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1. Introduction  

 

Given Newton's third law, for every motion there is an equal and opposite reaction, such that 

the normal force opposes the weight of the object due to gravity. This force is always perpendicular to 

the contact surface. When a force and acceleration are considered together, it is known that the normal 

force is perpendicular to the velocity of the particle. Also, the motion is very important in terms of its 

energy and angular momentum, and from a physical point of view the energy of the particle is constant 

( Walecka, 2007; Saad & Low, 2014). Therefore, its energy and specific energy must be constant and 

the speed is constant.  

Furthermore, the rectifying curves play some important roles in mechanics, kinematics. For 

example, the position vector of a rectifying curve is in the direction of the Darboux vector. Hence, the 

rectifying curves can be expressed kinematically as those curves whose position vector field determines 

the axis of rotation at each point of the curve. Also, a curve is said to be geodesic if its curvature is 

equally zero, the geodesic equations are expressed by motion constancy in the form of energy and the 

equation of motion containing the energy and angular momentum is natural topics that has been 

considered in many books (Röschel, 1984; Röschel, 1986; Kuhnel, 2006; Pressley, 2010; Walecka, 

2013). 
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In such a sense, some mathematical characterizations on rotational surfaces are given in G3 

(Almaz & Kulahci, 2021), the definition of tube surfaces in Galilean space and differential features of 

tube surfaces are given (Almaz & Kulahci, 2022) and some mathematical studies are made on special 

tubular surface (Almaz & Kulahci, 2020). The authors analyzed the problem of constructing a family of 

surfaces from a given space-like (or time-like) geodesic curve using the Frenet frame of the curve in 

Minkowski space and the authors expressed the family of surfaces as a linear combination of the 

components of this frame (Kasap & Akyıldız, 2006). The authors investigated some curves in plane and 

in space; they stated the position vectors and gave some theorems about such curves in G3 (Ali, 2012; 

Öztekin & Tatlıpınar, 2012). The authors studied a tube in Euclidean 3-space satisfying some equation 

in terms of the Gaussian curvature, the mean curvature and the second Gaussian curvature (Ro & Yoon, 

2009). The similar studies and consequences about tubular surfaces in different spaces were given 

(Karacan & Yayli, 2008; Dede, 2013). 

In this study, the specific energy and angular momentum on tube surfaces are expressed 

generated by the rectifying curves in Galilean 3-space, and given geodesic formulas with the help of 

Clairaut’s theorem. 

 

2. Preliminaries 

 

A vector 𝑈⃗⃗ = (𝑢1, 𝑢2, 𝑢3) is called non-isotropic vector if the first component 𝑢1 is not equal to 

zero. All vectors 𝑈⃗⃗ = (1, 𝑢2, 𝑢3)  are unit non-isotropic vectors. The vectors 𝑈⃗⃗ = (0, 𝑢2, 𝑢3)  are 

isotropic vectors.  

Suppose that vectors 𝑈⃗⃗ = (𝑢1, 𝑢2, 𝑢3) and  𝑉⃗ = (𝑣1, 𝑣2, 𝑣3)  are two vectors in Galilean space 

𝐺3. Galilean scalar product in 𝐺3 is 

 

⟨𝑈⃗⃗ , 𝑉⃗ ⟩
𝐺3
= {

𝑢1𝑣1 if  𝑢1   ≠ 0  or  𝑣1   ≠ 0
𝑢2𝑣2 + 𝑢3𝑣3 if  𝑢1   = 0 and  𝑣1   = 0

 (1) 

 
(Yaglom, 1979). 

             The norm of the vector 𝑈⃗⃗ = (𝑢1, 𝑢2, 𝑢3) can be written as ‖𝑈⃗⃗ ‖ = √< 𝑈⃗⃗ , 𝑈⃗⃗ >𝐺3.  

             The vector product of 𝑈⃗⃗ = (𝑢1, 𝑢2, 𝑢3) and  𝑉⃗ = (𝑣1, 𝑣2, 𝑣3) in Galilean space 𝐺3  is defined 

by 

 

𝑈⃗⃗ ×𝐺3 𝑉⃗
 =

{
 
 

 
 |
0 𝑒2 𝑒3
𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3

| if  𝑢1   ≠ 0 or  𝑣1   ≠ 0

|

𝑒1 𝑒2 𝑒3
𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3

| if  𝑢1   = 0 and  𝑣1   = 0

 (2) 

 

Let 𝛼: 𝐼 ⊂ ℝ → 𝐺3  be a curve given by 𝛼(𝑠) = (𝑠, 𝑦(𝑠), 𝑧(𝑠))  and this curve is called the 

admissible curve. The Frenet-Serret frame are expressed by  

 

𝑡(𝑠) = 𝛼′(𝑠) = (1, 𝑦′(𝑠), 𝑧′(𝑠));  𝑛(𝑠) =
𝑡′(𝑠)

𝜅(𝑠)
;  𝑏(𝑠) =

𝑛′(𝑠)

𝜏(𝑠)
, 

 

where the first curvature is given as 𝜅(𝑠) =∥ 𝑡′(𝑠) ∥ and the second curvature function is defined as 

𝜏(𝑠) =∥ 𝑛′(𝑠) ∥. Also, Frenet-Serret equations are given by follows  

 

𝑡′ = 𝜅𝑛,   𝑛′ = 𝜏𝑏,   𝑏′ = −𝜏𝑛. (3) 

 

Let the equation of a surface Ω = Ω(𝑠, 𝑣) in 𝐺3 be given by  
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Ω(𝑠, 𝑣) = (𝑥(𝑠, 𝑣), 𝑦(𝑠, 𝑣), 𝑧(𝑠, 𝑣)). (4) 

 

Also, the unit isotropic normal vector field 𝜂 on Ω(𝑠, 𝑣) is defined as follows  

 

𝜂 =
Ω,𝑠 × Ω,𝑣

‖Ω,𝑠 × Ω,𝑣‖
, (5) 

 

where the partial differentiations with respect to 𝑠 and 𝑣 will be denoted as follows  

 

Ω,𝑠 =
𝜕Ω(𝑠, 𝑣)

𝜕𝑠
;  Ω,𝑣 =

𝜕Ω(𝑠, 𝑣)

𝜕𝑣
. (6) 

 

On the other hand, the isotropic unit vector 𝛿 on the tangent plane is defined as  

 

𝛿 =
𝑥,𝑣Ω,𝑠 − 𝑥,𝑠Ω,𝑣

𝑤
, (7) 

 

where 𝑥,𝑠 =
𝜕𝑥(𝑠,𝑣)

𝜕𝑠
, 𝑥,𝑣 =

𝜕𝑥(𝑠,𝑣)

𝜕𝑣
; 𝑤 = ‖Ω,𝑠 × Ω,𝑣‖, 

 

𝑔1 = 𝑥,𝑠, 𝑔2 = 𝑥,𝑣, 𝑔𝑖𝑗 = 𝑔𝑖𝑔𝑗;  𝑔
 1 =

𝑥,𝑣
𝑤
; 𝑔 2 =

𝑥,𝑠
𝑤
; 𝑔𝑖𝑗 = 𝑔𝑖𝑔𝑗;  𝑖, 𝑗 = 1,2 (8) 

 

ℎ11 = ⟨Ω,𝑠
∗ , Ω,𝑠

∗ ⟩;  ℎ12 = ⟨Ω,𝑠
∗ , Ω,𝑣

∗ ⟩;  ℎ22 = ⟨Ω,𝑣
∗ , Ω,𝑣

∗ ⟩, (9) 

 

where Ω,𝑠
∗  and Ω,𝑣

∗  are the projections of the vectors Ω,𝑠 and Ω,𝑣 onto the 𝑦𝑧-plane, respectively. The first 

fundamental form 𝑑𝑠2 of the surface Ω(𝑠, 𝑣) is given as  

 

𝑑𝑠2 = (𝑔1𝑑𝑠 + 𝑔2𝑑𝑣)
2 + 𝜀(ℎ11𝑑𝑠

2 + 2ℎ12𝑑𝑠𝑑𝑣 + ℎ22𝑑𝑣
2), (10) 

 

 where 

 

𝜀 = {
0, 𝑑𝑠: 𝑑𝑣    non − isotropic
1, 𝑑𝑠: 𝑑𝑣    isotropic

 (11) 

 

In this case, the coefficients of 𝑑𝑠2 are denoted by 𝑔𝑖𝑗
∗ . The function can be represented in terms 

of 𝑔𝑖 and ℎ𝑖𝑗 as follows  

 

𝑤2 = 𝑔1
2ℎ22 − 2𝑔1𝑔2ℎ12 + 𝑔2

2ℎ11. 
 

The Gaussian curvature and the mean curvature of a surface are defined by means of the second 

fundamental form 𝐿𝑖𝑗 coefficients, which are the normal components of Ω,𝑖,𝑗(𝑖, 𝑗 = 1,2). That is,  

 

Ω,𝑖,𝑗 =∑

𝑘=1

2

Γ𝑖𝑗
𝑘Ω,𝑘 + 𝐿𝑖𝑗𝜂, (12) 

 

where Γ𝑖𝑗
𝑘  is the Christoffel symbols of the surface and 𝐿𝑖𝑗 are given as  

 

𝐿𝑖𝑗 =
1

𝑔1
⟨𝑔1Ω ,𝑖,𝑗

∗ − 𝑔𝑖,𝑗Ω ,1
∗ , 𝜂⟩ =

1

𝑔2
⟨𝑔2Ω ,𝑖,𝑗

∗ − 𝑔𝑖,𝑗Ω ,2
∗ , 𝜂⟩, (13) 

 

From this, the Gaussian curvature 𝐾 and the mean curvature 𝐻 of the surface are given as  
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𝐾 =
𝐿11𝐿22 − 𝐿12

2

𝑤2
,   𝐻 =

𝑔2
2𝐿11 − 2𝑔1𝑔2𝐿12 + 𝑔1

2𝐿22
2

𝑤2
, (14) 

 

 (Röschel, 1984; Röschel, 1986; Milin-Šipuš & Divjak, 2012). 

 

Definition 1  Let α be a geodesic curve with arc-length parametrized on the revolution surface given 

as  

 

 𝛼(𝑠) = (𝑥(𝑤(𝑠), 𝑣(𝑠)), 𝑦(𝑤(𝑠), 𝑣(𝑠)), 𝑧(𝑤(𝑠), 𝑣(𝑠))). 

 

From the Lagrangian:  

 

𝐿 = 𝑤
. 2 + 𝜌2𝑣

. 2, 
 

and the Euler-Lagrange equations are given as  

 

𝜕

𝜕𝑠
(
𝜕𝐿
𝜕𝑤

𝜕𝑠

) =
𝜕𝐿

𝜕𝑤
;   
𝜕

𝜕𝑠
(
𝜕𝐿
𝜕𝑣

𝜕𝑠

) =
𝜕𝐿

𝜕𝑣
;    𝑤

..
= 𝜌𝜌′𝑣

. 2;    
𝑑

𝑑𝑠
(𝜌𝑣

. 2) = 0, (15) 

 

so that is a constant of the motion, (Kuhnel, 2006; Pressley, 2010).  

 

Theorem 1  (Clairaut’s Theorem) Let α a geodesic on a surface of rotation S, ρ be the distance function 

of a point on S from the axis of rotation and θ be the angle between α and the meridians of S. Then 

ρsinθ is constant along α. Conversely, if ρsinθ is constant along curve α on S, and if no part of α is part 

of some parallel of S then α is a geodesic, (Pressley, 2010). 
 

3. Some Discussions on the Tube Surfaces Generated by Rectifying Curves in G3 

 

In this section, the tube surfaces generated by rectifying curves are investigated according to 

mathematical approach. 

The envelope of a setting out sphere with exchanging radius is called as canal surface, the radius 

is defined by the orbit 𝛼(𝑤(𝑠)) with its center and a radius function 𝜌. Also, 𝜌 is a constant, then the 

canal surface is called as a tube or tubular surface. Let one expresses by 𝜌 the vector connecting the 

point from the curve 𝛼(𝑤(𝑠)) with the point from the surface. Therefore, position vector 𝑅 of a point 

on the surface is given as  

 

𝑅 = 𝛼(𝑤(𝑠)) + 𝜌 (16) 

 

and since 𝜌 lies in the Euclidean normal plane of the curve 𝛼(𝑤(𝑠)), the points at a distance 𝐴1 from a 

point of 𝛼(𝑤(𝑠)) (Kuhnel, 2006; Pressley, 2010). Therefore, one writes the equation 𝜌 = 𝐴1(cos𝑣1𝑛
→
+

sin𝑣1𝑏
→

), where 𝑣1 is the Euclidean angle between the isotropic vectors; 𝑛⃗⃖ and 𝜌⃖ lie in the Euclidean 

normal plane of the curve 𝛼(𝑤(𝑠)). 

Also, an isotropic rectifying curve is expressed with vector fields tangential component and 

binormal component by using the Galilean frame in 𝐺3. Then, the position vector of the smooth isotropic 

rectifying curve 𝛼: 𝐼 ⊂ ℝ → 𝐺3 with curvatures 𝜅(𝑤) ≥ 0, 𝜏 in 𝐺3 satisfies the equation  

 

𝛼(𝑤) = Σ0𝑡 + Σ1𝑏⃗⃖, 
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for some differentiable functions Σ0(𝑤), Σ1(𝑤) and differentiating previous equation with respect to 𝑤 

and using the Frenet frame equations (3), one obtains  

 

Σ0 = 𝑐 + 𝑤; Σ1  =
𝜅(𝑤)(𝑤 + 𝑐)

𝜏(𝑤)
= 𝑑 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

 

Thus, the position vector is written as  𝛼(𝑤) = (𝑤 + 𝑐)𝑡 + 𝑑𝑏⃗⃖, where 𝑑 =
𝜅(𝑤)(𝑤+𝑐)

𝜏(𝑤)
, 𝑐, 𝑑 ∈ ℝ0.  

 

3.1. The Clairaut’s theorem on tubular surfaces generated by rectifying curves in G3 

 

In this subsection, by using the Clairaut’s theorem, the tubular surfaces generated by rectifying 

curves are characterized in 𝐺3. 

 

Theorem 2  Let Ω(w, v1) be the tubular surface generated by rectifying curve and α: I ⊂ ℝ → G3 be a 

regular isotropic curve with curvatures κ(w) ≥ 0, τ in G3. Then the following statements hold: 

1) 𝐾(the Gaussian curvature) and 𝐻(the mean curvature) of the tubular surface Ω are expressed 

as follows  

 

 𝐾 =
cos𝑣1(𝜏

′(𝑤)𝑑−𝜅′(𝑤)(𝑤+𝑐)−2𝜅(𝑤))

𝐴1
  or  𝐾 =

−𝜅(𝑤)cos𝑣1

𝐴1
;   𝐻 =

1

2𝐴1
. 

 

where this family of the tube surface has constant mean curvature. 

2) For the parameter 𝑣1 = arccos (
−𝐾

2𝜅(𝑤)𝐻
) the first fundamental form of the surface Ω is given by  

 

 𝐼 = 2𝑤
. 2 + (

𝜅(𝑤)cos𝑣1

𝐾
)
2
𝑣
.

1
2 = 2𝑤

. 2 + (
1

2𝐻
)
2
𝑣
.

1
2. 

 

3) If the curve 𝛼  is a geodesic on the surface Ω(𝑤, 𝑣1), then if and only if the following 

equations are satisfied  

 

 𝜅(𝑤) =
−𝐾

2𝐻cos(2𝐻 ∫ sin𝜃𝑑𝑠)
;  𝜏(𝑤) = −

(𝑤+𝑐)𝐾

2𝑑𝐻𝑐𝑜𝑠(𝑣1)
, 

 

where 𝑑, 𝑑𝑖 , 𝑐, 𝑐𝑖 ∈ ℝ0.  

 

Proof. The tube surface generated by rectifying curve is parametrized as 

 

Ω(𝑤, 𝑣1) = 𝛼(𝑤(𝑠)) + 𝐴1(cos𝑣1(𝑠)𝑛⃗⃖ + sin𝑣1(𝑠)𝑏⃗⃖), (17) 

 

where 𝑣1 is angle between the isotropic vectors 𝑛⃗⃖and 𝑅⃗⃖ = 𝐴1, one can get 

 

Ω(𝑤, 𝑣1) = (𝑤 + 𝑐)𝑡 + 𝐴1cos𝑣1𝑛⃗⃖ + (𝑑 + 𝐴1sin𝑣1)𝑏⃗⃖ (18) 

ve 

Ω(𝑤, 𝑣1) = (𝑤 + 𝑐)𝑡 + 𝐴1cos𝑣1𝑛⃗⃖ + (
𝜅(𝑤)(𝑤 + 𝑐)

𝜏(𝑤)
+ 𝐴1sin𝑣1) 𝑏⃗⃖, (19) 

 

then, one can get partial derivatives of Ω(𝑤, 𝑣1) with respect to 𝑤 and 𝑣1 as follows 
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Ω𝑤 = 𝑡 + ((𝑤 + 𝑐)𝜅 − 𝜏(𝑑 + 𝐴1sin𝑣1))𝑛⃗⃖ + 𝜏𝐴1cos𝑣1𝑏⃗⃖ = 𝑁𝑤, (20) 

 

Ω𝑣1 = 𝐴1(−sin𝑣1𝑛⃗⃖ + cos𝑣1𝑏⃗⃖) = 𝐴1𝑁𝑣1 . (21) 

It follows that the vector cross product is obtained as 

 

Ω𝑤 × Ω𝑣1 = −𝐴1cos𝑣1𝑛⃗⃖ − 𝐴1sin𝑣1𝑏⃗⃖; (22) 

 

‖Ω𝑤 × Ω𝑣1‖ = 𝐴1, (23) 

 

 by using (22) and (23), the normal vector 𝜂 of Ω(𝑤, 𝑣1) is written as  

 

𝜂 = −cos𝑣1𝑛⃗⃖ − sin𝑣1𝑏⃗⃖, (24) 

 

from (7), the following equation is written  

 

𝛿 =
−Ω𝑣1
𝐴1

= sin𝑣1𝑛⃗⃖ − cos𝑣1𝑏⃗⃖, 

  

which 𝑛⃗⃖ and 𝑏⃗⃖ are the isotropic vectors, and by using the Galilean Frenet frame, one gets  

 

𝑥(𝑤, 𝑣1) = 𝑤 + 𝑐; 𝑥𝑤 = 1 = 𝑔1; 𝑥𝑣1 = 0 = 𝑔2;  

𝑔11 = 1, 𝑔12 = 0, 𝑔22 = 0; 𝑔
1 = 0, 𝑔2 =

−1

𝐴1
; (25) 

ℎ11 = 1, ℎ12 = 0, ℎ22 = 𝐴1
2. (26) 

 

After the substitution of (25) and (26) into (10), the first fundamental form is written as  

 

𝐼 = 𝑑𝑤2 + 𝜀(𝑑𝑤2 + 𝐴1
2𝑑𝑣1

2) (27) 

 

or for 𝜀 = 1, one gets  

 

𝐼 = 2𝑑𝑤2 + 𝐴1
2𝑑𝑣1

2 

 

 and for the second fundamental form of Ω(𝑤, 𝑣1), one has the following equations  

 

Ω𝑤𝑤 = (2𝜅(𝑤) + (𝑤 + 𝑐)𝜅
′(𝑤) − 𝜏′(𝑤)(𝑑 + 𝐴1sin𝑣1) − 𝜏

2(𝑤)𝐴1cos𝑣1)𝑛⃗⃖ 

+(𝜏(𝑤)𝜅(𝑤)(𝑤 + 𝑐) − 𝜏2(𝑤)(𝑑 + 𝐴1sin𝑣1) + 𝜏
′(𝑤)𝐴1cos𝑣1)𝑏⃗⃖; 

 

Ω𝑣1𝑣1 = 𝐴1(−cos𝑣1𝑛⃗⃖ − sin𝑣1𝑏⃗⃖);   Ω𝑤𝑣1 = −𝜏(𝑤)𝐴1cos𝑣1𝑛⃗⃖ − 𝜏(𝑤)𝐴1sin𝑣1𝑏⃗⃖ (28) 

 

and from (13) and (24), (28) the coefficients of the second fundamental form are given as follows  

 

𝐿11 = (−2𝜅(𝑤) + 𝜏
′(𝑤)𝑑 − 𝜅′(𝑤)(𝑤 + 𝑐))cos𝑣1 + 𝜏

2(𝑤)𝐴1;  

𝐿22 = 𝐴1;  𝐿12 = 𝜏(𝑤)𝐴1. 
(29) 

 

Thus, the Gaussian curvature 𝐾 and the mean curvature 𝐻 are expressed as  
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𝐾 =
cos𝑣1(𝜏

′(𝑤)𝑑 − 𝜅′(𝑤)(𝑤 + 𝑐) − 2𝜅(𝑤))

𝐴1
=
−𝜅(𝑤)cos𝑣1

𝐴1
(𝜏(𝑤)𝑑

= 𝜅(𝑤)(𝑤 + 𝑐)); 

(30) 

 

𝐻 =
1

2𝐴1
. (31) 

 

Therefore, from the previous equation, one can write 

 

 𝐴1 =
−𝜅(𝑤)cos𝑣1

𝐾
=

1

2𝐻
    or    − 2𝜅(𝑤)cos𝑣1 =

𝐾

𝐻
 

 

and hence the following equation is satisfied  

 

𝑣1 = arccos (
−𝐾

2𝜅(𝑤)𝐻
). 

 

Furthermore, one can write the first fundamental form as follows 

 

𝐼 = 2𝑤
. 2 + 𝐴1

2𝑣
.

1
2 = 2𝑤

. 2 + (
𝜅(𝑤)cos𝑣1

𝐾
)
2

𝑣
.

1
2 = 2𝑤

. 2 + (
1

2𝐻
)
2

𝑣
.

1
2. 

 

Since, 𝜏 ≠ 0, for  
(𝑤+𝑐)𝜅(𝑤)

𝑑
= 𝜏(𝑤), the first fundamental form has two variable parameters and 

since the first fundamental form is diagonal the parametrization coordinates are orthogonal. Then, the 

Lagrangian equation is written as  

 

𝐿 = 2𝑤
. 2 + (

1

2𝐻
)
2

𝑣
.

1
2. (32) 

 

Then, a geodesic on the surface Ω(𝑤, 𝑣1) is expressed by using the Euler-Lagrangian equations 

 

𝜕

𝜕𝑠
(
𝜕𝐿
𝜕𝑤

𝜕𝑠

) =
𝜕𝐿

𝜕𝑤
;   
𝜕

𝜕𝑠
(
𝜕𝐿
𝜕𝑣1

𝜕𝑠

) =
𝜕𝐿

𝜕𝑣1
. (33) 

 

1) For  
𝜕

𝜕𝑠
(
𝜕𝐿
𝜕𝑤

𝜕𝑠

) =
𝜕𝐿

𝜕𝑤
= 0, one obtains 

𝜕𝐿
𝜕𝑤

𝜕𝑠

= 4𝑤
.
=constant, which means 

 

𝑤 =
𝑐1
4
𝑠 + 𝑑1. (34) 

 

2) For 
𝜕

𝜕𝑠
(
𝜕𝐿
𝜕𝑣1
𝜕𝑠

) =
𝜕𝐿

𝜕𝑣1
= 0, one can obtain 

𝜕

𝜕𝑠
(2 (

1

𝐻
)
2
𝑣
.

1) = 0, where 2 (
1

𝐻
)
2
𝑣
.

1 is constant along the 

geodesic and leading to 

 

𝑣1 =
𝑐2

2𝐴1
2 𝑠 + 𝑑2    or   𝑣1 = 2𝐻

2𝑐2𝑠 + 𝑑2 (35) 

 

and since 𝑣1 = arccos (
−𝐾

2𝜅(𝑤)𝐻
), one gets  
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arccos (
−𝐾

2𝜅(𝑤)𝐻
) = 2𝐻2𝑐2𝑠 + 𝑑2. 

Let 𝛼(𝑤) be a geodesic on the surface of Ω(𝑤, 𝑣1) so it is given as (𝑤(𝑠), 𝑣1(𝑠)). In the mean 

time, the angle between the meridian 𝛼
.
 and 𝑁𝑤 is 𝜃; the vector pointing along paralells of Ω is 𝑁𝑣1 . 

Hence, one can say that {𝑁𝑤, 𝑁𝑣1} has orthonormal basis, and a unit vector 𝛼
.
 tangent to Ω(𝑤, 𝑣1) can 

be written as, 

 

𝛼
.
= 𝑁𝑤cos𝜃 + 𝑁𝑣1sin𝜃 = 𝑤

.
Ω𝑤 + 𝑣

.

1Ω𝑣1 = 𝑤
.
𝑁𝑤 + 𝑣

.

1

1

2𝐻
𝑁𝑣1 . 

 

One can see that 
1

2𝐻
𝑣
.

1 = sin𝜃, and hence one can write 2 (
1

2𝐻
)
2
𝑣
.

1 =
1

𝐻
sin𝜃 being a constant 

along 𝛼(𝑤). On the contrary, 𝛼(𝑤) is a rectifying curve with 2 (
1

2𝐻
)
2
𝑣
.

1 =
1

𝐻
sin𝜃 which is a constant, 

by using the second Euler-Lagrange equation and by differentiating 𝐿 and by substituting this into the 

second equation, one gets the first Euler Lagrange equation  

 

𝑣1 = ∫
sin𝜃

𝐴1
𝑑𝑠   or   − ∫

𝐾sin𝜃

𝜅(𝑤)cos𝑣1
𝑑𝑠 = 2∫ 𝐻sin𝜃𝑑𝑠 = 𝑣1 (36) 

 

and since 𝑣1 = arccos (
−𝐾

2𝜅(𝑤)𝐻
), one has 

 

arccos (
−𝐾

2𝜅(𝑤)𝐻
) = ∫

sin𝜃

𝐴1
𝑑𝑠 ⇒ cos (2∫ 𝐻sin𝜃𝑑𝑠) =

−𝐾

2𝜅(𝑤)𝐻
 

 

and hence, for the rectifying curve the curvatures of the curve can be written as  

 

𝜅(𝑤) =
−𝐾

2𝐻cos(2 ∫ 𝐻sin𝜃𝑑𝑠)
;   𝜏(𝑤) = −

(𝑤 + 𝑐)𝐾

2𝑑𝐻𝑐𝑜𝑠(𝑣1)
. 

 

Furthermore, for 𝑤 =
𝑐1

4
𝑠 + 𝑑1, one can obtain 𝑤

.
=

𝑐1

4
. Also, since one gets 4𝑤

.
= 4cos𝜃 being 

a constant along 𝛼(𝑤). If 𝛼(𝑤) is a rectifying curve given as 4cos𝜃 =constant, then from the first Euler 

Lagrange equation and the second Euler Lagrange equation, one has  

 

𝑤 = ∫ cos𝜃𝑑𝑠 ( or   𝑤 = ∫ cos𝜃𝑑𝑠 + 𝑐8), (37) 

 

where 𝑐𝑖 , 𝑑𝑖 ∈ ℝ0.  

 

4. The Physics Approach on Tube Surfaces Generated by Rectifying Curves in G3 

 

In this section, one considers a geodesic movement by reaching the time-dependent parameter 

𝑤(𝑠), from here one can clearly say that one will try to express some characterizations on surfaces with 

this path called the trajectory of the particle. Then, a parametrized curve Ω(𝑤(𝑠), 𝑣1(𝑠)) is given as  

 

Ω(𝑤(𝑠), 𝑣1(𝑠)) = (𝑤(𝑠) + 𝑐)𝑡 +
1

2𝐻
cos𝑣1(𝑠)𝑛⃗⃖ + (𝑑 +

1

2𝐻
sin𝑣1(𝑠))𝑏⃗⃖ (38) 

or 
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Ω(𝑤(𝑠), 𝑣1(𝑠)) = (𝑤(𝑠) + 𝑐)𝑡 +
cos𝑣1(𝑠)

2𝐻
𝑛⃗⃖ + (

𝜅(𝑤(𝑠))(𝑤(𝑠) + 𝑐)

𝜏(𝑠)
+
sin𝑣1(𝑠)

2𝐻
)𝑏⃗⃖. (39) 

 

To calculate the derivative of this tangent vector along the curve using the chain rule, the tangent 

vector of the curve 𝛼(𝑤) can be written as follows:  

 
𝑑Ω(𝑤(𝑠), 𝑣1(𝑠))

𝑑𝑠
=
𝑑𝑤(𝑠)

𝑑𝑠
Ω𝑤 +

𝑑𝑣1(𝑠)

𝑑𝑠
Ω𝑣1 , (40) 

 

𝛼
.
= 𝑁𝑤cos𝜃 + 𝑁𝑣1sin𝜃 = 𝑤

.
Ω𝑤 + 𝑣1

.
Ω𝑣1 = 𝑤

.
𝑁𝑤 + 𝑣1

. 1

2𝐻
𝑁𝑣1 . (41) 

 

Since the velocity is tangent vector of the geodesic curve, one gets  

 

𝑉⃗⃖ =
𝑑Ω(𝑤(𝑠), 𝑣1(𝑠))

𝑑𝑠
= 𝑉𝑤Ω𝑤 + 𝑉

𝑣1Ω𝑣1 . 

 

One thinks that 𝑉𝑤
∗
= √2𝑉𝑤 = 𝑉cos𝜃 is the first axis, which is the radial velocity; since the 

horizontal angular velocity is 𝑉𝑣1 , 𝑉𝑣1
∗
=

𝑉𝑣1

2𝐻
= 𝑉sin𝜃  is the second axis which is the horizontal 

component of the velocity vector. One can also express the velocity with respect to polar coordinates in 

the tangent plane to find the slope and norm with respect to the given radial direction on the surface. 

Also, the angle 𝜃 expresses the side of the velocity relative to the side Ω𝑤∗ in the same plane, and the 

speed is constant along the geodesic for parametrized geodesics. These features, which physically 

require energy and momentum, is given as follows.  

 

𝐸 =
𝑉2

2
=
((√2𝐸cos𝜃)

2
+ (√2𝐸sin𝜃)

2
)

2
= (

𝑑𝑤

𝑑𝑠
)
2

+
1

2
(
1

2𝐻
)
2

(
𝑑𝑣1
𝑑𝑠
)
2

=
1

2
(𝑉2cos2𝜃 + 𝑉2sin2𝜃) 

(42) 

 

from the right side of (42), both the specific energy and speed are constant along geodesic. 

 

Theorem 3.  Let Ω(w, v1) be the tube surface generated by isotropic rectifying curve α(w), then the 

following statements hold: 

• For the parameter 𝑣1 = 2𝑐2𝐻
2𝑠 + 𝑑2  or  𝑣1 = 2𝐻 ∫ sin𝜃𝑑𝑠, the specific angular momentum 

ℓ is given by 

 

ℓ =
1

2𝐻
𝑉sin𝜃 = −

𝜅(𝑤)

𝐾
𝑉cos𝑣1sin𝜃 

  

and the specific energy 𝐸 is written as  

 

𝐸 =
1

2
(
𝑐5
2
+ 4𝐻2ℓ2) = cos2𝜃 + 2𝐻2ℓ2   or    

2𝐻2ℓ2

sin2𝜃
= 𝐸 

  

• For the parameter 𝑤 = ∫ cos𝜃𝑑𝑠(or 𝑤 =
𝑐1

4
𝑠 + 𝑑1), the specific angular momentum ℓ is 

given by 
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ℓ =
1

√2
𝑉cos𝜃 

 

and the specific energy 𝐸 is given by 

 

𝐸 = 4ℓ2 + 𝑐7𝐻
2 =

1

2
(8ℓ2 + sin2𝜃)   or  

ℓ2

cos2𝜃
= 𝐸, 

 

where the curve 𝛼(𝑤) is a geodesic on the surface Ω and 𝑐𝑖 ∈ ℝ0.  

 

Proof. 1) For 𝑣1 = 2𝑐2𝐻
2𝑠 + 𝑑2( 𝑣1 = 2𝐻 ∫ sin𝜃𝑑𝑠) from circular movement around an axis with 

radius ‖𝑅⃗⃖‖ =
1

2𝐻
 or 𝑅⃗⃖ =

1

2𝐻
𝑒1⃖⃗ ⃗⃗ ,  that is to say the velocity 𝑉𝑣1

∗
 = 

1

2𝐻

𝑑𝑣1

𝑑𝑠
  =

−𝜅(𝑤)cos𝑣1

𝐾

𝑑𝑣1

𝑑𝑠
 in the angular 

side multiplied by the radius 
1

2𝐻
 of the circle. Physically, we can write the specific angular momentum 

ℓ as the following equations 

 

ℓ = 𝑒3⃖⃗ ⃗⃗ . (𝑅⃗⃖ ×𝐺3 𝑉⃗⃖) =
1

2𝐻
𝑉sin𝜃  or  ℓ =

−𝜅(𝑤)cos𝑣1
𝐾

𝑉sin𝜃. (43) 

 

Also, since 𝑉𝑣1
∗
 = 𝑉sin𝜃 = √2𝐸sin𝜃, one gets (

1

2𝐻
)
2 𝑑𝑣1

𝑑𝑠
=

1

2𝐻
𝑉sin𝜃, and since the specific 

angular momentum is constant along a geodesic, one has  

 

ℓ = (
1

2𝐻
)
2 𝑑𝑣1
𝑑𝑠

⇒
𝑑𝑣1
𝑑𝑠

= 4𝐻2ℓ. (44) 

 

This expression can be rewritten in the form of the changeable angular velocity 𝑑𝑣1/𝑑𝑠 

according to the specific energy formula where the constant angular momentum, the specific energy 𝐸 

is expressed by the radial motion with another of the motion as  

 

𝐸 = (
𝑑𝑤

𝑑𝑠
)
2
+ 2𝐻2ℓ2 =

1

2
(
𝑐5

2
+ 4𝐻2ℓ2) = cos2𝜃 + 2𝐻2ℓ2   or    ℓ =

1

2𝐻
√2𝐸sin𝜃,   

 

then, we get  
2𝐻2ℓ2

sin2𝜃
= 𝐸. 

2) For the 𝑤 = ∫ cos𝜃𝑑𝑠( 𝑤 =
𝑐1

4
𝑠 + 𝑑1) one writes  

1

√2
𝑤
.
=

1

√2
cos𝜃 = constant along 𝛼(𝑤), 

then from circular movement round an axis with radius ‖𝑅⃗⃖‖ =
1

√2
  or  𝑅⃗⃖ = −

1

√2
𝑒2⃖⃗ ⃗⃗ ,  that is to say the 

velocity 𝑉𝑤
∗
=

1

√2
𝑉𝑤 = 𝑉cos𝜃 = 

1

√2

𝑑𝑤

𝑑𝑠
= √2𝐸cos𝜃 in the angular direction is multiplied by the radius 

1

√2
  of the circle.  The first geodesic equation has the specific angular momentum, which is constant 

along a geodesic and hence, one can write it as follows  

 

ℓ = 𝑒3⃖⃗ ⃗⃗ . (𝑅⃗⃖ ×𝐺3 𝑉⃗⃖) =
1

√2
𝑉cos𝜃. (45) 

 

Furthermore, since  
1

√2

𝑑𝑤

𝑑𝑠
= 𝑉cos𝜃,  one can write 

1

2

𝑑𝑤

𝑑𝑠
=

1

√2
𝑉cos𝜃 , and that the specific 

angular momentum is constant along a geodesic, one gets 2ℓ =
𝑑𝑤

𝑑𝑠
.  Hence, from the changeable angular 
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velocity 𝑑𝑤/𝑑𝑠 in the specific energy formula 𝐸 according to the constant angular momentum. Hence, 

𝐸 is given by 

 

𝐸 =
1

2
((
𝑑𝑤

𝑑𝑠
)
2
+ (

1

2𝐻
)
2
(
𝑑𝑣1

𝑑𝑠
)
2
) = 4ℓ2 + 𝑐8𝐻

2 =
1

2
(8ℓ2 + sin2𝜃)   or   ℓ = √𝐸cos𝜃,  

 

then, we get  
ℓ2

cos2𝜃
= 𝐸.  

 

5. Discussion and Conclusion 

 

In this paper, it is explored that the conditions of being geodesic, in which the curves can be 

chosen to be rectifying curves, allows one to constitute the specific energy and specific angular 

momentum. Also, the tube surfaces generated by rectifying curves are expressed and the some certain 

results of describing the rectifying geodesics are examined on the tubular surfaces in detail. Furthermore, 

the specific energy and the angular momentum are expressed on these tube surfaces in Galilean 3-space. 
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