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Abstract                                                               
Purpose:  The agricultural sector is strategically important for sustainable development and food security. 
However, climate change and the increasing physical and political uncertainties that come with it put 
investments in this sector at risk. This study examines the relationship between climate policy uncertainty and 
agricultural investments in the USA from 1995-2022. 

Design/Methodology/Approach: The nonlinear ARDL method and asymmetric causality test are used to 
analyze the relationships between climate policy uncertainty and agricultural investments. Nonlinear methods 
allow us to measure asymmetric effects on the dependent variable by evaluating the positive and negative 
changes of the explanatory variables separately. 

Findings: According to the NARDL model results, increases in climate policy uncertainty reduce agricultural 
investments in the long run. The asymmetric causality test provides additional evidence for the asymmetric 
relationships identified by the NARDL model. There is a statistically significant asymmetric causality from 
the positive shock of climate policy uncertainty to the negative shock of agricultural investments. 

Originality/Value: This study fills the gap in the literature by examining the impact of climate policy 
uncertainty on investments in the agricultural sector. This provides a new perspective to understand the long-
term consequences of this relationship in a highly climate-sensitive area such as the agricultural sector. 

Keywords: Agricultural investments, agriculture, climate change, climate policy uncertainty, NARDL 

İklim politikası belirsizliğinin tarımsal yatırımlara etkisi 

Özet                                                                       
Amaç: Tarım sektörü hem sürdürülebilir kalkınma hem de gıda güvenliği açısından stratejik bir öneme 
sahiptir. Ancak, iklim değişikliği ve buna bağlı olarak artan fiziksel ve politik belirsizlikler, bu sektördeki 
yatırımları riske atmaktadır. Bu çalışmanın amacı, ABD’de iklim politikası belirsizliği ile tarımsal yatırımlar 
arasındaki ilişkiyi 1995-2022 dönemi için incelemektir.  

Tasarım/Metodoloji/Yaklaşım: İklim politikası belirsizliği ile tarımsal yatırımlar arasındaki ilişkileri analiz 
etmek için doğrusal olmayan ARDL yöntemi ve asimetrik nedensellik testi kullanılmaktadır. Nonlinear 
yöntemler, açıklayıcı değişkenlerin pozitif ve negatif değişimlerini ayrı ayrı değerlendirerek bağımlı değişken 
üzerindeki asimetrik etkileri ölçmeyi sağlamaktadır. 

Bulgular: NARDL modelinin sonuçlarına göre, iklim politikası belirsizliğindeki artışlar uzun dönemde 
tarımsal yatırımları azaltmaktadır. Asimetrik nedensellik testi, NARDL modeli tarafından tanımlanan 
asimetrik ilişkiler için ek kanıt sağlamaktadır. İklim politikası belirsizliğinin pozitif şokundan tarımsal 
yatırımların negatif şokuna doğru istatistiksel olarak anlamlı bir asimetrik nedensellik vardır. 

Özgünlük/Değer: Çalışma, iklim politikası belirsizliğinin yatırımlar üzerindeki etkisini tarım sektörü 
açısından inceleyerek literatürdeki boşluğu doldurmaktadır. Bu, tarım sektörü gibi iklime oldukça duyarlı bir 
alanda, söz konusu ilişkinin uzun vadeli sonuçlarını anlamaya yönelik yeni bir perspektif sağlamaktadır. 

Anahtar kelimeler: Tarımsal yatırımlar, tarım, iklim değişikliği, iklim politikası belirsizliği, NARDL
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INTRODUCTION  
The impacts of climate change are many and varied. Changes in phenomena such as temperature, precipitation, 

cloud cover, wind direction and speed, and alkalinity directly affect living organisms and ecosystems. These impacts 
are further affected by other ecological interactions (Tol, 2019). Carney (2015) reports three main risks related to 
climate change: (i) physical risks, (ii) liability risks, and (iii) transition risks. The first is extreme weather events 
resulting from the gradual global warming change. The second is the financial risks that may arise when parties harmed 
by climate change seek compensation from those responsible. The third is the possible impacts of the transition to a 
low-carbon economy. The latter is actually a risk that creates uncertainty in climate policy. Emphasizing that climate 
change is one of the biggest global challenges, Feyen et al. (2020) state that if sufficient measures are not taken to 
reduce emissions, it is inevitable that the negative climate change effects will accelerate and reach an uncontrollable 
size. In addition, Nordhaus’s ‘climate casino’ analogy is even more tragic. Nordhaus (2020) argues that the two 
extreme policies of stopping global warming by banning all fossil fuels or taking no action for a long time are irrational 
and even a reckless gamble. According to him, ‘good policy’ must lie somewhere between these policies, the first of 
which will destroy the economy and the second of which will destroy the world. This critical choice between the two 
extremes is the main problem that causes uncertainty in climate policies. Taking no action is the worst-case scenario 
for everyone. It is not the interest of this study. So, what should an active climate policy be like? Should a carbon tax 
be levied on polluters? Should the transition to renewable energy technologies be made mandatory? Should products 
such as electric vehicles and green financing be encouraged? Will commitments made to the Paris Climate Agreement 
be fulfilled? Would countries really want to compromise their economic growth? How much will each country fight 
climate change? Will laws support this fight? These questions create uncertainty about the incentives and sanctions 
for combating climate change and adaptation policies. This uncertainty in climate policies is likely to affect 
investments (Hoang, 2022; Li and Su, 2022; Ren et al., 2022; Zhang et al., 2023; Zhao et al., 2025), carbon emissions 
(Dinç, 2022; Zeng et al., 2022; Hashmi et al., 2023; Tian and Li, 2023; Kisswani et al., 2024), stock markets (Chan 
and Malik, 2022; He and Zhang, 2022; Chen et al., 2023; Lv and Li, 2023), oil prices (He and Zhang, 2022; Salisu et 
al., 2023; Zhou et al., 2023) and many other related macroeconomic variables. The Network for Greening the Financial 
System (NGFS) (2020) expresses that climate change’s physical and transition risks can affect almost all 
macroeconomic variables through different channels, from production to consumption, investment to productivity, 
labor to wages, international trade to exchange rates and inflation.  

The impact of climate policy uncertainty on investment (Neuhoff, 2007; Fuss et al., 2008) is not a new agenda. 
Uncertainty in climate policy stems from uncertainties in climate change’s science, economics, and politics. These 
uncertainties are particularly influential when investing in energy markets because deciding to control or not control 
emissions in a sector where policy regulation is aimed poses a vital risk to potential investments (Fuss et al., 2008). 
Feyen et al. (2020) and Fried et al. (2021) indicate that active policies against climate risks will affect the productivity 
of existing investments and new investment decisions. NGFS (2020) explained the effects of climate change on 
investments according to the type of climate risk as follows: 

i. Extreme weather events: Increased uncertainty, volatility and destruction of valuable capital stock reduce 

investments. Moving away from high-productivity investments may reduce investments. 

ii. Gradual warming: Investments shift towards climate adaptation technologies. 

iii. Transition risk: Investments are low due to uncertainty in future policies and increasing idle assets. 

The above relationships explained theoretically by NGFS (2020) are empirically proven by studies such as Ren 
et al. (2022), Zhang et al. (2023), Abdulai et al. (2024), and Zhao et al. (2025). In other words, these studies have 
identified an adverse relationship between climate policy uncertainty and investments. In this context, it is thought 
that the agricultural sector requires special attention because it stands out as one of the most sensitive sectors to climate 
change. Pardey and Alston (2020) explain the drivers of productivity in the United States of America (USA) 
agriculture, and they also touch on the role of climate change in the structural transformation of agriculture. Anton et 
al. (2013) state that the effects of climate change on agricultural product productivity will determine adaptation 
strategies by increasing the demand for agricultural risk management tools. Zhou et al. (2022) also report that climate 
shocks adversely affect farmers’ productive investments by increasing the uncertainty in agricultural production. 
Heumesser et al. (2012), one of the studies that analyze the uncertainty created by the physical risks of climate more 
specifically, examined the optimal investment strategies of saving or rain-fed irrigation systems. In another related 
study, Ouattara et al. (2018) investigate the soil conservation decisions of farmers exposed to the negative effects of 
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climate change. Today, many negative factors triggered by climate change, such as temperature increases, changes in 
the amount and regime of precipitation, increased frequency and severity of extreme weather events, desertification, 
and sea level rise continue to affect agricultural activities on a global scale. In addition, neoliberal policies prioritizing 
the industry and services sector worldwide have made agriculture a very fragile (Adaman et al., 2020). Moreover, 
climate policy is a complex process where social and economic factors come together to create an optimal search 
beyond just reducing emissions and increasing the use of renewable energy. Therefore, due to its high dependence on 
temperature, precipitation, and climatic extremes, agricultural production and investments are affected by both 
physical climate risks and uncertainties in climate policies. Furthermore, agricultural investments usually require long-
term planning, making investors’ decision-making processes more difficult in an environment of uncertainty. 
Quantitative and temporal uncertainties in sustainable agricultural policies, adaptation investments and supply chains 
may cause farmers to postpone or abandon long-term investment decisions. Such effects are not only related to climate 
policy. There is empirical evidence that the physical impacts of climate change also affect the agricultural sector. 
Stevanović et al. (2016) stated that climate change will harm agricultural welfare globally, especially after 2050. The 
most basic predictions in this projection are that production will shift to higher latitudes and total yield loss will reach 
0.3% per year. Ozdemir (2022), who investigates climate change’s short- and long-term effects on agricultural 
productivity, confirms a long-term and negative relationship between agricultural productivity and climate change 
variables. Assunção (2016), Ortiz-Bobea et al. (2021), and Bai et al. (2024) also draw attention to findings predicting 
that the negative effects of climate change on agricultural productivity will continue increasingly. In contrast, Khalid 
et al. (2016) show that climate change affects countries’ output performance, not agricultural value added. 

So, what should be considered for the agricultural sector, which is severely affected by climate change, and for 
investments in this sector? How will increases in climate policy uncertainty affect investments in the agricultural 
sector? What kind of policy should be developed to prevent uncertainties hindering agricultural investments and 
encourage adaptation investments? The answers to these questions are important both academically and politically. 
Although they do not directly seek answers to such questions, some studies address climate policy uncertainty and 
agriculture from different perspectives. Among them, Wang et al. (2023) analyze the relationship between climate 
policy uncertainty and agricultural product prices through quantile connectivity and Johansen cointegration. 
Accordingly, high connectivity between climate policy uncertainty and agricultural product prices, especially in 
extreme quantiles, and also a long-term cointegration relationship are found. In another study, Wang et al. (2024) 
argue that climate policy uncertainty in China has a detrimental effect on green total factor productivity in agriculture. 
Li et al. (2024) investigate how green innovation in agricultural enterprises is affected by climate policy uncertainty. 
According to them, a positive relationship exists between climate policy uncertainty and green innovation in 
agricultural enterprises. In addition, government environmental subsidies and environmental concerns also contribute 
to this positive relationship. On the contrary, Aysan et al. (2024) argue that an unpredictable political environment 
reduces investors’ confidence. The lack of political stability weakens the financial viability of long-term green 
technology investments, especially in developing economies. Therefore, it is possible to state that uncertainties in 
climate policies can hinder progress toward green economies through investor behavior. Borozan and Pirgaip (2025) 
also found similar findings in the USA. Accordingly, climate policy uncertainty significantly negatively affects 
renewable energy use, especially long-term. Renewable energy use, which is frequently emphasized as an important 
solution to mitigate the effects of climate change, faces difficulties due to uncertain climate policies. In another study 
on the USA, Noailly et al. (2022) provide evidence supporting the findings of the previous two studies. Investments 
in green technology and green bonds for a low-carbon economy are negatively affected by policy uncertainty. 

Although the relationship between climate policy uncertainty and economic indicators has received increasing 
academic attention in recent years, studies on how this relationship is shaped in the agricultural sector are quite limited. 
The general tendency in the existing literature is limited to examining the negative effects of climate policy uncertainty 
on investment decisions while neglecting the agricultural sector, which is extremely sensitive to climate and 
increasingly important in economic terms. The agricultural sector is one of the sectors where long-term and capital-
intensive investments have a significant share. It is also one of the sectors most vulnerable to climate change’s physical 
and transition effects. In addition to being directly exposed to climate change, it has a structure that requires long-term 
and capital-intensive investments. However, the variability of climate policies and how uncertainties shape investment 
decisions in the sector have not been sufficiently examined. This study aims to fill this gap in the literature by analyzing 
the relationship between climate policy uncertainty and agricultural investments in an asymmetric framework. The 
analyses performed using the NARDL method and asymmetric causality test reveal how increases in uncertainty affect 
agricultural investments and whether this effect is asymmetric. Thus, it contributes to developing a more 
comprehensive understanding of the relationship between climate policy uncertainty and agricultural investments. In 
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addition, the agricultural sector is also important for the United States. According to the 2023 data of the United States 
Department of Agriculture (USDA) Economic Research Service, the contribution of agriculture and other food-related 
industries to the US GDP is approximately $1.5 trillion. 5.5% of the US GDP is agricultural production, 10.4% of 
total employment is agricultural employment, and 12.9% of household expenditures is food. The highest share of 
USDA’s expenditures on farm and food programs is allocated to nutrition assistance. According to USDA, 10.5% of 
greenhouse gas emissions in the USA in 2022 are caused by agricultural activities. These indicators clearly 
demonstrate the importance of the agricultural sector in the US economy and also its environmental impacts. While 
the agricultural sector significantly contributes to the country’s economic growth and employment, it also has strategic 
importance due to its challenges in combating climate change. The economic impacts of climate change on the US 
agricultural sector and adaptation strategies support the main findings of this study, enabling a broader assessment of 
the relationship between climate policy uncertainty and agricultural investments. According to the USDA’s (2013) 
comprehensive climate change and agriculture report, temperature increases, extreme weather events, depletion of 
water resources, and ecological imbalances caused by climate change threaten agricultural production and 
productivity, leading to economic instability. Extreme events, especially droughts, floods, and storms, increase 
production costs, trigger crop losses, and increase pressure on agricultural insurance systems. In this environment of 
economic uncertainty, the direction and sustainability of agricultural investments are also significantly affected. The 
adaptation strategies highlighted in the report offer various solutions for the agricultural sector to cope with these 
risks. However, the fact that national policy frameworks aimed at combating climate change are incompatible with 
the dynamics of local agricultural industries is one of the main factors limiting the effectiveness of the adaptation 
process. In contrast, the withdrawal of the US from the Paris Climate Agreement by the new president, Donald Trump 
(European Parliament, 2025), has further increased climate policy uncertainty. These uncertainties are expected to 
affect agricultural investments through various channels, such as increased risk perception, financing costs, adaptation 
investment disruption, and regional uncertainties. In such a case, establishing long-term and consistent climate policies 
for the US agricultural sector is critical for both the sustainability of investments and the increase of agricultural 
adaptation capacity. Therefore, the importance of the agricultural sector in the US and the increasing uncertainties in 
the fight against climate change reveals the importance of this study. The findings of this study can serve as a guide 
to understand better and manage the effects of climate policies on agricultural investments. 

MATERIAL AND METHOD 
This study examines the asymmetric relationships between climate policy uncertainty and agricultural 

investments in the USA from 1995 to 2022. Climate policy uncertainty (cpu) is an index developed by Gavriilidis 
(2021) that measures the effects of significant events related to climate policy, such as emissions news, renewable 
energy, global warming, and climate change. To create the climate policy uncertainty index, the terms “uncertainty, 
renewable energy, green energy, climate, etc.” in 8 leading newspapers in the USA are scanned. In addition, this index 
can be used as a climate risk descriptor that reflects important volatility events related to climate policy (Ren et al., 
2023). Agricultural investments (gfcf) represents the investments in the agricultural sector. Such investments are 
critical in increasing the agricultural sector’s production capacity, ensuring its modernization, and improving 
efficiency. Agricultural investments not only mean providing production tools but also multifaceted contributions 
such as supporting rural development, increasing agricultural employment, and ensuring food security. Agricultural 
investments are the most fundamental part of agricultural production and are key to growth and development processes 
in agriculture (Butzer et al., 2012). Fixed capital investments include not only buildings, machinery, and equipment 
but also “cultivated assets yielding repeated products such as animals for breeding, dairy, draught, etc., or perennial 
tree, crop, and plant resources” (Vander Donckt and Chan, 2019). Such assets are of great importance in the 
sustainability of agriculture and long-term production planning, as they contribute to production cycles that span not 
only one season but also many years. Therefore, the gfcf indicator is theoretically and empirically influential in 
analyzing the agricultural sector’s development process of capital accumulation and production capacity. The increase 
in these investments directly affects not only the quantity of agricultural outputs but also the quality of production and 
sectoral competitiveness (Butzer et al., 2012). The variable related to climate policy uncertainty is obtained from the 
https://www.policyuncertainty.com database. The variable related to agricultural investments is obtained from the 
Food and Agriculture Organization database (FAOSTAT). The descriptive statistics of these variables are given in 
Table 1.  
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Table 1. Summary statistics 

 GFCF CPU 
 Mean  29.82860  107.44400 
 Median  29.81661  93.13099 
 Maximum  40.78733  225.41320 
 Minimum  22.61642  57.56491 
 Std. Dev.  4.504570  51.25903 
 Skewness  0.497214  1.21183 
 Kurtosis  2.690901  3.26288 
 Jarque-Bera  1.265168  6.93374 
 Probability  0.531217  0.03122 
 Observations 28 28 

According to Table 1, cpu has higher mean and median values than gfcf. Skewness values are positive, meaning 
the series is skewed to the right. Jarque-Bera test statistics show that the cpu series is not normally distributed. The 
study employs an annual dataset covering the period from 1995 to 2022, consisting of 28 observations, which is 
appropriate given the structure and scope of the model. The NARDL approach, which is well-suited for small sample 
sizes, is widely applied in the literature for low-frequency time series with limited observations. 
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Figure 1. Temporal dynamics of climate policy uncertainty and agricultural investment  

Source: www.policyuncertainty.com and FAOSTAT 

Figure 1 shows the time series graphs of the variables. Although the cpu data fluctuates, it generally shows an 
increasing trend. Since the increases in the series indicate that uncertainties have increased, the discussions on the 
US’s participation in the Kyoto Protocol in the early 2000s, the subsequent regulations of the Obama government 
limiting carbon emissions, the Paris Agreement in 2017, President Trump’s rejection of new emission rules in 2020, 
and the acceleration of environmental policies, especially with the pandemic period, have also caused uncertainties to 
increase (Ren et al., 2023). The US’s approach to global climate agreements, environmental regulations, and energy 
policies determines climate policy uncertainty. Events such as the Kyoto and Paris Agreements have caused these 
uncertainties to fluctuate (Gavriilidis, 2021). Similarly, gfcf also follows a fluctuating course. Low interest rates, 
agricultural subsidies, and the economic incentive packages implemented by the Obama administration after the 
Global Financial Crisis have increased investments. The increases experienced, especially after 2014, can be 
associated with increased investments in agricultural food security. The COVID-19 pandemic that followed increased 
the strategic importance of the agriculture and forestry sector, causing investments to reach record levels in 2020 
(FAOSTAT Analytical Brief 54, 2021). Both series are included in the analysis by taking their natural logarithms. 

In the study where the causality relationship between lgfcf and lcpu for the USA is examined, the stationarity 
levels of the variables are first determined through unit root tests. For this purpose, the stationarity levels, Augmented 
Dickey-Fuller (ADF) developed by Said and Dickey (1984), Phillips-Perron (PP) traditional unit root tests developed 
by Phillips and Perron (1988), and the single break unit root test based on the studies of Perron (1989) and Perron and 
Vogelsang (1992), are also used. Shin et al. (2014) use the NARDL model, allowing the effects of positive and 
negative shocks on the explanatory variables to be analyzed separately on the dependent variable, will be used. In 
order to analyze the asymmetric causality relationship, the variables are separated into positive and negative 
components and examined using the causality analysis developed by Hatemi-J (2012). When asymmetric causality 
tests and NARDL methods are used together, a more comprehensive analysis of the relationship between variables is 

http://www.policyuncertainty.com/
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achieved. While asymmetric causality tests the existence and direction of a relationship, the NARDL model explains 
how this relationship differs in the short and long term and whether it is asymmetric or not. 

The Nonlinear Autoregressive Distributed Lag (NARDL) Model 

The Autoregressive Distributed Lag (ARDL) model developed by Pesaran et al. (2001) has significantly 
contributed to the econometric literature. In the ARDL model, the dependent variable should be first-order stationary 
(I(1)), but the explanatory variables can be first-order stationary (I(1)) or stationary at level (I(0)). In this way, the 
ARDL model allows for analyzing the regression and cointegration relationships between the same and different-
order stationary series. Shin et al. (2014) developed the NARDL model, which allows the analysis of the effects of 
positive and negative shocks on the explanatory variables on the dependent variable separately. This model allows for 
determining whether the effects of positive and negative shocks on the explanatory variables are the same as those on 
the dependent variable. 

Based on the variables used in the analysis, an example asymmetric relationship can be presented with the 
following regression: 

                                        𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = 𝛽𝛽+𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡+ + 𝛽𝛽−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡− + 𝑢𝑢𝑡𝑡                                                                                                   (1) 

where 𝛽𝛽+ and 𝛽𝛽− are log-run coefficients of positive and negative changes in 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡, respectively. The positive 
and negative partial sums of the dependent variable are given in equation 2: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+ = �𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑡𝑡+
𝑡𝑡

𝑖𝑖=1

= �max(∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 , 0)
𝑡𝑡

𝑖𝑖=1

                                                 

                                          𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙− = �𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑡𝑡− = �min(∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 , 0)                                                                                    (2)
𝑡𝑡

𝑖𝑖=1

𝑡𝑡

𝑖𝑖=1

 

Based on equation 2, the NARDL model is presented as follows: 

∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−1 + 𝛽𝛽+𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−1+ + 𝛽𝛽−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−1− + 

                                �𝛾𝛾𝑖𝑖∆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ �𝜌𝜌𝑖𝑖+𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−𝑖𝑖+

𝑞𝑞

𝑖𝑖=1

+ �𝜌𝜌𝑖𝑖−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−𝑖𝑖−

𝑞𝑞

𝑖𝑖=1

                                                                                  (3) 

The model explained above is adapted according to the relationship detected by the asymmetric causality test. 

Hatemi-J (2012) Asymmetric Causality Test 

The basis of the asymmetric causality test developed by Hatemi-J (2012) is based on the symmetric causality test 

developed by Hacker and Hatemi-J (2006). The causality test uses the variables’ positive and negative components 

(cumulative shocks). The basic idea underlying the development of this test is that the relationships between variables 

cannot always be symmetrical. Hatemi-J (2012), as in the study of Granger and Yoon (2002), separates the cumulative 

shocks of the variables and tests whether there is cointegration between the shocks using the cumulative shocks. 

According to Hatemi-J (2012), the variables 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡  and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡  , whose causality relationship is investigated and 

assumed to be integrated, are defined in the random walk framework as shown below: 

                                          𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−1 + 𝜖𝜖1𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙0 + �𝜖𝜖1𝑖𝑖

𝑡𝑡

𝑖𝑖=1

                                                                                       (4) 

and 

                                       𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−1 + 𝜖𝜖2𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙0 + �𝜖𝜖2𝑖𝑖

𝑡𝑡

𝑖𝑖=1

                                                                                   (5) 
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In equations (4) and (5), 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙0 and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙0 are the initial values of the variables, and 𝜖𝜖1𝑖𝑖 and 𝜖𝜖2𝑖𝑖 are the sum of shocks 

that deviate the variables from the white noise. These shocks are defined as follows in Hatemi-J (2012): 

𝜖𝜖1𝑖𝑖+ = max(𝜖𝜖1𝑖𝑖, 0) , 𝜖𝜖2𝑖𝑖+ = max(𝜖𝜖2𝑖𝑖 , 0)  →  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

𝜖𝜖1𝑖𝑖− = min(𝜖𝜖1𝑖𝑖 , 0) , 𝜖𝜖2𝑖𝑖− = min(𝜖𝜖2𝑖𝑖, 0)  →  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

and  

𝜖𝜖1𝑖𝑖 = 𝜖𝜖1𝑖𝑖+ + 𝜖𝜖1𝑖𝑖−  ,    𝜖𝜖2𝑖𝑖 = 𝜖𝜖2𝑖𝑖+ + 𝜖𝜖2𝑖𝑖−                                                              

where, if we need to redefine the variables 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙0 and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙0 as follows: 

                                      𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−1 + 𝜖𝜖1𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙0 + �𝜖𝜖1𝑖𝑖+
𝑡𝑡

𝑖𝑖=1

+ �𝜖𝜖1𝑖𝑖−
𝑡𝑡

𝑖𝑖=1

                                                                         (6)  

and  

                                    𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−1 + 𝜖𝜖2𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙0 + �𝜖𝜖2𝑖𝑖+
𝑡𝑡

𝑖𝑖=1

+ �𝜖𝜖2𝑖𝑖−
𝑡𝑡

𝑖𝑖=1

                                                                      (7) 

Finally, the cumulative shocks obtained here are expressed as new variables indicating the positive and negative 

shocks of the variables and are shown as follows: 

      𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡+ = �𝜖𝜖1𝑖𝑖+
𝑡𝑡

𝑖𝑖=1

, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡− = �𝜖𝜖1𝑖𝑖−
𝑡𝑡

𝑖𝑖=1

,      𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡+ = �𝜖𝜖2𝑖𝑖+
𝑡𝑡

𝑖𝑖=1

,    𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡− = �𝜖𝜖2𝑖𝑖−
𝑡𝑡

𝑖𝑖=1

                                                    (8) 

where  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡+ and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡− are cumulative positive and negative shocks of the current climate policy uncertainty variable, 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡+and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−are cumulative positive and negative shocks of agricultural investments, respectively. For 

example, positive/negative shocks of each variable will be determined using the VAR model: 

             �
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡

+/−

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡
+/−� = 𝛿𝛿0 + 𝛿𝛿1 �

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−1
+/−

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−1
+/−� + ⋯+ 𝛿𝛿𝑝𝑝+𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 �

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−𝑝𝑝+𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
+/−

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−𝑝𝑝+𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
+/− � + 𝑣𝑣𝑡𝑡                                                           (9) 

In equation (9), 𝛿𝛿0 represents the constant term vector, 𝛿𝛿1,…, 𝛿𝛿𝑝𝑝+𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚   represents the parameter vectors. 𝑣𝑣𝑡𝑡 is the 

model’s error term. The process after this stage is the same as the Hacker and Hatemi-J (2006) causality test, and 

causality analysis is performed on a model such as VAR (p). The following hypotheses are tested in the causality 

analysis: 

𝟏𝟏𝒔𝒔𝒔𝒔 Null Hypothesis: There is no causality from positive climate policy uncertainty shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡+) to positive 

agricultural investment shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡+) 

2𝑛𝑛𝑛𝑛 Null Hypothesis: There is no causality from positive climate policy uncertainty shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡+) to negative 

agricultural investment shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−) 

𝟑𝟑𝒓𝒓𝒓𝒓 Null Hypothesis: There is no causality from negative climate policy uncertainty shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−) to positive 

agricultural investment shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡+) 

𝟒𝟒𝒕𝒕𝒕𝒕 Null Hypothesis: There is no causality from negative climate policy uncertainty shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−) to negative 

agricultural investment shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−) 

𝟓𝟓𝒕𝒕𝒕𝒕 Null Hypothesis: There is no causality from positive agricultural investment shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡+) to positive climate 

policy uncertainty shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡+)  



Karagöl and Şahin, Cilt/Volume 31 Sayı/Issue 1 Yıl/Year 2025 

98 

𝟔𝟔𝒕𝒕𝒕𝒕 Null Hypothesis: There is no causality from positive agricultural investment shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡+) to negative climate 

policy uncertainty shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−)  

𝟕𝟕𝒕𝒕𝒕𝒕 Null Hypothesis: There is no causality from negative agricultural investment shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−) to positive climate 

policy uncertainty shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡+)  

𝟖𝟖𝒕𝒕𝒕𝒕 Null Hypothesis: There is no causality from negative agricultural investment shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−) to negative climate 

policy uncertainty shock (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−)  

Hypotheses are tested in a similar manner as in Hacker and Hatemi-j (2006). If these hypotheses are rejected, the sub-

hypotheses show that there are causal relationships between the specified shocks. 

FINDINGS 
In the NARDL test, the stationarity level of the dependent variable is important. Therefore, first of all, the 

stationarity level of the variables should be determined through unit root tests. Table 2 shows the results of the ADF, 
PP, and Breakpoint Unit Root Tests. 
Table 2. Unit root test results 

Variables ADF test PP test Unit root with break test 
With Constant Intercept 

 Test stat. Prob. Test stat. Prob. Test stat. Critical Value 
(5%) 

Break 
date 

lcpu -0.3097 0.9110 -0.3830 0.8987 -0.5574 -4.1936 2002 

Δlcpu -4.8633*** 0.0006 -4.9072*** 0.0006 -4.7765*** -4.1936 2014 
lgfcf -2.3741 0.1580 -2.2527 0.1936 -2.4483 -4.1936 2019 
Δlgfcf -6.2967*** 0.0000 -13.6866*** 0.0000 -4.6459** -4.1936 2014 

With Constant and Trend Trend and Intercept 
 Test stat. Prob. Test stat. Prob. Test stat. Critical Value 

(5%) 
Break 
date 

lcpu -2.7010 0.2439 -2.7010 0.2439 -3.1696 -4.6435 2018 
Δlcpu -4.8633*** 0.0032 -5.0639*** 0.0020 -4.2089** -4.6435 2008 
lgfcf -4.8910*** 0.0028 -4.8884*** 0.0028 -4.5636 -4.6435 2017 
Δlgfcf - - - - -6.7489*** -4.6435 2015 

***, **, and * indicates stationarity with a 1%, 5%, and 10% level of statistical significance, respectively.  Δ is the difference operator. 

According to the results of the unit root tests of the lcpu and lgfcf variables used in the study, both variables 
are not stationary at the level in the ADF and PP tests; however, when their first differences are taken, it is seen that 
they become stationary at the 1% level. According to the structural break unit root test, it is seen that both first 
differences are stationary. These findings show that the series are I(1) and that models with partial integration 
structures, such as NARDL can be used in the analyses. In order to apply the NARDL test and check the cointegration 
relationship between the variables, the F-Bounds test is applied to the created model. In addition, the Wald test is used 
to determine the short-term and long-term asymmetry. The test statistics results are given in Table 3. 
Table 3. Bounds Test Findings and Short- and Long-Term Asymmetry 

F-statistics Significance Level Critical Value 
I(0) I(1) 

 
10.8256*** 
 

10% 
5% 
1% 

4.19 
4.87 
6.34 

5.06 
5.85 
7.52 

Short-term asymmetry Long-term asymmetry 
3.37739** (0.0392) 6.70227** (0.0214) 

***, **, and * indicates stationarity with a 1%, 5%, and 10% level of statistical significance, respectively. For the cointegration test, H_0: There is 
no cointegration. 
Wall test is used to test the existence of short-term and long-term asymmetry. 

The null hypothesis (𝐻𝐻0) of the F-statistic obtained from the NARDL bounds test is that there is no 
cointegration between the series. Therefore, the null hypothesis must be rejected in order for cointegration to occur 
between the series. If the Value of the F-statistic is greater than the upper limit value, the null hypothesis is rejected 
at that significance level; in other words, it is decided that there is a long-term relationship between the series. As can 
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be seen from the table, the Value of the F-statistic (10.8256) is greater than the upper limit value of the 1% significance 
level (7.52). Therefore, the 𝐻𝐻0 hypothesis is rejected; in other words, it is concluded that there is a long-term 
relationship between the series. Additionally, according to the Wald test findings, cpu affects gfcf asymmetrically in 
the short- and long-term. As a result, long-term coefficients can be used to examine the degree and direction of the 
effect of the variables. The NARDL short-term and long-term findings created from this are given in Table 4. 
Table 4. NARDL (1,3,3) model results 

Short-run coefficients 
Dependent variable Δ𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 

Variable Coefficient t-Statistic Prob. 
C 3.416869*** 6.087596 0.0000 
@TREND 0.117787*** 5.974763 0.0000 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+ -0.076978 -0.589758 0.5655 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+(-1) 0.418944*** 3.207091 0.0069 
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥+(-1) 0.378799** 2.625731 0.0210 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙− 0.521200** 2.169257 0.0492 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−(-1) -0.973536*** -4193921 0.0011 
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥−(-1) -0.978922*** -3.354266 0.0052 
ECT (-1) -0.974111*** -6.121554 0.0000 
Long-run coefficients Coefficient t-Statistic Prob. 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+ -0.386959** -2.259646 0.0417 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙− 1.091052* 2.012377 0.0654 
Diagnostic tests Test statistic Prob. 
Jarque-Bera Normality test 0.627451 0.7307 
Serial correlation LM test 0.771642 0.4857 
Breusch-Pagan-Godfrey 
heteroscedasticity test 0.901536 0.5572 

CUSUM and CUSUMSQ Stable 
***, **, and * indicates stationarity with a 1%, 5%, and 10% level of statistical significance, respectively. 

Table 4 presents the estimation results of the NARDL (1,3,3) model, where the numbers in parentheses indicate 
the selected lag structure: one lag for the dependent variable and three lags each for the positive and negative partial 
sums of the independent variable. The optimal lag length of the NARDL model has selected based on the Akaike 
Information Criterion (AIC). Accordingly, the NARDL(1,3,3) structure has preferred, incorporating one lag of the 
dependent variable and three lags of the decomposed positive and negative components of the independent variable. 
This lag structure balances model complexity with explanatory power and passes all stability and diagnostic tests. 
Firstly, the model has a normal distribution and does not contain autocorrelation and heteroscedasticity problems. 
According to the short-term coefficient in Table 4, it can be said that positive shocks do not have a significant effect 
on agricultural investments, but negative shocks affect agricultural investments positively. However, ECT is negative 
and its absolute value is very close to 1. So, short-term shocks that occur quickly return to the long-term equilibrium. 
According to the long-term coefficients, a positive shock (increase in uncertainty) in climate policy uncertainty 
decreases agricultural investments by 0.39% (p<0.05). Planning to reduce climate policy uncertainties is essential to 
increasing investments in the sector. Fixed capital investments in the economy are one of the essential components of 
growth. In particular, this contraction in the agricultural sector can slow down real growth along with sectoral 
stagnation. For this reason, increasing agricultural investments is necessary to increase agricultural production and 
income. 

The NARDL test shows long- and short-term effects but does not tell whether there is causality between 
variables. Asymmetric Granger causality tests, on the other hand, provide a more accurate analysis by testing the 
separate effects of positive and negative shocks.  

The Hatemi-J (2012) causality test, which also considers asymmetric relationships, is conducted, and its results 
are given in Table 5.  
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Table 5. Hatemi-J (2012) asymmetric causality test results 

𝑯𝑯𝟎𝟎 hypothesis MWALD Critical Value 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+ ↛ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+ 5.809 6.108 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙− ↛ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙− 3.613 6.577 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙− ↛ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+ 1.247 19.959 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+ ↛ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙− 91.218** 17.522 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+ ↛ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+ 0.089 6.136 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙− ↛ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙− 0.0278 6.004 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙− ↛ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+ 0.217 20.931 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙+ ↛ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙− 5.947 21.048 

** indicates a causality correlation with a 5% level of statistical significance. 

When the results in Table 5 are examined, it is seen that there is a significant asymmetric causality relationship 
from lcpu positive shocks to lgfcf negative shocks at the 5% significance level. Positive shocks in climate policy 
uncertainty can be sudden changes in environmental policies, decreased predictability for the future, tightening of 
international climate regulations, or increased political uncertainties. Increased uncertainty shows that agricultural 
investments are negatively affected. Unpredictable changes in environmental regulations can increase investment 
costs. This situation can affect sectors sensitive to regulations, especially agriculture and forestry. In addition, when 
the analysis results are examined, it is seen that the causality relationship does not work in reverse. While increases in 
climate policy uncertainty have direct negative effects on lgfcf, decreases in uncertainty do not have the same positive 
effect on lgfcf. This shows that investors’ sensitivity in periods of uncertainty is more substantial than their optimism 
in periods of predictability.  

The findings of this study are broadly consistent with previous literature that confirms the negative relationship 
between climate change and agricultural productivity (Assunção, 2016; Ortiz-Bobea et al., 2021; Ozdemir, 2022; Bai 
et al., 2024), yet they diverge significantly by presenting asymmetric responses specific to the agricultural sector. 
Studies such as Ren et al. (2022), Zhang et al. (2023), Abdulai et al. (2024), and Zhao et al. (2025) have empirically 
demonstrated that overall investment levels decline as uncertainty increases. However, they have not thoroughly 
examined how this effect varies across sectors. Fuss et al. (2008) and Feyen et al. (2020) emphasize that climate policy 
uncertainty negatively impacts investments, particularly in energy and carbon-intensive sectors. In contrast, this study 
highlights asymmetric responses specific to agricultural investments. The findings reveal that while agricultural 
investments decline rapidly in response to increasing uncertainty, they do not recover at the same pace when 
uncertainty decreases. Moreover, reducing agricultural investment levels due to climate policy uncertainty also 
disrupts adaptation and sustainability-related investments. This outcome aligns with the findings of Noailly et al. 
(2022), Aysal et al. (2024), and Borozan and Pirgaip (2025), who suggest that uncertainty diminishes investor 
confidence.  

It is beneficial to discuss what the findings of this study mean for the USA. USDA’s programs promote 
sustainable agricultural practices, support mechanisms for climate change adaptation, and carbon credit systems, 
among the key factors shaping agricultural investments. However, climate policy uncertainties may limit these support 
mechanisms’ capacity to encourage long-term investment decisions. The USA should adopt long-term and predictable 
policies to encourage agricultural investment and reduce climate policy uncertainty. First, Trump’s mistake of 
withdrawing from the Paris Climate Agreement should be reversed, and a more transparent and decisive climate policy 
framework should be created that aligns with the agreement’s commitments. Second, low-interest loans, subsidies, 
and tax incentives can be provided to support agricultural adaptation investments. In addition, incentives can be 
implemented to ensure farmers earn from carbon reduction efforts. Effective policies can remove barriers to 
agricultural investment, making the sector more resilient to the impacts of climate change and aligned with 
environmental sustainability goals. These policies are vital not only for economic growth but also for global human 
and environmental development. 

CONCLUSION 
This study investigates the asymmetric relationship between climate policy uncertainty and agricultural 

investments in the United States from 1995-2022. The asymmetric causality test provides additional evidence for the 
asymmetric relationships identified by the NARDL model. Therefore, the most significant asymmetric finding of the 
study indicates that as climate policy uncertainty increases, agricultural investments decline. This can be explained by 
the differentiation of agricultural investors’ risk perceptions and investment decision-making processes in response to 
uncertainty. While investments rapidly decrease when uncertainty rises, it has been observed that a decrease in 



The impact of climate policy uncertainty on agricultural investments 

101 

uncertainty does not lead to an equally rapid increase in investments. This situation can be associated with factors 
such as the long return period of agricultural investments, investors’ risk aversion tendencies, and the inconsistency 
of climate policies weakening the confidence environment. NARDL also provides a distinction between short- and 
long-term effects. Shocks occurring in the short term can be neglected as they quickly return to the long-term 
equilibrium. However, in the long term, climate policy uncertainty has a discouraging effect on agricultural 
investments. Climate change affects many areas in the agricultural sector, from production to employment, food 
security to natural resource management, and climate policy uncertainty deepens this relationship. Therefore, while 
climate change already causes physical and economic damage to the agricultural sector, climate policy uncertainty 
creates a double threat by preventing long-term investments that will reduce these damages. The decrease in 
agricultural investment can have undesirable economic and environmental consequences. The most obvious effect is 
the decrease in agricultural production. The most devastating result of this, assuming a continuing increase in 
population, is famine. The decrease in agricultural production can also affect agricultural employment and economic 
growth. Decreased agricultural production can reduce the food supply and increase prices. Moreover, inadequate 
agricultural investments in climate adaptation may negatively impact the ecosystem in the long term by increasing 
vulnerability to the impacts of climate change.  

The relationship between climate policy uncertainty and agricultural investments analyzed in this study is 
specific to the United States; however, it does not examine how similar dynamics operate in different countries or 
regions. While the findings suggest that the implications may not be promising for the rest of the world, it is also 
evident that more evidence is needed. Additionally, although the NARDL model effectively captures asymmetric 
effects, it may be complemented by different methods to assess structural regime changes fully. Future studies could 
conduct in-depth analyses using alternative methodologies. Furthermore, they can be expanded to a sectoral 
perspective to understand the effects of climate policy uncertainty on investments in other countries. In addition, how 
uncertainty perception is formed at the level of farmers and agricultural enterprises and how it affects decision-making 
processes can be examined in more detail. 
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