any constraints 

related to the model, as in the R-P model shown in        

Fig. 2, click “Add” under the “Subject to the 

Constraints” section and enter the necessary constraints 

in the window that appears. The constraints will be 

displayed in the dialog box (Fig. 2). 

Since a non-linear solution is being performed, select 

“GRG Nonlinear” from the list under “Select a Solving 

Method” in the dialog box. Finally, click the “Solve” 

button to allow Solver to perform the minimization and 

estimate the qe,cal values and the model parameters. 

Similar steps are, of course, applied to kinetic data as 

well. In this case, experimental t (min) values are entered 

into cells A3–A11, and experimental qt,exp values are 

entered into cells B3–B11. The remaining steps are 

carried out as described above. 

4.2. Error function analysis for the kinetics models 

Error functions are tools that help accurately estimate 

model parameters. These functions work to minimize 

the difference between experimental data and data 

calculated from the model as much as possible. 

In this study, five different error functions were 

employed for data minimization: SSE, ARE, HYBRID, 

MPSD, and MAE. Table 1 presents the results of 

minimization performed using these five error functions 

with Solver for each kinetic model. The rows detail the 

parameter values obtained for each kinetic model using 

the respective error function. For example, when 

minimization for the PFO kinetic model was conducted 

with SSE in Solver, the qt value was 10.15784 mg/g, while 

it was 10.41159 mg/g with ARE, 9.89718 mg/g with 

HYBRID, 9.35466 mg/g with MPSD, and 10.41206 mg/g 

with MAE. 

In the respective tables, error function values are also 

provided both vertically and horizontally. When the 

same error function is aligned vertically and horizontally 

in these tables, the value read in the intersecting cell 

represents the result obtained when the solution is 

performed under that error function. For instance, in 

Table 1, when the horizontal SSE is aligned with the 

vertical SSE, the intersecting cell value is 5.61275. 

However, when the horizontal SSE aligns with the 

vertical ARE, the intersecting cell value becomes 9.41517. 

This value (9.41517) represents the ARE calculated under 

SSE minimization conditions, where the qe,cal values 

estimated via SSE are substituted into the mathematical 

equation for ARE. This approach was used to generate 

the values in Table 1, Table 3, and Table 4. As shown, 

each function provides the lowest minimization under 

its specific conditions. 

At the end of Table 1, Table 3, and Table 4, SNE (Sum 

of Normalized Errors) values are provided for each 

model. SNE is a normalization process that identifies 

which error function minimizes the differences between 

qe,exp and qe,cal the most. Thus, SNE helps determine 

the most appropriate error function for a given model 

and allows for a more accurate prediction of the 

compatibility of experimental data with the model. 

An example of SNE calculation from Table 1 is as 

follows: The error function values in each row are 

divided by the largest value in that row, resulting in five 

different normalized values (note that one of these 

values will always equal 1). The same process is repeated 

for the other four rows. Finally, the SNE value for each 

error function is obtained by summing up the 

normalized values for each column. 

The error function with the relatively smallest SNE 

value is the one that should be preferred for the 

minimization of the corresponding model in Solver. 
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Figure 2. Optimization and solution of the three-parameter Redlich-Peterson (R-P) isotherm model using the SSE error function in Excel Solver 
• The qe_cal values in cells C3–C11 are calculated in Excel using the Redlich-Peterson equation as follows: =($A$14*A3)/(1+$B$14*(A3^$C$14)), =($A$14*A4)/(1+$B$14*(A4^$C$14)), …. , 

=($A$14*A11)/(1+$B$14*(A11^$C$14)) 

• Res. (Residuals) are calculated as the differences between qe_exp and qe_cal (e.g., =B3-C3, =B4-C4, ...., =B11-C11). Then, the squares of these differences are calculated in cells E3–E11 (e.g., 

=D3^2, D4^2, …. D11^2). SSE is ultimately the sum of the squares of these differences; SSE=SUM(E3:E11).  

• Determination coefficient, R2 =RSQ(B2:B11;C2:C11) 

Figure 1. Optimization and solution of the two-parameter Langmuir isotherm model using the HYBRID error function in Excel Solver 
• The qe_cal values in cells C3–C11 are calculated in Excel using the Langmuir equation as follows: =($B$14*$A$14*A3)/(1+$A$14*A3), =($B$14*$A$14*A4)/(1+$A$14*A4), …. 

=($B$14*$A$14*A11)/(1+$A$14*A11) 

• In cells D3–D11, the squares of the differences (Res.2) between qe_exp and qe_cal are calculated (e.g., =(B3-C3)^2, =(B4-C4)^2, ...., =(B11-C11)^2). In cells E3–E11, the values in D3–D11 are 

divided by the qe_exp values in B3–B11 (e.g., =D3/B3, =D4/B4, ...., =D11/B11); HYBRID=SUM(E3:E11). 

• Coefficient of determination, R2 =RSQ(B2:B11;C2:C11) 
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Table 1.  Kinetic model constants with five different error analysis in Microsoft Excel Solver 

Kinetic models SSE ARE HYBRID MPSD MAE 

Pseudo-first order (PFO) 

qt (mg/g) 10.15784 10.41159 9.89718 9.35466 10.41206 

k1 (1/min) 0.07023 0.09935 0.09186 0.13775 0.06720 

R2 0.96996 0.95218 0.95737 0.92437 0.97119 

R2–Adj 0.96138 0.93851 0.94519 0.90276 0.96295 

SSE 5.61275 9.41517 6.62396 11.79655 5.98032 

ARE 13.35946 12.29921 13.02401 14.70117 13.18084 

HYBRID 17.16781 19.09022 15.13926 19.54712 18.12834 

MPSD 25.19315 21.47662 21.60214 19.18431 25.66247 

MAE 0.63672 0.70318 0.73162 1.00242 0.59712 

SNE 3.87970 4.14975 3.79357 4.74756 3.92664 

Pseudo-second order (PSO) 

qt (mg/g) 10.78276 10.89592 10.57112 10.16293 10.91555 

k2 (g/mg∙min) 0.01020 0.01097 0.01250 0.01689 0.01052 

R2 0.99369 0.99236 0.98997 0.97969 0.99307 

R2–Adj 0.99188 0.99018 0.98710 0.97389 0.99109 

SSE 1.15192 1.49209 1.49687 3.29579 1.38196 

ARE 6.75051 6.23831 6.76816 8.41013 6.39992 

HYBRID 5.14998 4.89708 4.34811 5.97884 5.01204 

MPSD 15.58695 14.10526 12.88466 11.20023 14.69183 

MAE 0.27226 0.27191 0.34589 0.54170 0.26400 

SNE 3.51614 3.42046 3.45134 4.71856 3.44851 

Elovich  

αE (mg/g∙min) 5.81997 3.30410 4.19424 3.57695 7.57775 

βE (g/mg) 0.64626 0.55775 0.60294 0.57811 0.65356 

R2 0.98244 0.97774 0.98081 0.97905 0.98223 

R2–Adj 0.97743 0.97138 0.97533 0.97306 0.97715 

SSE 2.59144 4.14707 2.92915 3.43097 3.62022 

ARE 8.07160 5.31391 6.43614 5.67360 9.49963 

HYBRID 5.49977 5.34174 4.30429 4.62875 9.80496 

MPSD 12.44534 7.54710 7.98919 7.27624 18.55071 

MAE 0.46489 0.48227 0.47149 0.47828 0.45524 

SNE 3.67031 3.51102 3.23113 3.28062 4.81691 

Avrami 

kA (𝐦𝐢𝐧−𝒏𝐀) 0.20583 0.19139 0.19721 0.19300 0.19618 

nA 0.54050 0.56350 0.55483 0.56390 0.55076 

R2 0.99906 0.99887 0.99899 0.99891 0.99889 

R2–Adj 0.99880 0.99854 0.99870 0.99860 0.99858 

SSE 0.14050 0.18638 0.15811 0.18733 0.16781 

ARE 1.70353 1.04928 1.27732 1.19222 1.16089 

HYBRID 0.33165 0.29921 0.27052 0.28954 0.30130 

MPSD 3.04051 1.99572 2.09374 1.93974 2.18486 

MAE 0.08498 0.08555 0.08379 0.09397 0.07696 

SNE 4.65432 4.07985 3.98981 4.21085 4.02343 

Brouers-Sotolongo (B-S) 

qt (mg/g) 11.07665 11.06952 11.09914 11.14210 11.07287 

τ𝑪 (min) 13.22303 13.21365 13.17745 13.04019 13.22493 

αBS 0.64608 0.63511 0.64283 0.63573 0.64583 

nBS 1.47640 1.48059 1.47811 1.46878 1.47454 

τ1/2 (min) 9.74988 9.71516 9.71075 9.52562 9.73986 

R2 0.99958 0.99955 0.99957 0.99954 0.99956 

R2–Adj 0.99915 0.99910 0.99914 0.99907 0.99912 

SSE 0.06234 0.07943 0.06296 0.06825 0.07532 

ARE 1.11769 0.90266 1.06123 0.96652 1.09833 

HYBRID 0.12815 0.15190 0.12697 0.13233 0.15316 

MPSD 1.63236 1.63037 1.57112 1.52857 1.84393 

MAE 0.06708 0.06209 0.06576 0.06344 0.06150 

SNE 4.50677 4.60932 4.40352 4.36279 4.84779 
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Accordingly, based on the SNE data in Table 1 and 

Table 2, the HYBRID error function provides the best 

minimization for all kinetic models except for PSO and 

B-S. For PSO and B-S, the most suitable minimizations 

are achieved using ARE and MPSD, respectively. Based 

on the SNE values of the kinetic models presented in 

Table 1, the ranking of error functions from best to worst 

can be determined as follows: for PFO, HYBRID > SSE > 

MAE > ARE > MPSD; for PSO, ARE > MAE > HYBRID > 

SSE > MPSD; for Elovich, HYBRID > MPSD > ARE > SSE 

> MAE; for Avrami, HYBRID > MAE > ARE > MPSD > 

SSE; and for B-S, MPSD > SSE > HYBRID > ARE > MAE. 

Fig. 3 illustrates the t−qt plots obtained for each model 

when analyzed separately in Solver using five different 

error functions. As illustrated in Fig. 3, for PFO and PSO 

kinetic models, MPSD is not regarded as a suitable 

minimization function in Excel Solver when compared 

to other error functions. Table 1 also demonstrates that 

the SNE values for MPSD in PFO and PSO kinetic 

models are significantly higher relative to the other error 

functions. Notably, the Avrami and B-S kinetic models 

exhibit consistent trends across all error functions. In 

particular, for the B-S kinetic model, the qt,cal values 

obtained from each error function are remarkably close 

to each other, with their respective curves nearly 

overlapping entirely. 

Consequently, it is evident that selecting an 

appropriate error function is crucial for non-linear 

solutions of the PFO kinetic model, as well as for the PSO 

and Elovich kinetic models. However, this choice is less 

critical for the Avrami and B-S kinetic models. 

Another noteworthy point in Table 1 is that all error 

function values for the B-S model are the lowest among 

all models. Relatively low error function values indicate 

that the qt,exp and qt,cal values are very close to each other, 

signifying that the corresponding model represents the 

experimental data exceptionally well. 

As seen in Fig. 3, the experimental data is best 

represented by the B-S model, followed by the Avrami 

model. Fig. 4 further supports this conclusion, providing 

a visual representation of the t−qt plots drawn using the 

error functions with the lowest relative SNE values 

(Table 2). As illustrated in Fig. 4, the kinetic models that 

best represent the experimental data are, in order, the B-

S and Avrami kinetic models. The PSO kinetic model, on 

the other hand, ranks as the third most suitable model in 

this analysis. However, it can also be stated that both the 

Elovich and PFO kinetic models fail to adequately 

represent the experimental data. 

Fig. 5 presents the detailed version of Fig. 4, showing 

the results for each model individually. As is evident 

from the figure, the two models that best represent the 

data are the B-S and Avrami models. Likewise, Fig. 5 

suggests that the PSO kinetic model can be considered a 

suitable model for adequately representing the 

experimental data. 

In conclusion, based on the relevant tables and 

graphs, the kinetic model that best describes the 

adsorption of Pb2+ onto pine bark is the Brouers-

Sotolongo (B-S) model, while the least representative 

model is the pseudo-first order (PFO) kinetic model. 

4.3. Analysis of the kinetics model constants 

In Section 3.1.5, it was stated that the 4-parameter B-S 

kinetic model provides a more precise and accurate 

description of the adsorption kinetics process compared 

to the classical PFO and PSO models, owing to its 

consideration of additional factors such as a fractal time 

parameter (αBS) and a fractional order parameter (nBS).  

In this study, based on the data presented in Table 1, 

the αBS value for the B-S kinetic model is 0.63573 

(obtained through MPSD minimization). This value (αBS 

< 1) indicates that the system is significantly 

heterogeneous, reflecting the heterogeneity of the pine 

bark surface. Additionally, the nBS value derived from 

Table 1 is 1.46878. When nBS = 1, the system follows PFO 

kinetics, whereas nBS = 2 indicates PSO kinetics. Given 

that 1 < nBS < 2 for this study, it can be concluded that a 

mixed kinetic mechanism is at play, where adsorption 

occurs as a combination of physical and chemical 

interactions. On the other hand, for 0 < nBS < 1, adsorption 

proceeds predominantly through physical mechanisms. 

Consequently, the reaction order and pathway can be 

determined with greater precision using the B-S kinetic 

model. 

τ1/2 represents the time required for half of the total 

adsorbed adsorbate ions/molecules to be adsorbed 

during the adsorption process. For this study, this 

duration is τ1/2 = 9.74988 minutes (Table 1).  

For the Avrami kinetic model, which was determined 

to be consistent with the experimental data, an 

examination of the model constants in Table 1 reveals 

that the nA exponent, which provides information about 

the adsorption mechanism and geometry, is 0.55483 

(obtained through minimization using the HYBRID 

error function). When 0 < nA< 1, it indicates that 

adsorption progresses through physical pathways on 

heterogeneous surfaces with limited and weak 

interactions. 

Another parameter of the Avrami model, kA, being 

less than 1 (in this study, kA ≈ 0.2) suggests that the 

adsorption process has relatively slow kinetics, with a 

low adsorption rate, or that one or more steps in the 

process are rate-limiting.  

Unlike PFO, what perhaps makes the PSO kinetic 

model more appealing in many studies is the overlap 

between qt,exp and the qt,cal values. It should be noted, 
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however, that the choice of the error function type is 

crucial when performing analyses with PFO and PSO. 

When Fig. 3 is carefully examined, it becomes evident 

that the selection of the error function for PFO is critical. 

In Fig. 3, when MPSD is chosen as the error function for 

both PFO and PSO, neither model yields particularly 

reliable results. Therefore, identifying the error function 

that provides the most accurate results is essential. This 

study focuses specifically on this objective. However, 

when ARE or MAE is preferred for both models, the 

difference between qt,exp and the qt,cal values becomes 

significantly smaller (Table 1, Fig. 3). Nevertheless, in 

Table 1 and Table 2, the most optimal error function for 

PFO is found to be HYBRID. This is due to the sharper 

inflection point of the t–qt curve in ARE and MAE, as 

well as the experimental data in this region being farther 

from the curve (Fig. 3). It can be observed from Fig. 3 that 

the Elovich kinetic model does not align well with the 

data, particularly near equilibrium. Although the 

Elovich model does not represent the experimental data 

in a fully satisfactory manner, certain interpretations can 

still be derived from the model constant values. Based on 

the values obtained using HYBRID minimization in 

Table 1, the αE value for the Elovich model is 4.19424, and 

the βE value is 0.60294. When αE > 1, it indicates that 

adsorption is quite rapid at the initial stages, suggesting 

strong interactions between the adsorbent and the 

adsorbate. Additionally, when βE > 0.5, a more 

pronounced slowing of the adsorption rate is observed, 

indicating that active sites are filling up quickly. 

4.4. Error function analysis for the isotherm models 

A similar evaluation to the one conducted for kinetic 

models can undoubtedly be performed for isotherm 

models as well. Table 3 lists the minimization results 

obtained using five different error functions in Excel 

Solver for two-parameter isotherms, while Table 4 

provides the corresponding results for three-parameter 

isotherms. 

When evaluating the SNE values collectively 

presented in Table 5, it can be observed that many two- 

and three-parameter isotherm models are better 

minimized using the HYBRID error function. For the 

Temkin model, SSE; for the D-R model, ARE and SSE; 

and for the Jovanovic and D-A models, ARE provided 

better minimization results. In contrast, for the 

remaining models, the HYBRID function yielded the 

best minimization results. Overall, for both kinetic and 

isotherm models, the HYBRID error function generally 

offered superior minimization performance. 
 

Figure 1. Comparison of experimental and model-predicted kinetic 

data using five different error functions (SSE, ARE, HYBRID, MPSD, 

and MAE) in Excel Solver for various kinetic models 
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Table 2. SNE values of the error functions for the kinetic models 

  SNE values of the error functions 

Kinetic models SSE ARE HYBRID MPSD MAE 

Pseudo-first order (PFO) 3.87970 4.14975 3.79357 4.74756 3.92664 

Pseudo-second order (PSO) 3.51614 3.42046 3.45134 4.71856 3.44851 

Elovich 3.67031 3.51102 3.23113 3.28062 4.81691 

Avrami 4.65432 4.07985 3.98981 4.21085 4.02343 

Brouers-Sotolongo (B-S) 4.50677 4.60932 4.40352 4.36279 4.84779 

 

 
Figure 2. Comparison of the kinetic models optimized in Excel Solver 

Fig. 6 and Fig. 7 illustrate the Ce–qe plots for each 

isotherm model, generated by minimizing the 

differences between qe,exp and qe,cal using five error 

functions in Solver. In Fig. 6, except for the D-R and 

Jovanovic models, the Ce–qe graphs generated for the 

other two-parameter isotherms after minimization with 

the five error functions are quite similar to each other. 

However, as with the kinetic models, the MPSD function 

provided poorer minimization results compared to the 

others. Similarly, in Fig. 7, for the four isotherms other 

than the D-A isotherm, the results obtained from the five 

error functions were closely aligned. 

From the SNE data in Table 3, Table 4, and Table 5, 

the error functions providing the best minimization 

results are as follows: for the Temkin model, SSE; for the 

D-R, Jovanovic, and D-A models, ARE; and for all other 

isotherms, the HYBRID function. Additionally, the same 

tables reveal that MPSD yielded the highest SNE values 

for the Freundlich and Temkin isotherms. 

Unlike the two-parameter isotherms, the three-

parameter isotherms produced more consistent results 

across the five error functions, as illustrated in Fig. 7. For 

the three-parameter isotherms other than D-A, the five 

error functions provided nearly identical results, with all 

Ce–qe graphs almost entirely overlapping. Therefore, the 

choice of error function for minimizing these three-

parameter isotherms, excluding D-A, is not critical. 

To ensure more accurate parameter estimation and, 

consequently, a better understanding of the adsorption 

process, it is essential to select the error function with the 

smallest SNE value for minimizing each isotherm model, 

as summarized in Table 5. 

 
Figure 3. Single representations of the kinetic models optimized in 

Excel Solver 
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Table 3.  Two-parameter isotherms constants with five different error analysis in Microsoft Excel Solver 

  SSE ARE HYBRID MPSD MAE 

Langmuir 

KL (L/mg) 0.01116 0.01428 0.01439 0.01863 0.01003 

qm, (mg/g) 40.69627 38.04907 38.43876 35.98128 41.49816 

R2 0.98715 0.98075 0.98047 0.96900 0.98859 

R2–Adj 0.98286 0.97433 0.97396 0.95866 0.98478 

SSE 22.87550 30.00669 28.80803 49.32668 24.09545 

ARE 7.57277 7.00233 7.25302 8.60763 7.70209 

HYBRID 24.73757 21.10073 20.67920 25.11808 29.12894 

MPSD 16.05378 13.26780 13.04970 11.87321 17.72985 

MAE 1.15155 1.35836 1.39217 1.88286 1.04587 

SNE 3.70984 3.61598 3.61199 4.53198 3.93875 

Freundlich 

KF (L/mg) 4.33510 3.23827 3.81191 3.48659 4.35667 

nF (mg/g) 2.98694 2.57897 2.80287 2.68231 2.95498 

R2 0.99068 0.98454 0.98910 0.98704 0.99053 

R2–Adj 0.98758 0.97939 0.98547 0.98272 0.98738 

SSE 13.85285 29.56261 16.12031 20.74284 18.78967 

ARE 5.19552 3.67535 4.55495 4.11212 4.95398 

HYBRID 9.23253 10.93279 7.42953 8.27996 11.56317 

MPSD 8.29636 5.82268 5.94497 5.40667 9.16491 

MAE 0.97761 1.10162 1.04825 1.08950 0.89804 

SNE 4.05970 4.28821 3.66474 3.78812 4.40430 

Temkin  

KM (L/mg) 0.19314 0.29209 0.22476 0.25643 0.13608 

bM (mg/g) 331.07572 367.02597 346.77202 364.91014 305.20117 

R2 0.99150 0.98840 0.99105 0.99000 0.98883 

R2–Adj 0.98866 0.98453 0.98807 0.98666 0.98510 

SSE 12.37752 20.91711 14.16483 21.68239 22.03380 

ARE 5.74074 5.29550 5.59892 5.72607 6.25771 

HYBRID 12.03239 14.54045 10.56052 12.12317 30.31467 

MPSD 10.62228 9.68113 8.93485 8.43623 18.71355 

MAE 0.89423 1.11944 1.01901 1.23140 0.74194 

SNE 3.16987 3.70161 3.19093 3.74981 4.60252 

Dubinin-Radushkevich (D-R) 

qm (mg/g) 31.87089 31.83077 30.76107 29.51396 31.83077 

KDR (mol2/kJ2) 0.00025 0.00019 0.00020 0.00018 0.00019 

R2 0.87572 0.86254 0.86704 0.85890 0.86254 

R2–Adj 0.83429 0.81672 0.82272 0.81186 0.81672 

SSE 217.06002 225.37728 225.17758 250.99127 225.37728 

ARE 22.04778 20.17248 21.05657 20.48773 20.17248 

HYBRID 178.33015 178.75627 173.45011 177.60889 178.75627 

MPSD 39.65376 39.23137 38.80529 38.59592 39.23137 

MAE 3.83446 3.65788 3.87830 3.97469 3.65788 

SNE 4.82714 4.72253 4.77686 4.89615 4.72253 

Jovanovic 

KJ (L/mg) 0.00853 0.00944 0.01170 0.01692 0.00849 

qm (mg/g) 35.14928 34.09320 33.21288 30.80221 34.44130 

R2 0.97164 0.96662 0.95154 0.91493 0.97183 

R2–Adj 0.96219 0.95550 0.93539 0.88657 0.96244 

SSE 59.50168 62.20115 75.24534 130.46033 62.53696 

ARE 12.49796 11.75927 12.01660 12.85726 12.47312 

HYBRID 59.03252 55.01072 50.27353 61.79123 61.59891 

MPSD 23.95852 22.67810 19.79322 17.73674 24.47825 

MAE 1.98414 1.94592 2.32689 2.98063 1.93578 

SNE 4.02794 3.86097 3.91426 4.72459 4.09582 
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Table 4.  Three-parameter isotherms constants with five different error analysis in Microsoft Excel Solver 

  SSE ARE HYBRID MPSD MAE 

Dubinin-Astakhov (D-A) 

qm (mg/g) 36.28594 35.04878 33.01061 29.89269 35.04883 

E (J/mol) 1740.32884 2370.09386 4451.71100 8034.88356 2370.07518 

nDA 1.00000 1.00000 1.00000 1.00000 1.00000 

R2 0.94460 0.93697 0.91760 0.89393 0.93697 

R2–Adj 0.91136 0.89915 0.86815 0.83030 0.89915 

SSE 97.34395 100.55178 124.23476 204.90305 100.55154 

ARE 15.25030 13.82581 15.44667 15.65526 13.82583 

HYBRID 112.40611 100.25168 89.25787 107.71588 100.25194 

MPSD 33.73092 30.76576 25.23452 22.75592 30.76584 

MAE 2.43443 2.41772 3.04288 3.66897 2.41772 

SNE 4.11272 3.83680 3.96452 4.63291 3.83680 

Redlich-Peterson (R-P) 

KRP (L/g) 1.15686 1.83274 1.50019 2.05691 1.06898 

αRP (L/mg) 0.12401 0.25510 0.19890 0.34257 0.11967 

βRP  0.77903 0.73916 0.74688 0.71147 0.76908 

R2 0.99755 0.99674 0.99711 0.99558 0.99734 

R2–Adj 0.99608 0.99478 0.99538 0.99292 0.99574 

SSE 3.59616 5.46455 4.21248 6.55358 4.89234 

ARE 2.85815 2.15054 2.58705 2.63208 2.69613 

HYBRID 3.43104 3.83036 2.90971 3.45425 4.56374 

MPSD 5.50514 4.88051 4.39294 4.03415 6.56932 

MAE 0.48725 0.45206 0.51910 0.61325 0.42101 

SNE 3.93307 3.90563 3.70067 4.29188 4.37635 

Sips 

qm (mg/g) 59.29319 72.03273 64.01559 71.94951 63.07625 

KS (L/mg) 0.03439 0.03615 0.03531 0.03444 0.03298 

βS  0.59838 0.52561 0.56595 0.53194 0.58558 

R2 0.99897 0.99838 0.99884 0.99831 0.99886 

R2–Adj 0.99836 0.99740 0.99814 0.99730 0.99817 

SSE 1.50396 2.81605 1.68900 2.46553 2.12054 

ARE 1.78491 1.32273 1.63663 1.79113 1.61391 

HYBRID 1.42883 1.84973 1.27027 1.46051 1.60914 

MPSD 3.55774 3.32658 3.02625 2.84654 3.58978 

MAE 0.30239 0.28083 0.31194 0.39150 0.26307 

SNE 4.06653 4.38250 3.84006 4.45807 4.19596 

Tóth 

qm (mg/g) 78.99030 87.54891 99.49835 149.45298 84.73605 

KT (L/mg) 0.31601 0.32634 0.42686 0.57620 0.30829 

nT 0.35793 0.34153 0.29781 0.23384 0.35192 

R2 0.99853 0.99836 0.99831 0.99747 0.99837 

R2–Adj 0.99765 0.99738 0.99730 0.99594 0.99740 

SSE 2.15017 2.91173 2.46090 3.71978 2.95932 

ARE 2.16364 1.96322 1.99460 2.10850 2.00727 

HYBRID 2.05032 2.47813 1.79285 2.09525 2.66427 

MPSD 4.25420 4.68729 3.53843 3.29990 4.95859 

MAE 0.36618 0.30745 0.38921 0.47329 0.30643 

SNE 3.97924 4.21515 3.79232 4.42643 4.37074 

Brouers–Sotolongo (B-S) 

qm (mg/g) 45.03682 51.10940 46.66169 49.60118 49.25654 

KBS [(L/mg)α] 0.04954 0.05273 0.05101 0.05113 0.05077 

αBS 0.54724 0.49742 0.52976 0.50955 0.51526 

R2 0.99930 0.99871 0.99922 0.99887 0.99897 

R2–Adj 0.99888 0.99794 0.99875 0.99819 0.99835 

SSE 1.02876 2.28147 1.13739 1.64635 1.83074 

ARE 1.49086 1.13223 1.39978 1.56782 1.24023 

HYBRID 1.04753 1.52039 0.95228 1.08274 1.18017 

MPSD 3.10315 3.03517 2.72203 2.58492 2.70323 

MAE 0.24226 0.23513 0.24984 0.32666 0.22761 

SNE 3.83243 4.42005 3.65970 4.26676 3.93762 
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Figure 4. Comparison of experimental and model-predicted adsorption isotherm data using five different error functions (SSE, ARE, HYBRID, 

MPSD, and MAE) in Excel Solver for two-parameter isotherm models 
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Table 5. SNE values of the error functions for each isotherm model 
 SNE values of the error functions 

Isotherm models SSE ARE HYBRID MPSD MAE 

Two-parameter isotherms 

Langmuir 3.70984 3.61598 3.61199 4.53198 3.93875 

Freundlich 4.05970 4.28821 3.66474 3.78812 4.40430 

Temkin 3.16987 3.70161 3.19093 3.74981 4.60252 

Dubinin-Radushkevich (D-R) 4.82714 4.72253 4.77686 4.89615 4.72253 

Jovanovic 4.02794 3.86097 3.91426 4.72459 4.09582 

Three-parameter isotherms 

Dubinin-Astakhov (D-A)  4.11272 3.83680 3.96452 4.63291 3.83680 

Redlich-Peterson (R-P)  3.93307 3.90563 3.70067 4.29188 4.37635 

Sips 4.06653 4.38250 3.84006 4.45807 4.19596 

Tóth 3.97924 4.21515 3.79232 4.42643 4.37074 

Brouers–Sotolongo (B-S)  3.83243 4.42005 3.65970 4.26676 3.93762 

Figure 5. Comparison of experimental and model-predicted adsorption isotherm data using five different error functions (SSE, ARE, HYBRID, 

MPSD, and MAE) in Excel Solver for three-parameter isotherm models 
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Fig. 8 collectively illustrates the Ce–qe plots drawn for 

each model based on the error functions with the lowest 

SNE values. Fig. 9 provides this representation 

individually. From these graphs, the model that best 

represents (or describes/explains) the experimental data 

can be selected. 

When examining Fig. 8, and especially Fig. 9 and    

Fig. 10, it becomes evident that the isotherms that least 

represent the experimental data are D-R and D-A. Except 

for D-A, all three-parameter isotherms represent the 

experimental data very well. In Fig. 8 and Fig. 10, 

distinguishing between the R-P, Sips, Toth, and B-S 

isotherms is particularly challenging. All these isotherms 

were best minimized using the HYBRID error function. 

Therefore, a ranking among the models can be made 

using the HYBRID error function values in Table 4. 

According to this, the ranking for best representation of 

the experimental data is as follows: B-S > Sips > Toth > R-

P. 

These four isotherms are followed by Freundlich > 

Temkin > Langmuir > Jovanovic > D-A > D-R. From these 

results, it can be concluded that D-A and D-R fail to 

represent the experimental data, whereas the others 

represent it to some extent. Let us now analyze the 

isotherms that best represent the experimental data in 

order. 

In this study, the Brouers–Sotolongo (B-S) isotherm 

model undoubtedly provides the best representation of 

Pb²⁺ adsorption onto pine bark from aqueous solutions. 

The B-S parameters (constants) determined in this study 

are KBS = 0.05101 and αBS = 0.52976. The KBS value indicates 

that the binding energy between the adsorbent and 

adsorbate is low to moderate. This suggests that the 

adsorption process does not require high binding energy 

and that the energy levels of the adsorption sites on the 

surface are limited. The αBS parameter typically ranges 

between 0 and 1. An αBS value of approximately 0.5 

reflects a heterogeneous surface structure, indicating 

that the adsorption sites on the surface exhibit varying 

energy levels. The B-S isotherm can be considered a 

hybrid model, essentially an adaptation of the Langmuir 

isotherm for heterogeneous surfaces. The perfect fit of 

the experimental data to this model indicates that the 

material possesses a structure that combines both 

homogeneous and heterogeneous surface 

characteristics. 

The experimental data also show excellent 

compatibility with other three-parameter isotherms, 

such as the R-P, Sips, and Tóth models, similar to the B-

S model. Three-parameter isotherm models are designed 

to describe more complex adsorption mechanisms that 

two-parameter models, like Langmuir and Freundlich, 

fail to explain adequately. The compatibility of the data 

with these models suggests that the adsorption process 

involves a more intricate nature, encompassing both 

homogeneous and heterogeneous surface characteristics 

with diverse energetic and structural features. 

The Tóth isotherm is an empirical extension of the 

Langmuir model; however, by incorporating the 

dimensionless parameter nT in its mathematical 

expression, it accounts for surface heterogeneity, which 

is neglected in the Langmuir model. As will be evident 

from the results obtained in this study, this adjustment 

enhances its fit with experimental data. In Table 4, the nT 

parameter for the Tóth isotherm is approximately 0.30 

(as determined by HYBRID minimization). The fact that 

nT < 1 indicates that the adsorbent surface possesses a 

relatively heterogeneous structure.    

A similar approach can also be applied to the Sips 

isotherm, which presents a hybrid model by combining 

the characteristics of both the Langmuir and Freundlich 

isotherms. The critical parameter in this model is βS. In 

this study, the calculated βS value is approximately 0.57 

(Table 4). The dimensionless heterogeneity parameter βS 

reflects surface homogeneity and the degree of deviation 

in adsorption. A βS < 1 value indicates that the adsorbent 

surface is heterogeneous and contains adsorption 

regions with varying energy levels. 

Another isotherm model with a similar approach and 

mathematical expression is the Redlich-Peterson (R-P) 

model. The mathematical expression of the R-P model is 

given in Eq. (16), where the parameter βRP takes values 

between 0 and 1. As βRP approaches 1, the model reduces 

to the Langmuir isotherm, while as βRP approaches 0, it 

resembles the Freundlich isotherm. The values of βRP 

between 0 and 1 characterize the heterogeneity of the 

adsorbent surface. In this study, βRP is approximately 

0.75 (Table 4). Consequently, most of the three-

parameter isotherms share similarities with one another. 

In this study, the models that least represent the 

experimental data, or perhaps do not represent them at 

all, are primarily the two-parameter Dubinin-

Radushkevich (D-R) isotherm, followed by the three-

parameter Dubinin-Astakhov (D-A) isotherm. The D-R 

isotherm is more suitable for describing adsorption 

behavior occurring on microporous, homogeneous 

surfaces with uniform adsorption energies. However, 

the pine bark used in this study was employed in its 

original, untreated form, characterized by a limited pore 

structure, low surface area, and heterogeneous surface 

properties. Therefore, it is unsurprising that the 

adsorption of Pb2+ does not fit this model.  

The D-A model, another isotherm model that 

struggles to represent experimental data, is actually an 

extended version of the D-R model. In the D-A model, 

the nDA parameter (Eq. (15)) ensures that the model has 

three parameters, providing information about the 

heterogeneity of the adsorbent and allowing its 
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application to adsorbents on heterogeneous surfaces. 

The E constant in Eq. (15) characterizes the adsorption 

energy. When the E value is below 8 kJ/mol, adsorption 

generally proceeds through physical interactions. In this 

study, it is observed from Table 4 that the E value is 2.37 

kJ/mol (determined by ARE minimization). In Table 4, 

the nA values for this model are exactly 1. The nA = 1 

condition indicates that adsorption occurs on 

homogeneous surfaces. However, other isotherms 

suggest that the adsorbent surface is more 

heterogeneous. Since experimental data do not strongly 

support the D-A model, it may be more appropriate to 

disregard this result. 

Among the commonly used two-parameter 

isotherms, the Langmuir and Freundlich models are the 

most well-known. The Langmuir isotherm, which is 

highly successful in describing monolayer adsorption 

processes on homogeneous surfaces, fails to fully 

describe the adsorption of Pb²⁺ onto red pine bark, which 

is determined to have a heterogeneous structure, as 

shown in Fig. 8 and Fig. 9. Specifically, experimental 

data deviate from the Langmuir model beyond the 

inflection point of the curve, as observed in Fig. 9. 

On heterogeneous surfaces, the presence of regions 

with varying energy levels causes a delay in reaching 

equilibrium after the inflection point of the adsorption 

curve. In contrast, the Langmuir model assumes that the 

adsorption sites on the surface have uniform energy, 

resulting in a rapid attainment of equilibrium and the 

formation of a flat plateau beyond the inflection point. 

This behavior highlights the limitations of the Langmuir 

isotherm in describing adsorption on heterogeneous 

surfaces. 

On the other hand, as evidenced by Fig. 8 and 

particularly Fig. 9, the experimental data are better 

represented by the Freundlich isotherm. This 

observation is further supported by the data presented 

in Table 3. The coefficient of determination (R²) values, 

which indicate the degree of fit between the models and 

the experimental data, are R² = 0.98047 for the Langmuir 

model and R² = 0.98910 for the Freundlich model. These 

results demonstrate that the Freundlich isotherm 

provides a more accurate representation of adsorption 

processes on heterogeneous surfaces. 

Compared to these two well-known models, it is 

observed that the Temkin isotherm better represents the 

experimental data (Fig. 9). The R2 value for the Temkin 

isotherm is 0.99150 (Table 3). As noted in Section 3.2.1, 

the Temkin isotherm accounts for the non-uniform 

energy distribution on the adsorbent surface. Therefore, 

the high degree of representation of the data by the 

Temkin isotherm is a reasonable outcome. 

The Jovanovic isotherm is the third least 

representative model for the experimental data. In   

Table 3, the Jovanovic parameters are reported as KJ = 

0.00944 L/mg, qm ≈ 34 mg/g, and R2 = 0.96662. These 

results indicate that the Jovanovic model weakly 

explains the adsorption process in the system. Similar to 

the Langmuir model, the Jovanovic isotherm focuses on 

homogeneous surfaces and monolayer adsorption 

processes. Therefore, such a result is not surprising. 

5. Conclusions 

This study provides a comprehensive evaluation of Pb2+ 

ion adsorption onto pine bark, emphasizing the use of 

advanced modeling and error analysis techniques to 

enhance the reliability of kinetic and equilibrium data 

interpretation. Key findings are as follows: 

Pine bark demonstrated moderate to high adsorption 

capacity, making it a viable, low-cost material for heavy 

metal removal from aqueous solutions. 

The Brouers-Sotolongo (B-S) kinetic model best 

described the adsorption kinetics, indicating a mixed 

mechanism involving both physical and chemical 

interactions. The half-reaction time (τ1/2 = 10.99 min) and 

fractal time parameter (αBS = 0.64329) highlighted the 

system’s heterogeneity. 

Figure 6. Comparison of two- and three-parameter isotherms optimized in Excel Solver 
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Three-parameter isotherms, particularly the B-S, 

Tóth, and Sips models, provided the most accurate 

representation of experimental data. These models 

effectively captured the complexity of the adsorption 

process, including surface heterogeneity and variable 

energy distributions. 

Non-linear regression using Microsoft Excel Solver 

proved to be an accessible and effective tool for 

optimizing adsorption model parameters. The HYBRID 

error function was identified as the most robust method 

for evaluating model performance. 

The results reinforce the potential of using pine bark 

as an environmentally friendly adsorbent in wastewater 

treatment applications. Furthermore, this study 

highlights the importance of selecting appropriate 

models and error functions to ensure accurate data 

interpretation, particularly for systems with complex 

adsorption mechanisms. 

In conclusion, this research contributes to the 

understanding of Pb2+ adsorption processes and 

demonstrates the practical application of advanced 

modeling techniques in environmental remediation 

studies. This study also contributes to the literature by 

Figure 7. Single representations of two-parameter isotherms optimized in Excel Solver 
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demonstrating how the minimization of error functions 

using Microsoft Excel Solver enables more accurate 

interpretation and representation of equilibrium and 

kinetic data. This approach facilitates the selection of 

purpose-specific adsorbents and provides a deeper 

understanding of adsorption mechanisms. In addition, it 

is suggested that the selected method in this study can 

help eliminate the complexities and confusions found in 

the literature regarding this topic. It has been concluded 

that using Excel Solver with a non-linear approach 

allows for more accurate processing of adsorption data 

and better reflects the adsorption mechanism of the 

selected adsorbent. 

References 

[1] A.M. Badran, U. Utra, N.S. Yussof, M.J.K. Bashir, Advancements 

in adsorption techniques for sustainable water purification: A 

focus on lead removal, Separations 10(11), 2023, 565.  

[2] N.e. Hira, S.S.M. Lock, N.F. Shoparwe, I.S.M Lock, L.G. Lim, C.L. 

Yiin, Y.H. Chan, M. Hassam, Review of Adsorption Studies for 

Contaminant Removal from Wastewater Using Molecular 

Simulation, Sustainability, 15(2), 2023, 1510.   

[3] U.A. Edet, A.O. Ifelebuegu, Kinetics, isotherms, and 

thermodynamic modeling of the adsorption of phosphates from 

model wastewater using recycled brick waste, Processes, 8(6), 

2020, 665.  

[4] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption 

isotherm systems, Chem Eng J, 156(1), 2010, 2–10. 

Figure 8.  Single representations of three-parameter isotherms optimized in Excel Solver 

https://doi.org/10.3390/separations10110565
https://doi.org/10.3390/separations10110565
https://doi.org/10.3390/separations10110565
https://doi.org/10.3390/separations10110565
https://doi.org/10.3390/su15021510
https://doi.org/10.3390/su15021510
https://doi.org/10.3390/su15021510
https://doi.org/10.3390/su15021510
https://doi.org/10.3390/pr8060665
https://doi.org/10.3390/pr8060665
https://doi.org/10.3390/pr8060665
https://doi.org/10.3390/pr8060665
https://doi.org/10.1016/j.cej.2009.09.013
https://doi.org/10.1016/j.cej.2009.09.013


Gundogdu and Bulut   Turk J Anal Chem, 7(2), 2025, 108–131   

130 

 

[5] H.R. Ghaffari, H. Pasalari, A. Tajvar, K. Dindarloo, B. Goudarzi, 

V. Alipour, A. Ghanbarneajd, Linear and nonlinear two-

parameter adsorption isotherm modeling: A case-study, Int J Eng 

Sci, 6(9), 2017, 1–11. 

[6] L.S. Chan, W.H. Cheung, S.J. Allen, G. McKay, Error analysis of 

adsorption isotherm models for acid dyes onto bamboo derived 

activated carbon, Chinese J Chem Eng, 20(3), 2012, 535–542. 

[7] K. Suwannahong, S. Wongcharee, T. Kreetachart, C. 

Sirilamduan, J. Rioyo, A. Wongphat, Evaluation of the Microsoft 

Excel Solver spreadsheet-based program for nonlinear 

expressions of adsorption isotherm models onto magnetic 

nanosorbent, Appl Sci, 11(16), 2021, 7432.  

[8] E.A. Adekunbi, J.O. Babajide, H.O. Oloyede, J.S. Amoko, O.A. 

Obijole, I.A. Oke, Evaluation of Microsoft Excel Solver as a tool 

for adsorption kinetics determination, Ife J Sci, 21(3), 2019, 169–

183. 
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