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Abstract: In this paper, some features on the tube surface generated by rectifying curves are expressed in Galilean
3-space, and Clairaut’s theorem is generalized on this surface in Galilean space. Furthermore, the specific kinetic
energy and the specific angular momentum are expressed on tube surface formed by rectifying curves that are
geodesics obtained with the help of Clairaut’s theorem.
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Spesifik Enerji ve Spesifik A¢isal Momentum: G3 de Ozel Tiip Yiizeyler

Oz: Bu calismada, rektifiye egriler ile olusturulan tiip yiizeyindeki bazi 6zellikler Galilean 3-uzayinda ifade
edilmis ve Galilean uzaymda Clairaut teoremi bu yiizey iizerinde genellestirilmistir. Ayrica Clairaut teoremi
yardimiyla elde edilen jeodezik rektifiye egriler ile olusturulan tiip ylizeyinde spesifik kinetik enerji ve spesifik
acisal momentum ifade edilmistir.

Anahtar Kelimeler: Clairaut’s teoremi, Galilean uzayi, Rektifiye egriler, Spesifik agisal momentum, Spesifik kinetik enerji,
Tubular yiizeyler

1. Introduction

Given Newton's third law, for every motion there is an equal and opposite reaction, such that
the normal force opposes the weight of the object due to gravity. This force is always perpendicular to
the contact surface. When a force and acceleration are considered together, it is known that the normal
force is perpendicular to the velocity of the particle. Also, the motion is very important in terms of its
energy and angular momentum, and from a physical point of view the energy of the particle is constant
( Walecka, 2007; Saad & Low, 2014). Therefore, its energy and specific energy must be constant and
the speed is constant.

Furthermore, the rectifying curves play some important roles in mechanics, kinematics. For
example, the position vector of a rectifying curve is in the direction of the Darboux vector. Hence, the
rectifying curves can be expressed kinematically as those curves whose position vector field determines
the axis of rotation at each point of the curve. Also, a curve is said to be geodesic if its curvature is
equally zero, the geodesic equations are expressed by motion constancy in the form of energy and the
equation of motion containing the energy and angular momentum is natural topics that has been
considered in many books (Roschel, 1984; Roschel, 1986; Kuhnel, 2006; Pressley, 2010; Walecka,
2013).
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In such a sense, some mathematical characterizations on rotational surfaces are given in G3
(Almaz & Kulahci, 2021), the definition of tube surfaces in Galilean space and differential features of
tube surfaces are given (Almaz & Kulahci, 2022) and some mathematical studies are made on special
tubular surface (Almaz & Kulahci, 2020). The authors analyzed the problem of constructing a family of
surfaces from a given space-like (or time-like) geodesic curve using the Frenet frame of the curve in
Minkowski space and the authors expressed the family of surfaces as a linear combination of the
components of this frame (Kasap & Akyildiz, 2006). The authors investigated some curves in plane and
in space; they stated the position vectors and gave some theorems about such curves in Gz (Ali, 2012;
Oztekin & Tatlipinar, 2012). The authors studied a tube in Euclidean 3-space satisfying some equation
in terms of the Gaussian curvature, the mean curvature and the second Gaussian curvature (Ro & Yoon,
2009). The similar studies and consequences about tubular surfaces in different spaces were given
(Karacan & Yayli, 2008; Dede, 2013).

In this study, the specific energy and angular momentum on tube surfaces are expressed
generated by the rectifying curves in Galilean 3-space, and given geodesic formulas with the help of
Clairaut’s theorem.

2. Preliminaries

A vector U = (uq, Uy, u3) is called non-isotropic vector if the first component u; is not equal to
zero. All vectors U = (1,u,,u3) are unit non-isotropic vectors. The vectors U = (0, Uy, Uz) are
isotropic vectors.

Suppose that vectors U= (uq,uy,u3) and V= (v4,vy,v3) are two vectors in Galilean space
G. Galilean scalar product in G5 is

<U)' I7>G3 =

{ulvl ifu; #0orv; #0 (0

u,v, +uzvy; ifuyy =0and v; =0

(Yaglom, 1979).

The norm of the vector U = (u4, Uy, uz) can be written as ||l7|| = /< Uuu >6,-

The vector product of U= (uq,uy,u3) and V= (v1, V5, v3) in Galilean space Gz is defined
by

ifu;, #0orv; #0

V1 V2 V3
€1 € ¢€3
Uy Uz Usg
V1 VU V3

ﬁXG3‘7=

2)

ifu; =0and v; =0

Let a:1 € R - G5 be a curve given by a(s) = (s,y(s),z(s)) and this curve is called the
admissible curve. The Frenet-Serret frame are expressed by

s).
) - ‘[(s)'

t'(
t(s) =a'(s) = (1,y'(s),z'(s)); n(s) = —=; b(s)
K(s)
where the first curvature is given as k(s) =l t'(s) Il and the second curvature function is defined as
7(s) =l n'(s) Il. Also, Frenet-Serret equations are given by follows

t'=xn, n' =tbh, b’ = —1n. 3)

Let the equation of a surface 0 = Q(s, v) in G5 be given by

(V)]
~
w
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Q(s,v) = (x(s,v),y(s,v), z(s, V). (4)

Also, the unit isotropic normal vector field n on Q(s, v) is defined as follows

Qe xQ,
=752 o (%)
1925 > 0|
where the partial differentiations with respect to s and v will be denoted as follows
0Q(s,v) 0Q(s,v)
= ), =—2= 6
S ds v ov ©
On the other hand, the isotropic unit vector § on the tangent plane is defined as
5 = x,vﬂ,s - x,s-Q,v, (7)
w
__0x(sv) __ 0x(sv), _
where xg = ===, x, = —-—=w = los x
_ _ _ . l_x,v. Z_x,s. o gt i
91 =%592 = X0, 9ij = 9i95; 91 = 9P =797 =9'9 Lj=1.2 (8)
hiy = (@5 Q) hia = (Q5, Q) hap = (Q3,Q5), )

where (0 and (1), are the projections of the vectors () ¢ and (1 ,, onto the yz-plane, respectively. The first
fundamental form ds? of the surface Q(s, v) is given as

ds? = (g,ds + g,dv)? + (hy1ds? + 2h,,dsdv + hy,dv?), (10)
where

(11

{0, ds:dv non — isotropic
&= . :
1, ds:dv isotropic

In this case, the coefficients of ds? are denoted by g; ;- The function can be represented in terms
of g; and h;; as follows

w? = gfhy, — 2919,h12 + 95h5.

The Gaussian curvature and the mean curvature of a surface are defined by means of the second
fundamental form L;; coefficients, which are the normal components of Q; ;(i,j = 1,2). That is,

2
Q5= ) O+ Lyn, (12)
k=1

where F{; is the Christoffel symbols of the surface and L;; are given as

1 * * 1 * *
Lij =— (915 — 9i,;Q70,m) = — (9297 — 91,272, m), (13)
g1 92

From this, the Gaussian curvature K and the mean curvature H of the surface are given as
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Li{L,, — L? 2L, —2 L, + g?12
K = 11 222 12’ Hzgz 11 9192 12 T 91 22’ (14)
w w

(Roschel, 1984; Roschel, 1986; Milin—Sipu§ & Divjak, 2012).

Definition 1 Let a be a geodesic curve with arc-length parametrized on the revolution surface given
as

a(s) = (x(w(s), v(s)), yw(s), v(s)), 2(w(s), v(s)))-
From the Lagrangian:
L =w? + p?v?,

and the Euler-Lagrange equations are given as

ofoL) oL afo\ oL . .odo g s
as\ v | aw’ as\ 2 | ov’ WEPPUS gV (15)
as as

so that is a constant of the motion, (Kuhnel, 2006; Pressley, 2010).

Theorem 1 (Clairaut’s Theorem) Let a a geodesic on a surface of rotation S, p be the distance function
of a point on S from the axis of rotation and 0 be the angle between a and the meridians of S. Then
psind is constant along . Conversely, if psin® is constant along curve a on S, and if no part of « is part
of some parallel of S then a is a geodesic, (Pressley, 2010).

3. Some Discussions on the Tube Surfaces Generated by Rectifying Curves in G;3

In this section, the tube surfaces generated by rectifying curves are investigated according to
mathematical approach.

The envelope of a setting out sphere with exchanging radius is called as canal surface, the radius
is defined by the orbit a(w(s)) with its center and a radius function p. Also, p is a constant, then the
canal surface is called as a tube or tubular surface. Let one expresses by p the vector connecting the
point from the curve a(w(s)) with the point from the surface. Therefore, position vector R of a point
on the surface is given as

R=a(w(s))+p (16)

and since p lies in the Euclidean normal plane of the curve a(w(s)), the points at a distance A; from a

point of a(w(s)) (Kuhnel, 2006; Pressley, 2010). Therefore, one writes the equation p = Al(cosvﬂ_{ +

sinv, b), where v, is the Euclidean angle between the isotropic vectors; 1 and p lie in the Euclidean
normal plane of the curve a(w(s)).

Also, an isotropic rectifying curve is expressed with vector fields tangential component and
binormal component by using the Galilean frame in G3. Then, the position vector of the smooth isotropic
rectifying curve a: I € R — G with curvatures k(w) = 0, T in G5 satisfies the equation

a(w) = Syt + 5, b,

()]
~
(9]
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for some differentiable functions Xy(w), X; (w) and differentiating previous equation with respect to w
and using the Frenet frame equations (3), one obtains

kw)(w + ¢)
Yo =c+w;L; =——— =d = constant.
(W)
Thus, the position vector is written as a(w) = (w + ¢)t + db, where d = % c,d € R,.

3.1. The Clairaut’s theorem on tubular surfaces generated by rectifying curves in G

In this subsection, by using the Clairaut’s theorem, the tubular surfaces generated by rectifying
curves are characterized in G.

Theorem 2 Let Q(w, v,) be the tubular surface generated by rectifying curve and a:I ¢ R — Gz be a
regular isotropic curve with curvatures k(w) = 0, T in G3. Then the following statements hold:

1) K(the Gaussian curvature) and H(the mean curvature) of the tubular surface Q are expressed
as follows

—Kk(w)cosvy 1

; H=—.

cosvy (7' (w)d—k' W) (w+c)—2k(w)) or K =
Ay Ay

K =

where this family of the tube surface has constant mean curvature.
-K
2k(W)H

2) For the parameter v, = arccos ( ) the first fundamental form of the surface Q is given by

1= 207 4 (K000 2 g2 4 (1) 52

3) If the curve a is a geodesic on the surface Q(w,v;), then if and only if the following
equations are satisfied

-K _ (w+o)K

H W) = )
2Hcos(2H [ sin@ds) w) 2dHcos(vy)

k(w) =

where d,d;, c, ¢c; € R,.
Proof. The tube surface generated by rectifying curve is parametrized as

Qw, v1) = a(w(s)) + Ay (cosv, ()7 + sinv, (s)b), (17)
where v, is angle between the isotropic vectors iiand R= A4, one can get

Qw,vy) = (W + ¢)t + Aycosvy it + (d + Aysinvy)b (18)

ve
kw)(w + ¢)

Qw,v)=W+c)t+4 n+
w,v)=WwW+c) 1COSV ( =)

+ Alsinv1> b, (19)

then, one can get partial derivatives of Q(w, v;) with respect to w and v, as follows
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Qy =t + (W + )i — 7(d + A;sinv,))t + TA cosvib = N,,, (20)

Qy, = Ay(—sinv; 7t + cosv;b) = ALN,, . 1)
It follows that the vector cross product is obtained as

Qy X Q, = —Ajcosvii — Aysinv, b; (22)
12 > 0y, | = 4y, (23)

by using (22) and (23), the normal vector n of Q(w, v;) is written as

-

n = —cosv,n — sinv, b, (24)
from (7), the following equation is written

_Qvl . — -~
6= = sinvy;n — cosv, b,
Ay

which 77 and b are the isotropic vectors, and by using the Galilean Frenet frame, one gets

x(w,v)) =w+cx, =1=g;x, =0=gy;

-1

911 = 1,912 = 0,922 = 0;91 = 0:92 = A_; (25)
1

hiy =1,hyy = 0, hy, = A3, (26)
After the substitution of (25) and (26) into (10), the first fundamental form is written as
I =dw? + e(dw? + A2dv?) 27
or for € = 1, one gets
[ = 2dw? + A3dv?
and for the second fundamental form of Q(w, v;), one has the following equations

Qw = (W) + (W + )’ (W) — 7' (W) (d + A;sinvy) — 12(w)A cosvy )i
+(W)kW)(W + ¢) — 2(W)(d + Aysinvy) + T’(W)Alcosvl)(l;;

Oy, = Ay (—cosvii — sinv, b); Qyy, = —T(W)A; cosv it — T(W)A;sinv; b (28)

and from (13) and (24), (28) the coefficients of the second fundamental form are given as follows

Ly; = (=2k(w) + T’ (W)d — k' (W) (W + ¢))cosvy + T2(W)Ay;

(29)
Ly = Ay; Lz = T1(W)4A;.

Thus, the Gaussian curvature K and the mean curvature H are expressed as
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_cosvy (T'(w)d — k' (W)(w + ¢) — 2k(w))  —k(w)cosv,
= A7 =4, o (30)
=k(w)(w +0));

1

Therefore, from the previous equation, one can write
— Zkwjcosvy _ 1 — _kK
A = o =55 or 2k(w)cosvy = "
and hence the following equation is satisfied
-K
V4 = arccos (W)
Furthermore, one can write the first fundamental form as follows
2 2
: : . K(w)cosv\” . : 1 .
[ =2w? + A3v? = 2w? + (T) v =2w?+ (ﬁ) vz,

Since, T # 0, for w = 7(w), the first fundamental form has two variable parameters and

since the first fundamental form is diagonal the parametrization coordinates are orthogonal. Then, the
Lagrangian equation is written as

2

. 1 .
L=2w?+ (ﬁ) v, (32)

Then, a geodesic on the surface Q(w, v;) is expressed by using the Euler-Lagrangian equations

ofoL\ oL 9oL\ oL

—| === =—|5=]|== 33
ds | w ow’ 0ds\ v, (33)
ds ds
1) For ai <g—£> = g—L = 0, one obtains f;’—fv = 4w =constant, which means
*\%s v 35
€1
w=—s+d;. (34)

4

1 | T gy, ds
as

2 2
2) For %( oL ) =2 = 0, one can obtain i(2 (%) vl) = 0, where 2 (%) v, is constant along the

geodesic and leading to

c
2 =—225+d2 or v; = 2H%c,s +d, (35)
2471
and since v; = arccos (ZKEW)H), one gets
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2k(w)H
Let a(w) be a geodesic on the surface of Q(w, v;) so it is given as (W(s), v1(s)). In the mean
time, the angle between the meridian a and N,, is 8; the vector pointing along paralells of Q is N,, .

arccos( ) = 2H?c,s + d,.

Hence, one can say that {N,,, N,, } has orthonormal basis, and a unit vector a tangent to Q(w, v;) can

be written as,

. : : : o1
a = Nycosb + N, sinf = wQ,, +v,Q, =wN,, + V1ﬁNv1-

2
1 . . . 12 . 1. .
One can see that V1= sin@, and hence one can write 2 (ﬁ) v, = Esm@ being a constant

2
1\% . 1, L
E) v =g sin@ which is a constant,

by using the second Euler-Lagrange equation and by differentiating L and by substituting this into the

along a(w). On the contrary, a(w) is a rectifying curve with 2 (

second equation, one gets the first Euler Lagrange equation

sinf Ksin6 )
v = A—ldS or —f W S = Zf H51n0ds =1 (36)
and since v; = arccos (ZKEW)H), one has
()= 2= ) =525
= = i —
arccos 2 H A S = cos sinfds 2 H

and hence, for the rectifying curve the curvatures of the curve can be written as

-K (w+ o)X

e(w) = 2Hcos(2 [ Hsians); tw)=- 2dHcos(vy)

C . . c . . .
Furthermore, for w = :15 + d4, one can obtain w = :1. Also, since one gets 4w = 4cosf being

a constant along a(w). If a(w) is a rectifying curve given as 4cosf =constant, then from the first Euler
Lagrange equation and the second Euler Lagrange equation, one has

w = f cosfds (or w = f cosfds + cg), (37)

where ¢;, d; € R,,.
4. The Physics Approach on Tube Surfaces Generated by Rectifying Curves in G

In this section, one considers a geodesic movement by reaching the time-dependent parameter
w(s), from here one can clearly say that one will try to express some characterizations on surfaces with
this path called the trajectory of the particle. Then, a parametrized curve Q(w(s), v;(s)) is given as

Aw(s),v1(s)) = w(s) + o)t + %cosvl (s)n+(d+ %sinvl(s))g (38)

or
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osv;(s) - (K(W(S))(W(S) +0¢) N sinv, (s))B

.Q(W(S), Ul(s)) = (W(S) + C)(E + : 2H T(S) 2H

(39)

To calculate the derivative of this tangent vector along the curve using the chain rule, the tangent
vector of the curve a(w) can be written as follows:

dQ(w(s),v1(s)) _ dw(s) dv,(s)
ds ~ ds fhy + ds

Q,, (40)

. : . _ o1
a = N,cos6 + N, sinf = wQ,, + v;Q, = wN,, +v; ﬁNvl' (41)
Since the velocity is tangent vector of the geodesic curve, one gets

dQ(w(s),v,(s))
ds

V= =VvQ, +V"Q,.

One thinks that V¥~ = /2V¥ = Vcos® is the first axis, which is the radial velocity; since the
* V1
horizontal angular velocity is V"1, VY1 = ‘;—H = Vsin@ is the second axis which is the horizontal

component of the velocity vector. One can also express the velocity with respect to polar coordinates in
the tangent plane to find the slope and norm with respect to the given radial direction on the surface.
Also, the angle 6 expresses the side of the velocity relative to the side £« in the same plane, and the
speed is constant along the geodesic for parametrized geodesics. These features, which physically
require energy and momentum, is given as follows.

vz ((V2Ecoso)” + (V2Esing)’) (dw>z ) 1( " )2 (dvl)z
2

E=== 2 =\ 1) \as

42
1 (42)
=3 (VZcos26 + V?2sin?6)

from the right side of (42), both the specific energy and speed are constant along geodesic.

Theorem 3. Let (0(w, v;) be the tube surface generated by isotropic rectifying curve o(w), then the
following statements hold:

* For the parameter v; = 2¢,H?s + d, or vy = 2H [ sinfds, the specific angular momentum
£ is given by

{—1]/'9— k(w
=g sinf =

Vcosv;sind

and the specific energy E is written as

2H? ¢
sin20

1cs 2 p2 2 2 p2
E—E(?+4H€)—cos 0+ 2H“¢% or

» For the parameter w = [ cosfds(or w = %s + d,), the specific angular momentum ¥ is

given by
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1
{ =—Vcosb
V2

and the specific energy F is given by

,32

)

1 .
E = 4¢% + ¢,H? = 5(882 + sin%@) or i

where the curve a(w) is a geodesic on the surface Q and ¢; € R,.

Proof. 1) For v; = 2¢,H%s + d,( v, = 2H [ sinfds) from circular movement around an axis with
1 dvy —k(w)cosv, dvq

s 1 s 1. . . . .
radius ||R|| = O0rR=—e, that is to say the velocity V1 = s - kg n the angular

side multiplied by the radius i of the circle. Physically, we can write the specific angular momentum

£ as the following equations

- . 1 —k(w)cosv
t=e3.(Rxg V)= ﬁVsinQ or £ = %Vsine. (43)

Also, since VV1 = Vsin@ = v2Esin6, one gets (i)

angular momentum is constant along a geodesic, one has

Zdvl_ 1

= —Vsind, and since the specific
ds 2H

1\*dv, dv, 5
¢ <2H) ds = ds L “44)

This expression can be rewritten in the form of the changeable angular velocity dv,/ds
according to the specific energy formula where the constant angular momentum, the specific energy E
is expressed by the radial motion with another of the motion as

dw

2
=(= 2p2 _ 1% 202\ — ~oc2 22 _ 1 .
E—(ds) + 2H?02 = 2 (2 + 4H?#?) = cos?0 + 2H2¢% or ¢ =—_\2Esing,

2H2 2
hen =E.
then, we get ———

2) For the w = [ cosfds(w = 64—15 + d;) one writes

1 . 1
BW= \/—Ecose = constant along a(w),

then from circular movement round an axis with radius ||§|| = % or R=— %‘e_z, that is to say the
. . d . S _ .
velocity VW = \/% W =TVcosO = %d—‘: = v 2E cos@ in the angular direction is multiplied by the radius

1 : . . : L
5 of the circle. The first geodesic equation has the specific angular momentum, which is constant

along a geodesic and hence, one can write it as follows

- — 1
£ =¢ts;.(R X, V)=—Vcosf. 45
Furth ince =% = Vcosh ite 12 — L ycos@, and that th ifi
urthermore, SImnce \/E ds = VcosU, one can write 2 ds = \/E costu, an a € SpecCllic

. . d
angular momentum is constant along a geodesic, one gets 2¢ = d—‘:. Hence, from the changeable angular
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velocity dw/ds in the specific energy formula E according to the constant angular momentum. Hence,
E is given by

EH(CH
2

cos26

1\? (dvy\? 1 _
(E) (%) )=4"€2+C8H2=E(8’€2+Sln29) or #:\/Ecose’

then, we get =E.

5. Discussion and Conclusion

In this paper, it is explored that the conditions of being geodesic, in which the curves can be
chosen to be rectifying curves, allows one to constitute the specific energy and specific angular
momentum. Also, the tube surfaces generated by rectifying curves are expressed and the some certain
results of describing the rectifying geodesics are examined on the tubular surfaces in detail. Furthermore,
the specific energy and the angular momentum are expressed on these tube surfaces in Galilean 3-space.
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