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 Difference Normalised Burn Ratio (dNBR) is used as a reliable reference index since it has 
accepted thresholds for determining fire severity. However, the use of the dNBR index is 
limited if pre-fire data cannot be obtained due to weather and other conditions. This situation 
necessitates the development of alternative indices that are calculated only with post-fire 
satellite imagery. This study was conducted on forest fires in Mersin, Izmir and Mugla 
provinces of Turkey while aiming to evaluate the effectiveness of alternative indices to the 
dNBR index, which is widely used in determining ecosystem damage and fire severity after 
forest fires. Using Sentinel-2 satellite data operated by the European Space Agency (ESA), the 
study analysed the performance of the NDVI, NDMI, NBR, MSAVI, EVI and BAIS2 indices 
calculated using only post-fire data against the dNBR index calculated from pre- and post-fire 
imagery. The main methods used in this study include data processing and analyses 
performed on the Google Earth Engine (GEE) platform and comparisons made on the QGIS 
platform. In this study, the extent to which these alternative indices can be effective in 
accurately and reliably assessing post-fire ecosystem damage was investigated. The results of 
the analyses showed that the NBR and BAIS2 indices have the highest accuracy in detecting 
post-fire ecosystem damage. While both indices produced results close to the dNBR index, 
MSAVI and EVI were found to be effective in monitoring vegetation changes but insufficient in 
determining fire severity. In conclusion, BAIS2 and NBR provide strong alternatives to dNBR 
in analyses based on post-fire data, while the other indices used in the study are considered 
as complementary tools. 
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1. Introduction 

Forest fires are among the most frequently 
encountered natural disasters, causing significant 
economic losses and severe degradation of forest 
ecosystems. Each year, approximately 450 million 
hectares of land are affected by fires resulting from both 
anthropogenic activities and natural causes [1]. Due to its 
climatic characteristics and dense vegetation cover, 
Turkey is considered one of the most vulnerable 
countries to forest fires. In particular, rising 
temperatures and prolonged droughts during the 
summer months substantially increase the risk of 
wildfires, leading to frequent fire incidents across the 
country driven by both natural and human-induced 
factors. According to the 2022 statistics of the General 
Directorate of Forestry, a total of 2,160 forest fires 

occurred in Turkey within that year alone, resulting in 
damage to approximately 12,799 hectares of forested 
land [2]. These fires not only threaten ecosystem 
integrity and biodiversity but also cause major economic 
losses, environmental degradation, and social disruption.  

The increasing frequency and intensity of forest 
fires are directly linked to climate change, highlighting 
the importance of developing effective strategies for the 
sustainable management of natural resources. In this 
context, timely detection of fire-affected areas allows 
rapid and accurate planning of post-fire rehabilitation 
efforts. Since the 1970s, satellite imagery has become a 
widely adopted and routine tool for monitoring fire 
activity at the operational scale [3]. With the continuous 
advancement of satellite technologies, tools such as 
remote sensing (RS) and geographic information systems 
(GIS) have become indispensable for mapping fire-
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affected areas [2]. Through these technologies, the 
environmental impact of wildfires can be quantified, 
enabling the numerical assessment of short-term 
changes in soil and vegetation conditions [4]. Among the 
most commonly used spectral indices for this purpose 
are the Normalized Burn Ratio (NBR) and the 
Differenced Normalized Burn Ratio (dNBR).  

The dNBR, in particular, is recognized for its high 
accuracy and standardized threshold values, and is 
considered especially suitable for assessing fire severity 
in dry Mediterranean climates [5]. Further studies have 
shown that the dNBR is able to better represent the 
spatial distribution of forest fire severity compared to the 
NBR [6, 7, 8]. However, a key limitation of dNBR is its 
reliance on both pre-fire and post-fire satellite imagery, 
which restricts its applicability in areas where pre-fire 
data are unavailable [9]. To overcome this limitation, the 
present study aims to evaluate the effectiveness of 
alternative spectral indices that can be derived solely 
from post-fire satellite imagery.  

The research focuses on wildfire-affected areas in 
the Turkish provinces of Mersin, İzmir, and Muğla. Using 
Sentinel-2 satellite imagery processed through the 
Google Earth Engine (GEE) platform, six different indices 
namely NDVI, NDMI, NBR, MSAVI, EVI, and BAIS2 were 
calculated and comparatively analyzed with dNBR using 
QGIS software. This approach seeks to assess the 
potential of these post-fire indices as viable alternatives 
to dNBR and to contribute to the development of more 
flexible and accessible methods for evaluating fire 
severity. 

2. Material and Method 

2.1. Study Areas 

Analysis was conducted on three different regions 
(İzmir, Muğla and Mersin) to compare the consistency 
and accuracy of the indices in different geographical 
conditions and ecosystems. The reason for choosing 
regions with large fires is that larger fire areas provide a 
more accurate and comprehensive assessment of the 
performance of the indices in determining fire severity 
and ecosystem damage. Since large-scale fires may 
involve different severity levels and various ecosystem 
responses, the reliability and effectiveness of each index 
were evaluated.The first study area is a fire area that 
occurred on 14 August 2020 in Bayraklı district of Izmir, 
where 1609 hectares of land was damaged. The region is 
characterised by a vegetation cover consisting of maquis 
and red pine forests typical of the Mediterranean climate. 
These features constitute a valuable research area in 
terms of examining post-fire ecosystem dynamics and 
vegetation responses and allow analyses of the 
performance of different indices in determining fire 
severity and ecosystem destruction. 

The second study area encompasses a large-scale fire 
that occurred in Muğla on 12 August 2021, affecting 
10,366 hectares of land. The fact that the fire spread over 
an extensive area and exhibited a range of severity levels 
provides a robust foundation for evaluating the 
consistency and accuracy of the indices. Furthermore, 
the Muğla region broadens the scope of the study by 
enabling the analysis of various ecosystem types. 

The third study area is the fire event that occurred on 
8 September 2022 in the Büyükeceli neighbourhood of 
the Gülnar district in Mersin, affecting an area of 2780 
hectares. 

 

2.2. Sentinel-2 Satellite Imagery and the Role of 

Spectral Bands in Fire Monitoring 

Sentinel-2 satellite imagery consists of multispectral 
optical data provided through the Copernicus Program, 
operated by the European Space Agency (ESA). These 
data play a crucial role in observing and analyzing global 
environmental changes. They are widely employed in 
many fields, including forest fires, vegetation health, 
water resource management, land-use change, and 
ecosystem dynamics. Sentinel-2 satellites offer 13 
spectral bands with 10 m, 20 m, and 60 m spatial 
resolution, enabling high-precision measurements of 
reflectance across various wavelengths [10]. This 
capability facilitates detailed analyses of numerous 
environmental factors, making Sentinel-2 particularly 
valuable for detecting and assessing post-fire ecosystem 
damage. 

In this study, Sentinel-2 Level-2A products are used 
since they provide atmospherically corrected surface 
reflectance values, thereby enabling more accurate and 
reliable analysis. Atmospheric correction minimizes 
reflectance errors in vegetation and land assessments, 
allowing for a more precise detection of changes in 
vegetation cover before and after a fire. Sentinel-2 data 
can be accessed free of charge through platforms such as 
the Copernicus Open Access Hub and Google Earth 
Engine. These platforms offer a convenient 
infrastructure for time-series studies and spatial 
analyses, allowing researchers to quickly retrieve and 
examine high-resolution data covering extensive 
geographic regions. The total of 13 spectral bands 
measure reflectance at different wavelengths with high 
accuracy, enabling a broad range of applications. 
Shortwave infrared (SWIR), near-infrared (NIR), and red 
bands (Red) are particularly critical for calculating 
indices such as NDVI, NDMI, EVI, MSAVI, NBR, dNBR, and 
BAIS2, which help analyze variations in ecosystem 
structure, vegetation health, and moisture levels before 
and after fires. 

 

2.3. Google Earth Engine (GEE) Platform and 

Processing Sentinel-2 L2A Data 

Google Earth Engine (GEE) is a platform that enables 
rapid analysis of satellite imagery and vector data on a 
cloud-based infrastructure at a global scale [11]. By 
providing direct access to numerous datasets such as 
Sentinel-2, Landsat, and MODIS, GEE plays a crucial role 
in monitoring environmental changes, managing 
disasters, and assessing natural resources. Its support for 
both Python and JavaScript allows for interactive map-
based applications as well as more extensive analyses 
within a single environment. Moreover, automated 
processes like cloud masking, projection 
transformations, and mosaicking streamline data 
preparation. 
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In this study, Sentinel-2 L2A satellite data were 
processed and analyzed through GEE. These L2A data, 
which offer atmospherically corrected surface 
reflectance values, serve as a key data source for tracking 
forest fires and ecosystem changes [12]. GEE enables the 
rapid and efficient processing of this information, 
allowing comparisons of pre- and post-fire vegetation 
changes. Within the scope of this research, various 
indices such as NDVI, NDMI, EVI, MSAVI, NBR, dNBR, and 
BAIS2 were computed to detect and evaluate fire 
severity. Implemented via JavaScript, these indices were 
visualized in real time using GEE’s mapping tools, thus 
facilitating quick and accurate analysis of fire effects and 
ecosystem responses. 

 
2.4. Data Acquisition and Preprocessing 

In the İzmir study area, Sentinel-2 Level-2A images 
covering the pre-fire (31 July 2020–14 August 2020) and 
post-fire (14–20 August 2020) periods were obtained in 
Google Earth Engine with a <10 % cloud-cover filter. For 
NBR/dNBR calculations, only the B8 (NIR) and B12 
(SWIR-2) bands were used; seasonal mean composites of 
these bands were generated, and “NBR_pre” and 
“NBR_post” maps were derived via normalized 
difference, with their difference computed as the “dNBR” 
layer. The dNBR map was visualized with a ‘white–
yellow–orange–red–darkred’ palette over the range –1 to 
+1, while the post-fire natural-color composite was 
displayed using B4–B3–B2 bands. Next, only burned 
areas were clipped in QGIS and final map styling was 
applied; finally, both the İzmir dNBR and post-fire 
composite maps were reprojected to UTM Zone 35 N 
(EPSG:32635) at 10 m resolution and exported at high 
resolution. 

 
This İzmir workflow illustrates that the same processing 
steps were applied to all other indices and study areas 
employed in this research (Fig. 1). The used co de and the 
resulting exported image is shown in Fig. 2. 

 

 

Figure 2. JavaScript snippet showing the GEE workflow for 
deriving dNBR from Sentinel-2 L2A images in the İzmir study 
area. 

 

2.5. DeepLabV3+: Deep Learning Based Image 

Segmentation Model 

In this study, the DeepLabV3+ model, which was 
pre-trained within the scope of the International 2549-
Poland-NCBR-TUBITAK Project (Project No: 122N254) 
‘Intelligent Management and Sustainable Use of Forests’, 
was used to detect burnt areas in Sentinel-2 satellite 
images after the fire. The model was trained on a dataset 
developed using Sentinel-2 satellite imagery, focusing on 
forest fires that occurred in Türkiye between 2020 and 
2024. The dataset comprises 71 satellite images with 
varying spatial dimensions (Fig. 3). For the annotation 
process, GEE was utilized. During preprocessing, the 
images were divided into 128×128 pixel patches, 
resulting in a total of 1,691 image tiles. Of these, 80% 
were allocated for training and 20% for testing. On the 
test dataset, DeepLabv3+ achieved accuracy metrics of 
0.8824 (accuracy), 0.8114 (IoU), 0.8958 (F1-score), 
0.8578 (precision), and 0.9375 (recall). 

This artificial intelligence based segmentation 
model produced binary output as separated burnt and 
unburnt areas (Fig. 4). Based on the segmentation 
results, the fire indices calculated on the GEE platform 
were cropped over the burnt areas. This method 
increased the accuracy of the analyses by ensuring that 

Load Sentinel-2 L2A Collection in GEE 
    ↓ 

Apply Cloud Filter (<10% cloud cover) 
    ↓ 

Filter Pre-Fire & Post-Fire Dates 
    ↓ 

Select Bands according to index formula 
    ↓ 

Compute Mean Composites 
    ↓ 

Calculate Index_pre & Index_post or only Index_post 
    ↓ 

Compute differenced index if applicable 
    ↓ 

Visualize index or differenced index and Post-Fire RGB 
    ↓ 

Reproject outputs to UTM Zone 35N at 10 m resolution 
    ↓ 

Export images to Google Drive via Export.image.toDrive 
    ↓ 

Clip the burn mask in QGIS & apply final styling 

Figure 1. Flowchart summarizing the preprocessing and 
export steps in GEE 
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index calculations are performed only in fire-affected 
areas.  
 

 

Figure 3. A sample from the dataset: Sentinel-2 image patch 
(left), Burned area mask (right) 

 
DeepLabV3+ is an advanced deep learning model 

developed by Google Research and widely used for 
semantic image segmentation. The model includes 
structural improvements compared to previous DeepLab 
versions, especially to enable more precise detection of 
object boundaries. Its main components include Atrous 
Convolution, Atrous Spatial Pyramid Pooling (ASPP) and 
encoder-decoder structure. Atrous convolution collects 
information from a large area while maintaining the size 
of the feature map. The ASPP module captures multi-
scale features using convolution layers with different 
dilation ratios, allowing the model to better detect 
objects of different sizes. The encoder part enriches the 
features extracted from the image with ASPP, while the 
decoder part uses this information to accurately restore 
the segmentation result. 
 

2.6.  Indices Used in This Study 

2.6.1. Normalized Burn Ratio (NBR) 

NBR is a commonly used remote sensing index for 
monitoring the effects of forest fires and other disasters. 
The Normalized Burn Ratio is derived from near-infrared 
(NIR) and shortwave infrared (SWIR) bands via specific 
mathematical formulas. Prior to a fire, healthy vegetation 
generally shows high reflectance in the NIR region and 
low reflectance in SWIR 2 [14]. Post-fire damage leads to 
decreased NIR reflectance and increased SWIR 2 
reflectance. This spectral contrast is crucial for tracking 
fire-related impacts. NBR values range from −1 to +1: 
healthy vegetation typically exhibits high NBR, whereas 
burned areas display lower values. NBR also allows for 
precise monitoring of ecological changes by comparing 
pre- and post-fire imagery, making it a powerful tool for 
classifying fire severity and mapping damage. 

 

𝑵𝑩𝑹 =
𝑵𝑰𝑹(𝑩𝟎𝟖) − 𝑺𝑾𝑰𝑹 𝟐(𝑩𝟏𝟐)

𝑵𝑰𝑹(𝑩𝟎𝟖) + 𝑺𝑾𝑰𝑹 𝟐(𝑩𝟏𝟐)
     (𝟐. 𝟐) 

 

2.6.2.  Differenced Normalized Burn Ratio 

(dNBR) 

Currently, one of the most frequently used methods 
for determining forest fire severity is the dNBR [13]. This 
approach calculates the difference between pre-fire and 
post-fire NBR values to classify vegetation damage. In 

this study, dNBR (Equation 2.1) was selected as the 
reference index due to its widely recognized threshold 
values in the literature [9]. Positive dNBR values indicate 
burned areas and the extent of fire impact, while near-
zero or negative values represent unburned or minimally 
affected regions. 

 
𝒅𝑵𝑩𝑹 = 𝑵𝑩𝑹𝑷𝒓𝒆𝑭𝒊𝒓𝒆 − 𝑵𝑩𝑹𝑷𝒐𝒔𝒕𝑭𝒊𝒓𝒆    (𝟐. 𝟏) 

 

 
(a)                                               (b) 

Figure 4. (a)Izmir Region post-fire image, (b)Izmir Region 
segmentation result 
Damage levels are determined based on fire severity 
categories that are widely recognized in the literature 
(Table 1). These categories enable precise monitoring of 
post-fire ecosystem changes and allow for the accurate 
classification of fire severity [9]. Based on these 
categories, post-fire vegetation changes are visualized 
through thematic maps that reflect the severity and 
impact of the fire. 

Table 1. Fire severity categories [9] 

dNBR Fire Severity (FS) 

–500 to –251 Enhanced regrowth, high 

–250 to –101 Enhanced regrowth, low 

–100 to +99 Nonburnt 

+100 to +269 Low severity 

+270 to +439 Moderate-low severity 

+440 to +659 Moderate-high severity 

+660 to +1300 High severity 

 

2.6.3. Normalized Difference Vegetation Index 

(NDVI) 

Developed by Rouse Jr. et al. (1974), NDVI assesses 
the health and density of vegetation using the difference 
between red and NIR bands [15, 16, 17]. Healthy 
vegetation strongly absorbs red light while reflecting 
high amounts of NIR. Conversely, unhealthy or sparse 
vegetation reflects less NIR. NDVI values range from −1 
to +1, with negative values indicating water, soil, or 
burned areas, and positive values signifying healthy 
vegetation [17]. NDVI effectively highlights the contrast 
between vegetation and underlying soil.  NDVI difference 
analysis can be applied to evaluate vegetation changes 
before and after a fire and determine fire severity. In this 
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research, NDVI (Equation 2.3) was calculated from 
Sentinel-2 imagery on the GEE platform to track post-fire 
ecosystem changes. 

 

𝑵𝑫𝑽𝑰 =
𝑵𝑰𝑹(𝑩𝟎𝟖) − 𝑹𝑬𝑫(𝑩𝟎𝟒)

𝑵𝑰𝑹(𝑩𝟎𝟖) + 𝑹𝑬𝑫(𝑩𝟎𝟒)
     (𝟐. 𝟑) 

 

2.6.4. Normalized Difference Moisture Index 

(NDMI) 

NDMI measures the water content in vegetation by 
examining differences between NIR and SWIR 1 bands. 
While SWIR 1 reflects changes in leaf water content and 
mesophyll structure, NIR represents leaf internal 
structure and dry matter content. Subtracting these two 
bands isolates water content more accurately. NDMI 
values range from −1 to +1, with higher values found in 
areas with sufficient water or no water stress [17]. It also 
serves as an indicator of drought and fuel levels in areas 
prone to wildfires [26]. After wildfires, vegetation water 
loss is a key marker of ecosystem damage, and NDMI’s 
pre- and post-fire difference can help identify affected 
regions and fire severity. Hence, NDMI (Equation 2.4) is 
a vital tool for closely monitoring changes in post-fire 
vegetation. 

 

𝑵𝑫𝑴𝑰 =
𝑵𝑰𝑹(𝑩𝟎𝟖) − 𝑺𝑾𝑰𝑹 𝟏(𝑩𝟏𝟏)

𝑵𝑰𝑹(𝑩𝟎𝟖) + 𝑺𝑾𝑰𝑹 𝟏(𝑩𝟏𝟏)
     (𝟐. 𝟒) 

 

2.6.5. Modified Soil-Adjusted Vegetation Index 

(MSAVI) 

MSAVI is used to detect changes in vegetation, 
particularly by minimizing the influence of soil on 
vegetation health. This index is based on reflectance 
values from the red and NIR spectral bands and is 
calculated using the following equation (Equation 2.5) 
[18]. 

 

𝑴𝑺𝑨𝑽𝑰 =
(𝟐 𝒙 𝑵𝑰𝑹 + 𝟏 ) − √(𝟐 𝒙 𝑵𝑰𝑹 + 𝟏 )𝟐 − 𝟖 𝒙 ( 𝑵𝑰𝑹 − 𝑹𝑬𝑫)

𝟐
     (𝟐. 𝟓) 

 
 
MSAVI has proven more accurate in monitoring 

vegetation in arid regions where soil-vegetation mixing 
is high [19, 20]. Its effectiveness in tracking plant health, 
water stress, and vegetation degradation under such 
conditions underscores its importance in environmental 
assessments. 

 

2.6.6. Enhanced Vegetation Index (EVI) 

EVI is designed to enhance the vegetation signal in 
areas with high biomass by reducing atmospheric effects 
and separating soil background signals. It uses a blue 
band to correct atmospheric noise more accurately 
compared to NDVI. EVI relies on the differences in 
reflectance from red and NIR bands and often yields 
better results in snowy conditions, as EVI increases 
instead of decreasing during snowfall events. Recognized 
as a standard product in MODIS sensors, EVI is widely 
applied due to its capacity to eliminate atmospheric noise 
[21]. 

 

𝑬𝑽𝑰 = 𝑮 𝒙 
(𝑵𝑰𝑹 − 𝑹𝑬𝑫 )

(𝑵𝑰𝑹 + 𝑪𝟏 𝒙 𝑹𝑬𝑫 − 𝑪𝟐 𝒙 𝑩𝑳𝑼𝑬 + 𝑳 )
     (𝟐. 𝟔) 

 
 G: Gain factor (usually 2.5) 
 C₁: Coefficient used to correct for aerosol effect in the 

red    band (usually 6) 
 C₂: Coefficient used to correct for aerosol effect in the 

blue band (usually 7.5) 
 L: Canopy background correction (usually 1) 

 
 

2.6.7. Burn Area Index for Sentinel-2 (BAIS2) 

BAIS2 (Burn Area Index for Sentinel-2) is an 
adaptation of the traditional Burn Area Index (BAI) for 
Sentinel-2 data. It leverages the broad range of visible, 
red-edge, NIR, and SWIR bands in Sentinel-2 imagery to 
detect fire damage more precisely [22, 23]. This index is 
particularly effective in monitoring and identifying post-
fire ecosystem changes, as it can accurately measure the 
environmental impact of fires. BAIS2 values range from -
1 to 1 for burned areas, and between 1 and 6 for active 
fires. These values can vary with fire severity and can be 
calibrated with specific threshold values [24]. Its 
sensitivity to different fire intensities and areas affected 
makes BAIS2 a valuable tool for detecting burn scars and 
classifying fire zones, thereby enabling close tracking of 
wildfire impacts. 

 

𝑩𝑨𝑰𝑺𝟐 = (𝟏 − (
𝑩𝟎𝟔 × 𝑩𝟎𝟕 × 𝑩𝟖𝑨

𝑩𝟎𝟒

)
𝟎.𝟓

) × (
𝑩𝟏𝟐 − 𝑩𝟖𝑨

(𝑩𝟏𝟐 + 𝑩𝟖𝑨)𝟎.𝟓
+ 𝟏)    (𝟐. 𝟕) 

 
 

 B4: Red 

 B6: Red Edge 2 

 B7: Red Edge 3 

 B8A: Narrow Near Infrared (Narrow NIR) 

 B12: Short-Wave Infrared 2 (SWIR-2) 

 

3. Results 

The detection of burnt areas in Sentinel-2 satellite 
images after the fire was carried out using the pre-
trained DeepLabV3+ model described in Section 2.4. This 
artificial intelligence-based segmentation model 
separated burned and unburned areas by producing a 
binary output, thus enabling the calculation of fire 
indices on the GEE platform focused only on the burnt 
areas in the study regions covering Izmir, Mugla, and 
Mersin, which were cropped using QGIS. In this process, 
seven different indices detailed in Section 2.5 were 
calculated on the cropped areas and compared with the 
dNBR index as a reference. Based on the post-fire 
Sentinel-2 imagery, the potential of these indices as 
alternatives to dNBR in determining fire severity and 
ecosystem destruction was evaluated. The obtained 
results were visualized in the QGIS platform using colour 
palettes defined according to fire severity classes; high 
fire severity was represented by dark red, while 
decreasing severity was illustrated with red, orange, and 
yellow tones. Unburned areas were represented with 
colours ranging from light green (healthier vegetation) to 
dark green (less healthy vegetation), depending on the 
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vitality of the plants. This visualization method enabled a 
clearer interpretation of the spatial distribution of post-
fire ecosystem changes and contributed to making the 
results more understandable. The fire, pre-fire, and post-
fire dates for the studied regions are summarized in 
Table 2, while the geographical locations of the study 
areas are shown in Fig. 5. 

Table 2: Fire Timeline Information for Study Regions 

Province 
Pre-Fire 
Date 

Fire Date Post-Fire Date 

Izmir 31 July 2020 14 August 2020 20 August 2020 

Mugla 9 May 2021 12 August 2021 27 August 2021 

Mersin 
31 August 
2022 

8 September 2022 
25 September 
2022 

 

 
Figure 5. Study areas distribution 

3.1.  Izmir Region Use-Case 

In the studies conducted for the İzmir region, all 
indices used in the analysis were calculated using the 
Sentinel-2 satellite image dated 20 August 2020, while 
the dNBR index was calculated by comparing this image 
with the pre-fire image dated 31 July 2020. The resulting 
dNBR output was classified on the QGIS platform based 
on the threshold values defined in Section 2.5 and 
visualized using a color scheme representing different 
levels of fire severity. This output, used as the reference 
image (Fig. 6), was then compared with the other six 
indices analyzed in the study to provide a comprehensive 
evaluation.  

Fire severity categories specified in Table 1 are 
categorised from 0 to 6 respectively. According to Table 
3, BAIS2 and NBR indices are the most reliable 
alternatives when compared to dNBR, which is accepted 
as the reference index, in the fire severity analysis in 
Izmir region. These two indices produced values very 
close to dNBR, especially in medium and high severity 
burnt areas, and stood out with their intraclass 
consistency. NDMI can be considered as a noteworthy 
alternative, especially in severely burnt areas, giving 
results that are largely compatible with dNBR. While 
NDVI and EVI showed high deviations in low and 
moderate fire areas, they produced results closer to 
dNBR in severe fire areas. MSAVI, on the other hand, 
significantly underestimates dNBR in severely burnt 
areas, indicating that it is an index that should be 
carefully considered when analysing such areas. In 

general, the BAIS2, NBR and NDMI indices produced the 
closest results to dNBR in assessing fire severity, while 
the other indices exhibited different trends in low- and 
moderate-severity fire areas and may over- or under-
estimate. These findings provide an important basis for 
determining the reliability of alternative indices in 
studies where dNBR is taken as a reference and for 
analysing the effects of forest fires on the ecosystem 
more comprehensively. 

 

Figure 6. Results of dNBR index application to Izmir Region 

Table 3: Burnt Area Values by FS Classes in Izmir Region 

Value 
dNBR 
(ha) 

BAIS2 
(ha) 

NBR 
(ha) 

NDVI 
(ha) 

NDMI 
(ha) 

EVI 
(ha) 

MSAVI 
(ha) 

0 0 0,04 0 6,09 1,91 0 5,68 

1 0,02 3,03 5,74 20,47 4,29 1,17 13,51 

2 35,35 37,17 28,48 34,68 44,43 39,73 18,94 

3 51,12 46,42 42,13 25,42 41,81 24,58 48,53 

4 111,76 111,74 112,14 97,12 87,46 77,57 109,35 

5 654,62 650,11 660,93 657,88 669,96 565,14 534,23 

6 681,49 685,85 684,94 692,7 684,5 826,17 804,12 

 
According to the deviation percentages in Table 4, BAIS2 
and NBR stand out as the most reliable alternative 
indices in all categories with the lowest deviation rates 
compared to dNBR. In category 3, BAIS2 and NBR exhibit 
low deviation rates, while MSAVI is also a remarkable 
alternative. In Category 4, BAIS2 and NBR show the 
lowest deviations, while MSAVI can also be considered as 
a reliable alternative for this category. In Category 5, 
NDVI is a strong alternative, showing the lowest 
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deviation, while BAIS2 and NBR produced results very 
close to dNBR in this category. In Category 6, NDMI 
exhibited the lowest bias and together with BAIS2 and 
NBR were reliable alternatives for severely burnt areas. 
In contrast, EVI and MSAVI were not considered as 
alternatives to dNBR, exhibiting higher deviation rates in 
all categories. Overall, BAIS2 and NBR stood out as the 
most reliable indices, producing results close to dNBR in 
all four categories. 
 

Table 4. Deviation Percentages for Izmir Region 

FS BAIS2 NBR NDVI NDMI EVI MSAVI 

3 -9.19% -17.59% -50.27% -18.21% -51.92% -5.07% 

4 -0.02% 0.34% -13.10% -21.74% -30.59% -2.16% 

5 -0.69% 0.96% 0.50% 2.34% -13.67% -18.39% 

6 0.64% 0.51% 1.64% 0.44% 21.23% 17.99% 

 

3.2. Mugla Region Use-Case 

In the second study area, Muğla, all indices used in 
the analysis were calculated using the post-fire satellite 
image dated 27 August 2021. The dNBR index, on the 
other hand, was calculated using the pre-fire image dated 
9 May 2021. The resulting dNBR output (Fig. 7) was 
classified on the QGIS platform and visualized according 
to fire severity levels. This output, used as the reference 
image, was then compared with the other indices 
examined in the study and analyzed accordingly. 

 

Figure 7. Results of dNBR index application to Mugla Region 

 
In the post-fire burnt area analysis in Muğla region, 

it was determined that NBR and BAIS2 indices produced 
the closest results to the reference index dNBR and had 
low deviation rates, especially in categories 3, 5 and 6 
(Table 5). While NBR is a reliable alternative with low 
deviation in category 3, it has a higher deviation in 
category 4 and should be evaluated carefully. BAIS2 
produced the closest results to dNBR in category 5, and 

although it performed consistently in category 6, it 
exhibited larger deviations in category 4. Although NDVI 
showed low deviation in category 3, moderate deviation 
in category 4 and higher deviation in category 5, it 
performed better in category 6 and can be considered as 
an alternative index in high fire severity areas. NDMI 
agreed with dNBR with relatively low deviation in 
categories 5 and 6, but showed higher deviation in 
category 4. MSAVI produced results relatively close to 
dNBR in categories 3 and 6, but showed a significant 
deviation in category 5, indicating that it should be used 
with caution and supplemented with other indices. EVI, 
on the other hand, showed significant deviations in all 
categories, especially in categories 3 and 6, indicating 
that it cannot be considered as an alternative index to 
dNBR. In conclusion, NBR and BAIS2 stand out as the 
most reliable alternatives in certain categories, while 
NDVI and NDMI show that they can be a potential 
alternative for some burnt area severity levels, but 
MSAVI and EVI perform inconsistently and should be 
considered carefully in post-fire severity assessments. 

Table 5. Burnt Area Values by FS Classes in Mugla Region 

FS dNBR 

(ha) 

NBR 

(ha) 

BAIS2 

(ha) 

NDVI 

(ha) 

NDMI 

(ha) 

MSAVI 

(ha) 

EVI 

(ha) 

0 0,13 0,09 0,19 2,16 0 0 0 

1 1,16 81,26 19,82 149,78 65,93 21,52 4,59 

2 640,81 362,93 660,86 144,75 532,88 606 258,53 

3 2159,52 2222,29 2101,11 2191,96 2067,34 2181,17 2843,36 

4 1945,54 2105,12 1824,03 1968,31 1855,25 2096,1 1484,57 

5 1279,44 1240,44 1392,32 1531,59 1475,99 1095,97 1358,34 

6 1002,75 1012 1025,8 1035,58 1026,74 1023,37 1074,74 

 

According to Table 6, the indices that produced the 
closest results to dNBR in the burnt area analysis in 
Muğla region were generally NBR and BAIS2. In Category 
3, BAIS2 and MSAVI stand out with low deviation 
percentages. In Category 4, NDVI and BAIS2 produced 
the closest results to dNBR with low deviation 
percentages. In Category 5, BAIS2 and NBR produced the 
closest value to dNBR, while NDVI and NDMI showed 
larger deviation percentages. In Category 6, BAIS2, NBR 
stand out as reliable alternatives with the lowest 
deviation percentages. However, EVI stands out in this 
category with a higher deviation percentage. In general, 
NBR and BAIS2 indices stand out as the indices that 
produce the closest results to dNBR in Muğla region, 
while NDMI and NDVI can be considered as alternatives 
by showing low deviation percentages in certain 
categories. However, EVI should be carefully evaluated in 
fire severity analyses due to its high deviation 
percentages. 

Table 6. Deviation Percentages for Mugla Region 
 

FS NBR  BAIS2  NDVI  NDMI  MSAVI  EVI  

3 2,91% -2,70% 1,50% -4,27% 1,00% 31,67% 

4 8,20% -6,25% 1,17% -4,64% 7,74% -23,69% 

5 -3,05% 8,82% 19,71% 15,36% -14,34% 6,17% 

6 0,92% 2,30% 3,27% 2,39% 2,06% 7,18% 
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3.3. Mersin Region Use-Case 

In Mersin, which was selected as the third study 
region, the calculations of all indices used in the study 
were performed using the post-fire satellite image dated 
25 September 2022. The dNBR index, on the other hand, 
was calculated by comparing the pre-fire image dated 31 
August 2022 with the post-fire image. The resulting 
dNBR output (Fig. 8) was classified on the QGIS platform 
and visualized according to fire severity levels. This 
output, used as the reference image, was analyzed by 
comparing it with the other six indices evaluated in the 
study. 

 

Figure 8. Results of dNBR index application to Mersin Region 

In the analysis of post-fire burnt areas for Mersin, it 
was found that BAIS2 and NBR indices produced the 
closest results to the reference values with low deviation 
rates in general (Table 7). In Category 3, BAIS2 and NDVI 
produced values close to dNBR, while NDMI and MSAVI 
showed larger differences. In Category 4, NBR and EVI 
produced estimates close to dNBR, NDMI showed a larger 
percentage deviation, while MSAVI produced estimates 
that differed from dNBR by a significant margin. In 
Category 5, BAIS2, NBR and NDMI produce estimates 
closer to the dNBR, while NDVI, EVI and MSAVI show 
quite high differences and are not considered as 
alternatives to the dNBR index. In category 6, BAIS2, NBR 
were considered reliable alternatives and produced 
results very close to dNBR, while NDVI showed a larger 
difference and EVI and MSAVI produced more 
inconsistent estimates. Overall, BAIS2 and NBR produced 
results closest to the dNBR index, NDVI and NDMI 
produced estimates close to the dNBR index in certain 
categories but with significant differences in others, 
while EVI and MSAVI showed large deviations compared 
to dNBR results and are not recommended for use alone 
in post-fire ecosystem assessments. This analysis 
provides an important basis for determining the 
reliability of alternative indices in studies using dNBR as 
a reference index. 

 

Table 7. Burnt Area Values by FS Classes in Mersin Region 
 

FS 
dNBR 

(ha) 

BAIS2 

(ha) 

NBR 

(ha) 

NDVI 

(ha) 

NDMI 

(ha) 

EVI 

(ha) 

MSAVI 

(ha) 

0 0 0,13 0,05 7,6 0 0 0 

1 0,01 4,48 3,64 48,44 6,46 7,47 3,91 

2 165,55 142,05 162,58 78,9 113,96 160,95 222,05 

3 524,1 560,97 511,98 541,49 484,53 583,14 665,86 

4 767,51 708,57 764,24 671,15 865,2 740,59 350,91 

5 683,53 719,62 685,9 730,11 687,47 457,64 871,98 

6 390,02 394,9 402,33 453,03 373,1 580,93 416,01 

 

As a result of analysing Table 8, it was determined 
that the NBR index gave the best results with the lowest 
deviation percentages in all categories, but the second 
best index varied by category. In particular, BAIS2 
produced the best result in category 6, which represents 
the most severely burnt areas, indicating that this index 
may be an alternative to dNBR. BAIS2 produced the 
closest estimates to dNBR in categories 3 and 5 and NBR 
produced the closest estimates to dNBR in category 4, but 
NDMI and MSAVI produced inconsistent estimates with 
high deviation percentages in some categories. In 
general, NBR and BAIS2 indices stand out as the most 
reliable alternatives in Mersin region, while NDVI and 
NDMI produced estimates close to dNBR in certain 
categories, but EVI and MSAVI showed larger deviations 
and were identified as indices that should be considered 
with caution. These findings suggest that NBR and BAIS2 
offer strong alternatives for assessing post-fire 
ecosystem damage. 

Table 8. Deviation Percentages for Mersin Region 

Value BAIS2  NBR  NDVI  NDMI  EVI  MSAVI  

3 7,04% -2,31% 3,32% -7,55% 11,27% 27,05% 

4 -7,68% -0,43% -12,55% 12,73% -3,51% -54,28% 

5 5,28% 0,35% 6,81% 0,58% -33,05% 27,57% 

6 1,25% 3,16% 16,16% -4,34% 48,95% 6,66% 

 

4. Discussion 

The results were also evaluated using Insersection 
over Union (IoU) accuracy metric for area based 
overlaps. IoU analyses provide crucial insights into the 
effectiveness of alternative indices compared to the 
widely used dNBR index in assessing post-fire ecosystem 
damage. The evaluation of six alternative spectral indices 
(NDVI, NDMI, NBR, MSAVI, EVI, and BAIS2) across three 
study regions (Izmir, Mugla, and Mersin) highlights the 
relative reliability of each index in different fire severity 
classes. The calculation is based on dNBR-derived 
classes, which are treated as ground truth. 

 

The IoU values for Izmir indicate that BAIS2 and NBR 
show relatively high agreement with dNBR in categories 
5 and 6, where fire severity is greater (Table 9). However, 
in lower severity classes (3 and 4), deviations are more 
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noticeable. NDMI also provides moderate consistency, 
particularly in high-severity burn areas where moisture 
depletion is critical. NDVI, EVI, and MSAVI exhibit 
significant deviations, particularly in lower severity 
classes, making them less reliable for capturing fire-
induced damage comprehensively.  

 

Table 9. IoU results for İzmir Region 
 

IZMIR 

FS 3 4 5 6 

BAIS2 0.25767772 0.26995852 0.54092262 0.6371212 

EVI 0.17874218 0.14265386 0.46577253 0.54292259 

MSAVI 0.1462727 0.0548314 0.36591573 0.38947815 

NBR 0.24381412 0.2729397 0.52398322 0.61767039 

NDMI 0.22693686 0.21840592 0.44360869 0.53894829 

NDVI 0.1525406 0.05164772 0.3669312 0.38889843 

In the Mugla region (Table 10), BAIS2 and NBR provide 
moderate agreement with dNBR in categories 3 and 6, 
but they show greater deviations in category 4. NDMI and 
MSAVI also present relatively lower deviations in 
categories 3 and 6. However, NDVI and EVI display high 
variations, particularly in categories 5 and 6, indicating 
that they do not perform well in high-severity fire areas. 

Table 10. IoU results for Muğla Region 

MUGLA 

FS 3 4 5 6 

BAIS2 0.38081981 0.30220467 0.34104975 0.57900677 

EVI 0.45271239 0.25316386 0.27634928 0.51235368 

MSAVI 0.39752221 0.30657451 0.23831493 0.51577404 

NBR 0.38135935 0.2836906 0.3085935 0.57452778 

NDMI 0.3814803 0.29911781 0.30865095 0.51107157 

NDVI 0.35979076 0.25210745 0.19002523 0.35397625 

 
In Mersin (Table 11), BAIS2 and NBR again demonstrate 
relatively higher agreement with dNBR in categories 5 
and 6. However, deviations increase in lower severity 
categories. NDMI shows moderate agreement in 
categories 4 and 5, while NDVI and MSAVI present higher 
deviations, especially in category 6. EVI exhibits the least 
consistency across all categories. 

Table 11. IoU results for Mersin Region 
 

MERSIN 

FS 3 4 5 6 

BAIS2 0.32790346 0.32118677 0.32967289 0.43507747 

EVI 0.34631477 0.27899383 0.27173975 0.35743629 

MSAVI 0.27228988 0.23397968 0.27590456 0.36393257 

NBR 0.2670308 0.30176391 0.33089773 0.44462749 

NDMI 0.18561436 0.30220702 0.30910152 0.40615407 

NDVI 0.143227815 0.190399 0.186685248 0.101493966 

 

Across all three study regions, the IoU results 
indicate that BAIS2 and NBR provide relatively better 
agreement with dNBR in high-severity fire areas, while 
NDMI, although showing moderate agreement in some 
cases, is not consistently reliable. NDVI, EVI, and MSAVI 
tend to exhibit significant deviations, especially in lower-
severity classes; this makes them less suitable as 
standalone fire-severity indicators. The root of this poor 
performance lies in the fact that each index is calculated 
using spectral bands that are affected to varying degrees 
by the complex atmospheric and surface conditions 
present after a fire. EVI uses the blue band to reduce 
aerosol and atmospheric noise compared to NDVI and 
performs better when it comes to shadowing and 
saturation; nevertheless, the thin smoke and aerosol 
particles that rise after a fire still disrupt blue-band 
reflectance and increase the error margin, substantially 
lowering EVI’s overlap with dNBR in low- and moderate-
severity burn classes [25]. MSAVI, which aims to 
minimize soil influence, is undermined immediately after 
a fire because the char residue and bare soil that 
accumulate on the surface create a mixed spectral signal 
that weakens its soil-correction mechanism, making it 
difficult to distinguish vegetation from burned areas in 
low-cover environments. NDVI, which relies solely on the 
red and near-infrared bands, cannot achieve clear 
spectral separation in post-fire conditions due to the 
presence of dry grass, charred plant debris, and aerosol 
reflections; therefore, NDVI’s IoU values with dNBR 
remain quite low in lower-severity regions such as FS = 3 
and FS = 4. Consequently, the spectral-band limitations 
of these indices, along with their sensitivity to soil and 
aerosol effects and the atmospheric noise generated after 
a fire, prevent them from consistently producing reliable 
results within dNBR-referenced regional severity 
classifications. 

 
 

5. Conclussion 
 

The main objective of this study is to evaluate the 
effectiveness of alternative indices to the widely used 
dNBR index for determining ecosystem damage after 
forest fires. Using only post-fire satellite data, the study 
examined how effectively six different indices such as 
NDVI, NDMI, NBR, MSAVI, EVI and BAIS2 can determine 
post-fire ecosystem destruction. Analyses for Mersin, 
Muğla and İzmir regions show that NBR and BAIS2 
indices give the closest results to dNBR index in 
determining post-fire ecosystem damage. In Izmir, NBR 
and BAIS2 highlighted the areas under the influence of 
fire most clearly, while in Mugla and Mersin, these 
indices accurately detected post-fire ecosystem 
destruction. After these two indices, NDMI provides 
supportive results in the detection of severe burn areas 
as it targets moisture loss in plant tissue. Although plant-
orientated indices such as NDVI, EVI and MSAVI were 
able to map burned areas at a basic level, they were not 
found to be as effective as other indices in terms of 
detailed grading of fire damage. Therefore, BAIS2 and 
NBR stand out as the closest alternative indices to dNBR 
for all three regions. While these indices offer high 
accuracy in monitoring post-fire ecosystem destruction 



Mersin Photogrammetry Journal – 2025, 7(1), 57-67 

 

  66  

 

and determining fire severity, indices such as MSAVI can 
be considered as alternatives by providing 
complementary information. Future studies suggest that 
indices such as BAIS2 and NBR should be used more 
widely, while indices such as MSAVI can be used as 
alternatives, and that these indices can be important 
tools for post-fire ecosystem restoration and biodiversity 
conservation in different geographical regions. 

The findings suggest that NBR and BAIS2, as the 
indices that produce the closest results to the dNBR 
reference index in analysing post-fire burnt areas, are 
considered as reliable and strong alternatives for the 
three study regions of İzmir, Muğla and Mersin. These 
two indices have an important potential in determining 
ecosystem destruction by providing results close to 
dNBR in the detection and classification of burnt areas 
according to their severity. In the Izmir region, BAIS2 and 
NBR showed high agreement, especially in the 
classification of low, moderate, severe and very severe 
burnt areas, while in the Muğla region, BAIS2 stood out 
as a strong alternative for severely burnt areas. In the 
Mersin region, the NBR produced results close to the 
dNBR in all categories. These findings reveal that the use 
of NBR and BAIS2 in both local and general scale fire 
analysis studies is valuable from a practical and scientific 
point of view. However, the differences in the 
performance of other indices on a category basis indicate 
that the use of these indices should be more cautious. In 
particular, it was observed that indices such as NDVI, 
NDMI and MSAVI exhibited lower performance in low 
and moderate severity burnt areas, but gave results close 
to dNBR in some categories, especially in severe and very 
severe burnt areas. This situation emphasises that the 
use of a single index in post-fire damage analyses may be 
limited and the importance of supporting the indices 
with more than one method according to the situation. 
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