C.B.Ü. Fen Bilimleri Dergisi 2.2 (2006) 123 – 128 ISSN 1305-1385

C.B.U. Journal of Science 2.2 (2006) 123 –128

YARI-RİEMANN MANİFOLDUNUN LİGHTLİKE İSOTROPİK ALTMANİFOLDU

Erol YAŞAR¹

Muğla Üniversitesi, Ula Ali Koçman M.Y.O., 48600 Ula-Muğla, Türkiye.

Özet: Bu makalede, yarı-Riemann manifoldunun isotropic altmanifoldu çalışıldı. Lightlike isotropic altmanifoldun denklem yapıları verildi. Sonra ise *M* isotropic altmanifoldu total geodezik yapan şartlar elde edildi.

LIGHTLIKE ISOTROPIC SUBMANIFOLD OF SEMI-RIEMANNIAN MANIFOLD

Abstract: In this paper, we study isotropic submanifold of semi-Riemannian manifold. We give the structure equations of lightlike isotropic submanifold. Then we obtain that the condition on M lightlike isotropic submanifold is totally geodesic.

Key Words and Phrases: Lightlike isotropic submanifolds, Totally geodesic, Gauss and Codazzi equations.

MOS Clasification: 53B15 53B30 53C05

.....

¹ Sorumlu Yazar yerol@mu.edu.tr

1. Introduction

The theory of submanifolds of a Riemannian or semi-Riemannian manifold is one of the important topics in differential geometry. It is well known that the primary difference between theory of lightlike submanifold and semi-Riemannian submanifold arises due to the fact that in the first case, a part of the normal vector bundle TM^{\perp} lies in the tangent bundle TM of the submanifold M of \widetilde{M} , whereas in the second case $TM \cap TM^{\perp} = \{0\}$. In 1992, Duggal and Bejancu [3] introduced a half lightlike submanifold M, of codimension 2 and found geometric conditions for the induced connection on M to be metric connection. In 2004. Erol Kılıc and Bayram Şahin [5] studied coisotropic submanifold of a semi-Riemannian manifold. In this study they investigated the integrability condition of the screen distribution and gave a necessary and sufficient condition on Ricci tensor of a coisotropic submanifold to be symmetric.

In the present paper, we have proved that the connection induced from semi-Riemannian manifold of codimension (m+n) on lightlike isotropic submanifold is metric. Besides we obtain the structure equations of lightlike isotropic submanifold and proved the theorem on M in semi-Riemannian manifold of constant curvature, of codimension (m+n).

2. Preliminaries

Let (\tilde{M}, \tilde{g}) be a real (2m+n)-dimensional semi-Riemannian manifold of constant index q such as $m \geq 1, 1 \leq q \leq 2m$, and M be an m-dimensional submanifold of \tilde{M} . In case \tilde{g} is degenerate on the tangent bundle TM of M. We say that M is a lightlike submanifold of \tilde{M} [2]. Throughout this paper we denote the algebra of smooth function on M by F(M) and the F(M) module of smooth section of a vector bundle E over M by $\Gamma(E)$. The following range of induced is used:

 $i,j,k\in\{1,...,r\}$ and $\alpha,\beta,\gamma\in\{r+1,...,n\}$. For a degenerate tensor field g on M, there exists a locally vector field $\xi\in\Gamma(TM)$, $\xi\neq 0$ such as $g(X,\xi)=0$ for any $X\in\Gamma(TM)$. Then each tangent space $T_{\gamma}M$ we have

 $T_x M^\perp = \left\{ u \in T_x \tilde{M} \;\middle|\; \tilde{g}\left(u,v\right) = 0, \; \forall v \in T_x M \;\right\}$ which is degenerate (m+1)-dimensional subspace of $T_x \tilde{M}$. The radical (null) subspace of $T_x M$, denoted by $RadT_x M$, is defined by

$$T_{x}M^{\perp} = \left\{ \xi_{x} \in T_{x}\tilde{M} \mid \tilde{g}\left(\xi_{x}, X_{x}\right) = 0, \forall X_{x} \in T_{x}M \right\}.$$

The dimension of $RadT_xM$ depends on $x \in M$. The submanifold M of \tilde{M} is said to be r-lightlike submanifold if the mapping

 $RadTM: x \in M \rightarrow RadT_xM$ define a smooth distribution on M of rank r>0, where RadTM is called the radical (null) distribution on M [2]. In this paper, we study lightlike isotropic submanifold where

 $RadTM = \{0\} \ and \ 1 \le r \le m$.

Therefore, $S(TM) = \{0\}$. Thus we can write (2.1)

 $T\tilde{M}_{|M} = TM \oplus tr(TM) = (TM \oplus ltr(TM) \perp S(TM^{\perp}).$ According to the decomposition (2.1), we choose the field of frames $\{\xi_1, ..., \xi_m\}$ and $\{N, ..., N, W, ..., W\}$ on M and \tilde{M} .

 $\{N_1,...,N_m,W_{m+1},...,W_n\}$ on M and \tilde{M} , respectively.

Example 2.1 Suppose that (M, g) be a surface of R_2^5 given by equations

$$x^3 = \cos x^1, x^4 = \sin x^1, x^5 = x^2.$$

We choose a set of vectors $\{\xi_1, \xi_2, u_1, u_2\}$ given by

$$\xi_1 = \partial_2 + \partial_5, \ \xi_2 = \partial_1 - \sin x^1 \partial_3 + \cos x^1 \partial_4,$$

$$u_1 = -\sin x^1 \partial_1 + \partial_3, \ u_2 = \cos x^1 \partial_1 + \partial_4$$
so that $RadTM = TM = sp\{\xi_1, \xi_2\},$

$$TM^{\perp} = sp\{\xi_1, u_1, u_2\}.$$
 Therefore M is an

isotropic lightlike submanifold. Construct two null vectors

$$\begin{split} N_1 &= \tfrac{1}{2} \{ -\partial_1 + \partial_5 \} \text{ and} \\ N_2 &= \tfrac{1}{2} \{ -\partial_1 - \sin x^1 \partial_3 + \cos x^1 \partial_4 \} \\ \text{such as } g(N_i, \xi_i) &= \delta_{ij} \text{ for } i, j \in \{1, 2\} \text{ and} \\ ltr(TM) &= sp = \{N_1, N_2\}. \end{split}$$

Let $W = \cos x^1 \partial_3 + \sin x^1 \partial_4$ be a spacelike vector such that $S(TM^{\perp}) = sp\{W\}$. Thus $\{\xi_1, \xi_2, N_1, N_2, W\}$ is a basis of R_2^{-5} along M. From (2.1), there exist $\xi_i, W_\alpha \in T_x M^{\perp}$ such that $\tilde{g}(\xi_i, u) = 0$, $\tilde{g}(W_\alpha, W_\beta) \neq 0$, $\forall u \in T_x M^{\perp}$.

Above relation implies that $\xi_i \in TM$ and hence $\xi_i \in RadT_xM$. Thus, locally there exists a lightlike vector fields on M, it is also denoted by ξ_i such as

 $\tilde{g}(\xi_i,X) = \tilde{g}(\xi_i,Y) = 0, \forall X \in \Gamma(TM), \forall Y \in \Gamma(TM^\perp)$ Consequently, the *m*-dimensional radical distribution RadTM of lightlike isotropic submanifld M of \tilde{M} is locally spanned by ξ_i . We choose such a non-degenerate distribution on the screen transversal vector bundle $S(TM^\perp)$ of M. Thus we have the following orthogonal direct decomposition (2.2)

$$TM^{\perp} = Rad(TM) \perp S(TM^{\perp}).$$

Thus we choose W_{α} as a unit vector field and put $\tilde{g}(W_{\alpha}, W_{\beta}) = \varepsilon$ where $\varepsilon = \mp 1$.

Theorem 2.2 Let (M,g,S(TM)) be an isotropic submanifold of (\tilde{M},\tilde{g}) . Suppose that U be a coordinate neighborhood of M and $\{\xi_1,...,\xi_m\}$ be a basis of $\Gamma(TM_{|u})$. Then there exist smooth $\{N_1,...,N_m\}$ of $T\tilde{M}_{|M}$ such that $\tilde{g}(N_i,\xi_i)=\delta_{ij}$ and

$$\begin{split} \tilde{g}\left(N_i,N_j\right) &= 0, \tilde{g}\left(N_i,W_\alpha\right) = 0,\\ \text{for any } i,j \in \{1,...,m\}, \alpha \in \{m+1,...,n\} \text{ and }\\ W_\alpha &\in \Gamma(S(TM^\perp)) \text{ . Suppose that } \tilde{\nabla} \text{ be the} \end{split}$$

Levi-Civita connection on \widetilde{M} . According to (2.1) we have

(2.3)

$$\tilde{\nabla}_X Y = \nabla_X Y + h^s(X, Y),$$

$$\tilde{\nabla}_X N = -A_N X + \nabla^s_X N + \nabla^L_X N ,$$

(2.5)
$$\tilde{\nabla}_X W = -A_W X + \nabla^s_X W + \nabla^L_X W$$
 for any $X, Y \in \Gamma(TM), N \in \Gamma(ltr(TM))$

and $W \in \Gamma(S(TM^{\perp}))$ where $\{\nabla_{X}Y, A_{N}X, A_{W}X\}$ and

$$\{h^s(X,Y), \nabla^s_X N, \nabla^s_X W, \nabla^L_X N, \nabla^L_X W\}$$

belong to $\Gamma(TM)$ and $\Gamma(tr(TM))$

respectively. Here $\tilde{\nabla}$ is the metric connection on \tilde{M} but ∇ and ∇^s are linear connections on M and $\operatorname{tr}(TM)$ respectively. Besides, we define the F(M)-bilinear mappings

(2.6)

$$\nabla_{X}^{L}:\Gamma(ltr(TM)) \to \Gamma(ltr(TM)); \nabla_{X}^{L}(LV) = D_{X}^{L}(LV),$$
(2.7)

$$\nabla_{X}^{s}: \Gamma(S(TM^{\perp})) \to \Gamma(S(TM^{\perp})); \nabla_{X}^{s}(SV) = D_{X}^{s}(SV),$$
(2.8)

$$D^{L}: \Gamma(TM) \times \Gamma(S(TM^{\perp})) \to \Gamma(ltr(TM))$$

 $D^{^L}(X,SV)=D^{^L}{_X}(SV),$

and

(2.9)

 $D^s: \Gamma(TM) \times \Gamma(ltr(TM)) \to \Gamma(S(TM^{\perp}))$

$$D^{s}(X,LV) = D^{s}_{v}(LV)$$

for any $x \in \Gamma(TM)$, $V \in \Gamma(tr(TM))$. Since $\{\xi_i, N_j\}$ are locally lightlike sections on $U \subset M$, we define symmetric F(M)-bilinear form D^s and 1-forms $p_{ij}, \tau_{i\alpha}, \theta_{\alpha\beta}$ and $V_{\alpha i}$ on U by

$$\begin{split} D^{s}(X,Y) &= \varepsilon_{\alpha} \tilde{g}(h^{s}(X,Y), W_{\alpha}), \\ P_{ij}(X) &= \tilde{g}(\nabla_{X}^{L} N_{i}, \xi_{i}), \\ \tau_{i\alpha} &= \varepsilon_{\alpha} \tilde{g}(D^{s}(X, N_{i}), W_{\alpha}), \\ \theta_{\alpha\beta} &= \varepsilon_{\beta} \tilde{g}(\nabla_{X}^{s} W_{\alpha}, W_{\beta}) \end{split}$$

and

$$V_{\alpha i} = g(D^L(X, W_{\alpha}), \xi_i)$$
 for any $X, Y \in \Gamma(TM)$. It follows that
$$h^s(X, Y) = D^s(X, Y)W_{\alpha},$$

$$\nabla_X^L N_i = P_{ij}(X)N_j,$$

$$D^s(X, N_i) = \tau_{i\alpha}W_{\alpha},$$

$$\nabla^s_X W_{\alpha} = \theta_{\alpha\beta}W_{\beta}$$

$$D^L(X, W_{\alpha}) = V_{\alpha i}N_i.$$

Hence (2.3), (2.4) and (2.5) become (2.10)

$$\tilde{\nabla}_X Y = \nabla_X Y + \sum_{\alpha=m+1}^n D^s_{\alpha}(X,Y) W_{\alpha},$$

(2.11)

$$\tilde{\nabla}_{X} N_{i} = -A_{N_{i}} X + \sum_{j=1}^{m < n} P_{ij}(X) N_{j} + \sum_{\alpha = m+1}^{n} \tau_{i\alpha}(X) W_{\alpha},$$
(2.12)

$$\tilde{\nabla}_X W_{\alpha} = -A_{W_{\alpha}} X + \sum_{i=1}^{m < n} V_{\alpha i}(X) N_i + \sum_{\beta = m+1}^{n} \theta_{\alpha \beta}(X) W_{\alpha}$$

for any $X,Y \in \Gamma(TM)$. We call D^s the screen second fundamental form of M with respect to tr(TM). Both A_{N_i} and $A_{W_{\alpha}}$ are linear operators on $\Gamma(TM)$. We will see by (2.15) that the first one is RadTM-valued, called the shape operations of M. Since ξ_i and ξ_j are lightlike vector fields, from (2.10)-(2.12) we obtain (2.13)

$$D^s(X,\xi_i)=0$$
,

(2.14)

$$D^L(X,\xi_i)=0,$$

(2.15)
$$\tilde{g}(A_{N}X,\xi_{i}) = \tilde{g}(A_{W}X,\xi_{i}).$$

Further, taking in to account that $\tilde{\nabla}$ is a metric connection and by using (2.10) we obtain

$$0 = (\tilde{\nabla}_X \tilde{g})(Y, Z)$$

$$= X(\tilde{g}(Y, Z)) - \tilde{g}(\tilde{\nabla}_X Y, Z) - \tilde{g}(Y, \tilde{\nabla}_X Z)$$

$$= X(g(Y,Z)) - g(\nabla_X Y, Z) - g(Y, \nabla_X Z)$$

$$- \sum_{\alpha=m+1}^{n} D^s_{\alpha}(X,Y)g(W_{\alpha}, Z)$$

$$- \sum_{\alpha=m+1}^{n} D^s_{\alpha}(X,Z)g(W_{\alpha}, Y)$$

$$= (\nabla_X g)(Y,Z)$$

for any $X,Y,Z \in \Gamma(TM)$. Denote by \tilde{R} and R the curvature tensor of $\tilde{\nabla}$ and ∇ respectively. Then by straightforward calculation and using (2.10), (2.11), (2.12), (2.13), (2.14) and (2.15) we obtain (2.17)

$$\begin{split} \tilde{R}(X,Y)Z &= R(X,Y)Z + \sum_{\alpha=m+1}^{n} \{D^{s}(X,Y)A_{W_{\alpha}}Y - D^{s}(Y,Z)A_{W_{\alpha}}X + D^{s}(Y,Z)(\nabla_{X}W_{\alpha}) + (\nabla_{X}D^{s})(Y,Z)W_{\alpha} - D^{s}(X,Z)(\nabla_{Y}W_{\alpha}) + (\nabla_{Y}D^{s})(X,Z)W_{\alpha}\} + \\ \sum_{i=1}^{m} \sum_{\alpha=m+1}^{n} \{D^{s}(Y,Z)V_{\alpha i}(X)N_{i} - D^{s}(X,Z)V_{\alpha i}(Y)N_{i}\}, \\ (2.18) \end{split}$$

$$\begin{split} \tilde{R}(X,Y)W_{\beta} &= \sum_{i=1}^{m} \sum_{\beta=m+1}^{n} \{ R^{s}(X,Y)W_{\beta} + \\ D^{s}(Y,A_{W_{\beta}}X)W_{\alpha} - D^{s}(X,A_{W_{\beta}}Y)W_{\alpha} + \\ V_{\beta i}(Y)\tau_{i\alpha}(X)W_{\beta} - V_{\beta i}(X)\tau_{i\alpha}(Y)W_{\beta} + \\ (\nabla_{Y}A)(W_{\beta},X) - (\nabla_{X}A)(W_{\beta},Y) + \\ V_{\beta i}(X)A_{N_{i}}Y - V_{\beta i}(Y)A_{N_{i}}X + \\ (\nabla_{X}D^{L})(Y,W_{\beta}) - (\nabla_{Y}D^{L})(X,W_{\beta}) \}, \end{split}$$

$$(2.19)$$

$$\begin{split} \tilde{R}(X,Y)N_i &= \sum_{i=1}^m \sum_{\alpha,\beta=m+1}^n \{R^L(X,Y)N_i + \\ \tau_{i\alpha}(Y)V_{\alpha i}(X)N_i - \tau_{i\alpha}(X)V_{\alpha i}(Y)N_i - \\ \tau_{i\alpha}(Y)A_{W_\alpha}X + \tau_{i\alpha}(Y)A_{W_\alpha}X + \\ (\nabla_Y A)(N_i,X) - (\nabla_X A)(N_i,Y) + \\ (\nabla_X D^s)(Y,N_i) - (\nabla_Y D^s)(X,N_i) + \\ D^s(Y,A_{N_i}X) - D^s(X,A_{N_i}Y) \\ \text{for any } X,Y,Z \in \Gamma(TM), \end{split}$$

and

$$\begin{split} N_i &\in \Gamma(ltr(TM)). \text{ Consider the Riemannian} \\ \text{curvature of type } (0,4) \text{ of } \tilde{\nabla} \text{ and by using} \\ (2.17)\text{-}(2.19) \text{ and the definition of curvature} \\ \text{tensor, we derive the following structure} \\ \text{equations:} \\ (2.20) \\ \tilde{R}(X,Y,Z,N_i) &= \sum_{i=1}^m \sum_{\beta=m+1}^n \big\{ \tilde{g}(R(X,Y)Z,N_i) \\ + \varepsilon_\alpha \tau_{i\alpha}(Y)D^s(X,Z) - \varepsilon_\alpha \tau_{i\alpha}(X)D^s(Y,Z) \big\}, \\ (2.21) \\ \tilde{R}(X,Y,W_\beta,N_i) &= \sum_{i=1}^m \sum_{\beta=m+1}^n \big\{ \tilde{g}((\nabla_YA)(W_\beta,X) - (\nabla_XA)(W_\beta,Y),N_i) + V_\beta(Y)\tilde{g}(A_{N_i}X,N_i) - V_\beta(X)\tilde{g}(A_{N_i}Y,N_i) \big\}, \\ (2.22) \\ \tilde{R}(X,Y,N_i,N_i) &= \sum_{i=1}^m \sum_{\beta=m+1}^n \big\{ \tilde{g}((\nabla_XA)(N_i,X) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_{i\alpha}(Y) - (\nabla_YA)(N_i,Y),N_i) + \varepsilon_\alpha \tau_{i\alpha}(X)\varepsilon_\alpha \tau_$$

 $W_{\alpha}, W_{\beta} \in \Gamma(S(TM^{\perp}))$

Theorem 2.3 Let M be lightlike isotropic submanifold of an (2m+n)-dimensional semi-Riemannian manifold of constant curvature $(\tilde{M}(c), \tilde{g})$, and of codimension (m+n). Then the curvature tensor of M and $\tilde{M}(c)$ related to the following equations: (2.23)

 $\varepsilon_{\alpha} \tau_{i\alpha}(Y) \varepsilon_{\alpha} \tau_{i\alpha}(X) \}.$

$$R(X,Y)Z = \sum_{i=1}^{m} \sum_{\alpha=m+1}^{n} \{D^{s}(Y,Z)A_{W_{\alpha}}X - D^{s}(X,Z)A_{W_{\alpha}}Y + D^{s}(X,Z)V_{\alpha i}(Y)N_{i} - D^{s}(Y,Z)V_{\alpha i}(X)N_{i} + D^{s}(X,Z)(\nabla_{Y}W_{\alpha}) - D^{s}(Y,Z)(\nabla_{X}W_{\alpha}) + (\nabla_{Y}D^{s})(X,Z)W_{\alpha} - (\nabla_{X}D^{s})(Y,Z)W_{\alpha}\},$$
(2.24)

$$R^{s}(X,Y)W_{\beta} = \sum_{i=1}^{m} \sum_{\beta=m+1}^{n} \{D^{s}(X,A_{W_{\beta}}Y)W_{\alpha} - D^{s}(Y,A_{W_{\beta}}X)W_{\alpha} + V_{\beta i}(X)\tau_{i\alpha}(Y)W_{\beta} - V_{\beta i}(Y)\tau_{i\alpha}(X)W_{\beta} + (\nabla_{X}A)(W_{\beta},Y) - (\nabla_{Y}A)(W_{\beta},X) + V_{\beta i}(Y)A_{N_{i}}X - V_{\beta i}(X)A_{N_{i}}Y + (\nabla_{Y}D^{L})(X,W_{\beta}) - (\nabla_{X}D^{L})(Y,W_{\beta})\},$$

$$(2.25)$$

$$R^{L}(X,Y)N_{i} = \sum_{i=1}^{m} \sum_{\alpha,\beta=m+1}^{n} \{\tau_{i\alpha}(X)V_{\alpha i}(Y)N_{i} - \tau_{i\alpha}(Y)V_{\alpha i}(X)N_{i} + \tau_{i\alpha}(Y)A_{W_{\alpha}}X - \tau_{i\alpha}(X)A_{W_{\alpha}}Y + (\nabla_{X}A)(N_{i},Y) - (\nabla_{Y}A)(N_{i},X) + D^{s}(X,A_{N_{i}}Y) - D^{s}(Y,A_{N_{i}}X)\} + (\nabla_{Y}D^{s})(X,N_{i}) - (\nabla_{X}D^{s})(Y,N_{i})$$
Proof. By using the definition of constant

Proof. By using the definition of constant curvature $\tilde{M}(c)$ and (2.17), (2.18) and (2.19) we obtain (2.23), (2.24) and (2.25).

Definition 2.4. A lightlike isotropic submanifold (M,g) of a semi-Riemannian manifold (\tilde{M}, \tilde{g}) is said to be totally umbilical in \tilde{M} if there is a smooth vector field H^s such as (2.26)

$$h^s(X,Y) = H^s \tilde{g}(X,Y), \forall X,Y \in \Gamma(TM).$$
Corollary 2.5. Lightlike isotropic submanifold of (\tilde{M}, \tilde{g}) is totally geodesic if M is totally umbilical, i.e.,

$$h^{s}(X,Y) = 0, \forall X, Y \in \Gamma(TM).$$

Then we have

Theorem 2.6. Let (M,g) be a isotropic submanifold of (\tilde{M}, \tilde{g}) of codimension (m+n) if M is totally umbilical in \tilde{M} then (2.27)

$$\tilde{R}(X,Y)Z = R(X,Y)Z, \forall X,Y,Z \in \Gamma(TM).$$

Proof. By using (2.17) and Corollary 2.3 we get (2.27).

Corollary 2.7. Under the hypothesis of theorem we have

$$\begin{split} (2.28) \\ \tilde{R}(X,Y)W_{\beta} &= R^{s}(X,Y)W_{\beta} + (\nabla_{Y}A)(W_{\beta},X) \\ &- (\nabla_{X}A)(W_{\beta},Y), \end{split}$$

$$(2.29) \\ \tilde{R}(X,Y)N_{i} &= (\nabla_{Y}A)(N_{i},X) - (\nabla_{X}A)(N_{i},Y). \end{split}$$

References

- [1] Bejancu, A., Null Hypersurfaces in Semi-Euclidean Space, Saitama Math. J. Vol. 14, 25-40, (1996).
- [2] Duggal, K., and Bejancu, A., Lightlike Submanifold of Semi-Riemannian Manifold and Applications, Kluver Academic Pub., (1996).

Gelis Tarihi: 13/10/2005

- [3] Duggal, K. and Jin, D.H., Half Lightlike Submanifolds of Codimension 2, Math. J. Toyama Uni., 22, 121-161, (1999)
- [4] Duggal, K.L. and Bejancu A., Lightlike Submanifold of Semi-Riemannian Manifold Applications, Acta Appl. Math 38, 197-215, (1995).
- [5] Kılıç, E., Şahin, B., H.B. Karadağ, Güneş, R., Coisotropic Submanifold of a Semi-Riemannian Manifold, Turk J. Math., 28, 335-352, (2004).
- [6] Katsuno, K., Null Hypersurfaces in Lorentzian Manifolds I, Math. Proc. Camb. Phil. Soc. 88, 175-182, (1980).
- [7] O' Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, (1983).

Kabul Tarihi: 30/01/2006