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Abstract 

This paper reviews the pivotal role of Global Positioning System and Inertial Measurement Unit 
technologies in the navigation and control of Unmanned Aerial Vehicles. The Global Positioning System 
offers precise global positioning, while the Inertial Measurement Unit provides high-frequency motion 
and orientation data. However, Global Positioning System signal interruptions and Inertial Measurement 
Unit drift pose challenges, particularly in dynamic or Global Positioning system-denied environments. 
This review explores the integration of the Global Positioning System and low-cost Inertial Measurement 
Unit systems through advanced sensor fusion techniques, such as Kalman filtering and machine 
learning, to enhance navigation reliability. Future directions, including advancements in hardware, 
adaptive algorithms, and swarm navigation, are discussed to address operational challenges and unlock 
the potential of Unmanned Aerial Vehicles in diverse applications. 

Keywords: UAVs, GPS, MEMS-based IMU, sensor fusion, positioning accuracy, system performance, 
navigation 

İnsansız Hava Araçlarında (İHA) GPS ve IMU Sistem Performansının İncelenmesi 

Özet 

Bu makale, İnsansız Hava Araçlarının navigasyon ve kontrolünde Küresel Konumlama Sistemi ve 
Ataletsel Ölçüm Birimi teknolojilerinin kritik rolünü incelemektedir. Küresel Konumlama Sistemi, hassas 
küresel konumlama sağlarken, Ataletsel Ölçüm Birimi yüksek frekanslı hareket ve yönelim verileri sunar. 
Ancak, Küresel Konumlama Sistemi sinyal kesintileri ve Ataletsel Ölçüm Birimi kayması, özellikle 
dinamik görevlerde veya Küresel Konumlama Sistemi erişiminin olmadığı ortamlarda zorluklar 
yaratmaktadır. Bu inceleme, navigasyon güvenilirliğini artırmak için Kalman filtresi ve makine öğrenimi 
gibi ileri seviye sensör füzyon teknikleri kullanılarak Küresel Konumlama Sistemi ve düşük maliyetli 
Ataletsel Ölçüm Birimi sistemlerinin entegrasyonunu ele almaktadır. Çalışmada ayrıca donanım 
gelişmeleri, uyarlanabilir algoritmalar ve sürü navigasyonu gibi gelecekteki yönelimler ele alınarak 
operasyonel zorlukların üstesinden gelinmesi ve İnsansız Hava Araçlarının çeşitli uygulamalardaki 
potansiyelinin açığa çıkarılması hedeflenmektedir. 

Anahtar Kelimeler: İnsansız hava araçları, GPS, MEMS tabanlı IMU, sensör füzyonu, konum 
doğruluğu, sistem performansı, navigasyon   
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1. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) are utilized in diverse fields such as military, agriculture, logistics, 

surveillance, and disaster management, where precise navigation and stable orientation control are 

essential. For UAVs to operate effectively, they rely heavily on accurate positioning and orientation 

data. This is achieved by integrating a Global Positioning System (GPS) and an Inertial Measurement 

Unit (IMU), each serving a complementary role in tracking a UAV’s position and orientation [1, 2]. 

However, GPS performance is often hindered by environmental factors, such as signal multipath and 

satellite obstructions, which can lead to latency or inaccuracies [3]. On the other hand, the IMU system 

provides high-frequency orientation and motion data but is susceptible to long-term drift, which 

degrades positional accuracy over time [4]. To address these challenges, sensor fusion techniques have 

emerged as a popular approach for integrating GPS and IMU data, allowing UAVs to leverage the 

strengths of each system while mitigating their respective weaknesses [5]. 

To establish a strong foundation for this study, a thorough literature review was conducted using various 

academic platforms (e.g., Google Scholar, Web of Science, ScholarOne, ScienceDirect) to analyze 

existing research on GPS and IMU systems in UAVs. A total of 67 sources, including books and articles, 

were examined, out of which 42 were deemed relevant and cited in this paper. This review focuses on 

identifying key methodologies, advancements, and issues related to the integration of GPS and IMU 

systems and their performance enhancement. By examining various studies, the paper aims to provide 

a comprehensive understanding of current trends and future research directions in GPS/IMU sensor 

fusion. The key terms associated with this study include but are not limited to, UAV navigation, GPS 

accuracy, GPS spoofing, IMU drift, GPS advantages, IMU sensor advantages, sensor fusion, Kalman 

Filter, machine learning approaches in UAV navigation, and positioning algorithms. 

This paper provides a detailed analysis of the GPS and IMU systems used in UAVs, examining the 

individual characteristics of each system, their benefits, limitations, and the potential of sensor fusion to 

enhance UAV performance. This review paper is structured as follows: section 2 provides a technical 

background about GPS and IMU systems in UAVs, section 3 presents an integration of GPS and IMU 

systems, section 4 explores sensor fusion techniques in UAVs, section 5 discusses open challenges in 

GPS/IMU integration, section 6 highlights future directions, and section 7 gives concluding points about 

the topic. 

2. TECHNICAL BACKGROUND: GPS AND IMU SYSTEMS IN UAVS 

2.1 Overview of GPS and IMU Systems in UAVs 

UAVs rely heavily on GPS and IMU systems for accurate navigation, stability, and control. Each system 

contributes uniquely.  

GPS provides absolute positional data by triangulating signals from satellites, offering global coverage 

and high accuracy, especially in open environments. Its precision can be further enhanced by techniques 

like Real-Time Kinematic (RTK) positioning and Differential GPS (DGPS). However, its performance 

is hindered by environmental factors such as multipath errors, signal obstructions, and susceptibility to 

jamming and spoofing, which can compromise its reliability.  

IMU measures orientation, velocity, and acceleration through sensors like accelerometers and 

gyroscopes, providing high-frequency data essential for motion tracking. While it offers valuable 

measurements, it faces challenges such as drift over time and sensitivity to environmental noise, which 

can affect accuracy over extended periods.  

Figure 1 illustrates the complementary roles of GPS and IMU in UAV navigation, highlighting their 

combined strengths. 
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Figure 1. UAV-enabled secure communication networks [6] 

This section provides a detailed exploration of the features, advantages, and limitations of GPS and IMU 

technologies as applied to UAVs, supported by recent studies and technical resources.  

GPS technology for UAVs relies on a constellation of satellites that transmit signals to GPS receivers 

on the UAV. These receivers calculate their position by measuring the time delay from multiple satellite 

signals and triangulating their location. This system plays a critical role in ensuring reliable and precise 

navigation for UAVs. GPS enables real-time positioning, allowing UAVs to determine their exact 

coordinates, which is essential for navigation and following predefined flight paths [7]. Its global 

coverage ensures accessibility in diverse and remote environments where terrestrial navigation may not 

be available [8]. Additionally, GPS data helps determine both altitude and speed, which are critical for 

stable flight control. This is particularly valuable in applications that demand accurate altitude 

management, like surveying or mapping [7, 9]. 

Advanced GPS options such as DGPS and RTK positioning enhance precision by providing real-time 

corrections. These methods are particularly valuable in operations where even small positioning errors 

could impact results, such as aerial inspections and precision agriculture [7-9]. The integration of GPS 

in UAVs provides a wide array of benefits, making it an indispensable tool for both commercial and 

research applications. These advantages significantly enhance the performance and usability of UAVs 

in various fields such as agriculture, surveying, infrastructure inspection, and environmental 

monitoring.GPS also contributes to enhanced autonomy, enabling UAVs to follow predefined flight 

paths independently with high accuracy and efficiency. This capability is especially useful in 

applications like land surveying, precision agriculture, and infrastructure assessment, where repeated 

and precise flights are necessary. Autonomous navigation reduces the need for manual intervention and 

increases the potential for large-scale data collection [10, 11]. 

Another key advantage of GPS is cost efficiency. GPS receivers are relatively affordable and can be 

integrated into small UAV systems without significantly increasing the overall cost. This makes GPS a 

cost-effective solution for UAVs, particularly for commercial applications where minimizing 

operational costs is a priority. With the availability of low-cost GPS receivers that provide accurate 

positioning, UAV systems can deliver precise navigation without the need for expensive alternatives 

like ground-based systems [10, 12]. Finally, GPS enables real-time monitoring and control, allowing 

UAV operators to continuously track the UAV’s location, which is essential for mission control and 

safety. This capability is crucial in applications where continuous monitoring of UAVs is required, such 

as in disaster response scenarios or during long-distance flights. The real-time data allows for in-flight 

adjustments, ensuring the UAV stays on course and responds to dynamic environmental conditions or 

unexpected obstacles, thus enhancing mission safety and success [10, 11]. 

Despite its widespread use and critical role in UAV navigation, GPS technology has certain limitations 

that can impact UAV performance, particularly under specific environmental and operational 

conditions. One such limitation is signal interference and multipath errors, where GPS signals can be 

blocked, reflected, or attenuated by obstacles like buildings, trees, and mountains. These multipath errors 

can reduce GPS accuracy, especially in urban or forested areas where signal reflections may mislead the 



ALKÜ Fen Bilimleri Dergisi 2025, Sayı 7(1): 25-42 

Review of GPS and IMU System Performance 

 in Unmanned Aerial Vehicles (UAVs) 
                                                                                         

 

 

 
28 

receiver. In these environments, UAVs can experience significant positioning errors due to these 

distorted signals [11]. 

Another limitation arises from low accuracy in dynamic conditions, where rapid movement during high-

speed UAV flight can introduce errors in GPS measurements due to Doppler shifts. Furthermore, GPS 

receivers may struggle to update positions quickly enough, leading to inaccuracies. This issue is 

particularly noticeable in fast-moving UAVs, such as those used in aerial photography or surveying, 

where precise real-time positioning is critical. Additionally, environmental factors like ionospheric and 

tropospheric delays can interfere with GPS signal transmission, reducing the accuracy and reliability of 

GPS readings. These atmospheric effects are especially relevant for UAVs operating at high altitudes or 

in extreme weather conditions, where signal degradation may occur more frequently. 

GPS performance is also dependent on the availability and visibility of satellite constellations. In regions 

with limited satellite visibility, such as polar areas or dense urban landscapes, GPS performance can 

degrade significantly, leading to less reliable positioning data for UAVs operating in these challenging 

environments. Lastly, GPS signals are vulnerable to intentional jamming and spoofing, which poses a 

significant security risk for UAV operations, especially in applications requiring high reliability, such 

as military or critical commercial operations. The risk of signal interference can jeopardize mission 

success and UAV safety in sensitive or hostile environments [11, 13]. Figure 2 illustrates a spoofing 

scenario. 

 
Figure 2. Spoofer tries to deviate UAV from the main trajectory [14] 

To mitigate some of the limitations of GPS, various enhancements and complementary technologies are 

being employed in UAVs to improve accuracy and reliability, especially in challenging environments. 

These advancements help address the issues of signal interference, multipath errors, and limited 

accuracy. One such enhancement is RTK GPS, which improves the precision of GPS data by using 

ground-based reference stations to provide real-time corrections. This method achieves centimeter-level 

accuracy, making it crucial for precision tasks such as surveying and agriculture, where high positional 

accuracy is paramount. RTK GPS has become a standard for tasks that require extreme precision, as it 

can correct errors in real-time, reducing the dependency on satellite visibility [15]. 

Another approach is DGPS, which enhances GPS accuracy by using ground stations that transmit 

correction signals. DGPS is widely used in applications where sub-meter accuracy is required. By 

correcting signal errors and reducing positional drift, DGPS ensures that UAVs can maintain accurate 

positioning even over long-duration flights. This technology has been applied in fields such as precision 

farming and infrastructure inspection, where minor positional errors can lead to significant operational 

consequences. Additionally, UAVs sometimes use augmented GPS systems such as Wide Area 

Augmentation System (WAAS) or European Geostationary Navigation Overlay Service (EGNOS) to 

enhance the accuracy, integrity, and availability of GPS signals. These systems provide corrections that 

improve GPS performance, particularly in regions with limited satellite coverage. By reducing the 

impact of atmospheric and signal-related errors, these augmentation systems make GPS navigation more 

reliable in remote or challenging environments [8]. 
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GPS technology plays a critical role in UAV performance, providing essential data for autonomous 

navigation and real-time location tracking. Despite its limitations, particularly in terms of signal 

reliability and susceptibility to environmental interference, advancements in GPS technology—coupled 

with the integration of systems like IMUs—are enhancing UAV capabilities across a broad spectrum of 

applications. Future improvements in GPS technology, along with the development of robust sensor 

fusion methods, are expected to further expand the operational effectiveness of UAVs in complex 

environments [3,8]. 

IMU systems are crucial in UAVs for ensuring stable navigation, orientation, and flight control. By 

providing real-time data on acceleration and angular velocity, IMUs enable UAVs to maintain stability 

and correct for disturbances autonomously. MEMS, which stands for Micro Electromechanical Systems, 

enables the integration of microelectronic circuits and mechanical structures on a single chip, facilitating 

monolithic integration. This technology has revolutionized sensor design, making it possible to sense 

the physical and chemical aspects of the external environment with high precision. Over recent decades, 

MEMS has become a leading choice in sensor development, particularly for applications in UAVs, 

where IMU sensors play a critical role. MEMS-based IMUs offer several advantages over traditional 

sensors, including smaller size and lower cost, enhanced sensitivity, and the ability to be batch-

fabricated on wafers with integrated circuits. These attributes make MEMS ideal for UAV applications, 

where weight, space, and power efficiency are crucial, allowing for improved navigation, control, and 

stability [16, 17]. 

An IMU is a sensor module that measures an object’s velocity, orientation, and gravitational forces. 

Most UAV IMUs consist of an accelerometer, a gyroscope, and sometimes a magnetometer. Each 

component of the IMU contributes uniquely to flight control and stability, which are mentioned below 

in detail; respectively. 

An accelerometer in a UAV’s IMU measures linear acceleration across three axes (x, y, and z). It detects 

the rate of velocity change due to forces such as gravity, allowing the UAV to assess tilt, altitude shifts, 

and motion. This data is critical for stabilizing the UAV, particularly when hovering or performing 

controlled maneuvers. MEMS (Micro-Electro-Mechanical Systems) technology is commonly used in 

UAV accelerometers due to its small size, low weight, and high sensitivity, which is ideal for compact 

UAV designs. By continuously analyzing acceleration data, the accelerometer assists in maintaining a 

stable flight path [17]. Accelerometers offer specific advantages, such as high-frequency stability data, 

which helps the flight controller quickly adjust for minor shifts, maintaining flight stability. They also 

provide continuous data on the UAV’s tilt and altitude, which is crucial for operations that require 

precision, like mapping or surveying. However, accelerometers can be susceptible to issues such as 

noise and drift over time, which may impact long-duration flights. Techniques like Kalman filtering are 

often used to mitigate these issues, especially when accelerometer data is fused with gyroscope and GPS 

inputs to enhance accuracy [12, 17]. 

The gyroscope measures the UAV’s angular velocity along three rotational axes: roll, pitch, and yaw. 

By detecting rotational movement, the gyroscope plays a critical role in maintaining orientation, 

allowing the UAV to make real-time corrections during dynamic maneuvers. This is particularly 

essential in environments with strong wind or when the UAV performs quick directional changes. In 

UAVs, MEMS-based gyroscopes are widely used, as they are compact, responsive, and integrate well 

with accelerometer data for precise movement tracking [17]. Gyroscopes play a critical role in 

maintaining the UAV’s fixed orientation, ensuring stabilized video capture and smooth flight transitions. 

Additionally, they enable the flight controller to make rapid adjustments during sudden environmental 

changes or high-speed operations, enhancing overall flight performance and reliability. The main 

limitation of gyroscopes is their potential for drift, especially over long flights. Integrating gyroscope 

data with accelerometer and magnetometer readings in sensor fusion algorithms reduces this drift, 

allowing for improved reliability and accuracy in UAV navigation systems [12, 17]. 

Magnetometer measures magnetic field strength and direction, often used to provide heading 

information when GPS signals are weak or unavailable. This feature is particularly valuable for UAVs 

flying in dense urban areas or remote locations with limited satellite visibility. Magnetometers help 
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maintain heading information, especially when GPS data is unreliable or obstructed by tall structures or 

dense foliage [17].  

Figure 3 shows the classical configuration of IMU sensors. 

 

Figure 3. Classical configuration of IMU sensors [18] 

Together, these sensors enable UAVs to detect and respond to dynamic changes in flight conditions. 

When combined with GPS data, IMU data allows UAVs to navigate smoothly and avoid obstacles even 

in environments with poor GPS signal quality. The integration of IMU sensors helps ensure that UAVs 

can perform in areas where GPS signals are intermittent, making the system more robust in challenging 

environments [12, 18, 19]. 

In UAVs, stability and control are paramount for ensuring reliable operation under varying flight 

conditions. IMUs, which typically combine accelerometers, gyroscopes, and sometimes magnetometers, 

are critical for enhancing the stability and control of UAVs by providing real-time measurements of the 

vehicle’s orientation and motion. The integration of IMUs with other navigation systems, such as GPS, 

significantly improves UAV performance, particularly in environments with weak or unreliable GPS 

signals, such as urban canyons or dense forests. 

IMUs provide high-frequency data that is essential for maintaining the UAV’s attitude (pitch, roll, and 

yaw) and velocity (acceleration and angular velocity). These measurements enable the flight control 

system to make rapid adjustments to stabilize the UAV in response to external disturbances or 

aerodynamic forces. The accelerometer in an IMU measures linear acceleration, while the gyroscope 

records angular velocity, allowing the UAV to maintain its desired orientation with high precision. This 

capability is especially critical in applications such as aerial mapping, surveillance, and search-and-

rescue missions, where precise control and stability are crucial for mission success. 

When GPS data is lost or degraded, the IMU continues to provide continuous measurements of the 

UAV’s position and orientation, ensuring uninterrupted operation. Studies have shown that IMU-based 

systems can significantly enhance UAV performance by compensating for GPS signal loss or 

interference, which is particularly important in precision applications such as surveying and 

infrastructure inspection [8]. 

Additionally, the small size and low weight of MEMS-based IMUs make them ideal for UAV 

applications, where minimizing payload is critical. These advantages, combined with the ability to 

integrate IMU systems with GPS, result in improved UAV stability, reliability, and control, enabling 

successful operations across a wide range of demanding tasks [8, 20]. 

While IMUs offer significant advantages in UAVs, such as providing high-frequency data on motion 

and orientation, they also have several limitations that must be addressed for optimal performance in 

various UAV applications. These limitations stem from factors such as sensor drift, bias accumulation, 

and sensitivity to environmental conditions. 

One of the primary limitations of IMU systems is the inherent drift that occurs over time due to sensor 

inaccuracies. Gyroscopes, which measure angular velocity, are prone to drift, meaning that small errors 
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in the measurement can accumulate, leading to larger deviations in the UAV's estimated position and 

orientation. Over time, this drift can result in significant errors in navigation and control, particularly in 

long-duration flights where frequent corrections are required [21]. 

Another limitation of IMUs is the sensitivity of accelerometers and gyroscopes to temperature 

fluctuations and other environmental factors. These sensors can experience varying degrees of error 

under different temperature conditions, which can lead to biases in the measurements. As MEMS-based 

sensors are more compact and cost-effective, they tend to be more susceptible to environmental 

variations compared to larger, more precise sensors [16]. This challenge can be particularly problematic 

in UAV applications that operate in harsh or rapidly changing environments, where temperature 

variations are common. 

Additionally, while the integration of IMU and GPS data via sensor fusion techniques such as Kalman 

filtering has been shown to improve accuracy, the reliability of the GPS signal itself can be a limiting 

factor. IMUs can maintain accurate orientation and motion data when GPS signals are unavailable, but 

they cannot provide the positional accuracy required for many UAV tasks, such as surveying or 

mapping, without the aid of external navigation systems. This issue emphasizes the importance of robust 

sensor fusion techniques that combine IMU data with reliable positioning systems to enhance overall 

UAV performance. 

Despite these limitations, advancements in IMU technology and sensor fusion methods continue to 

improve the performance of UAV systems. Ongoing research focuses on reducing the impact of drift, 

enhancing temperature stability, and optimizing sensor fusion algorithms to further improve the 

accuracy and reliability of IMU-based navigation systems for UAVs. 

IMU systems have become an integral part of UAV navigation due to their ability to provide real-time 

data on orientation, velocity, and acceleration. However, the performance of IMUs can be limited by 

factors such as sensor drift, noise, and sensitivity to environmental conditions. Recent advancements in 

IMU technology have addressed these limitations, improving the accuracy, reliability, and overall 

performance of UAV systems. 

One significant enhancement is the integration of advanced sensor fusion algorithms, such as Kalman 

filtering, which combines IMU data with other navigational sensors like GPS and magnetometers. This 

fusion allows UAVs to compensate for the drift and bias that are inherent in standalone IMU systems. 

The combination of GPS and IMU data can significantly reduce errors in UAV positioning and 

orientation, even in GPS-denied environments, improving system stability and precision for tasks such 

as surveying and agriculture [8]. 

Another key enhancement in IMU systems is the use of high-precision MEMS sensors. MEMS-based 

accelerometers and gyroscopes offer smaller sizes, lower costs, and better integration with other 

systems, which is particularly advantageous for UAV applications where payload weight and space are 

critical. These sensors can now achieve higher accuracy and stability compared to earlier MEMS 

models, making them more suitable for precise control in UAV flight dynamics. Additionally, MEMS 

sensors are often designed to be more resilient to environmental factors, such as temperature and 

humidity, thus enhancing their performance in varying conditions [16]. 

Furthermore, the development of error correction techniques has greatly improved the performance of 

IMU systems in UAVs. Recent advancements in bias correction, drift compensation, and noise filtering 

are essential for extending the operational time of IMUs without significant performance degradation. 

These error correction techniques can significantly mitigate the impact of environmental noise and 

sensor imperfections, ensuring that UAVs can maintain high accuracy during extended flights [22]. 

The fusion of IMU data with external reference systems, such as RTK GPS or DGPS, has become 

another essential enhancement. RTK and DGPS systems provide real-time corrections to GPS data, 

achieving centimeter-level accuracy, and when combined with IMU data, they allow for even more 

precise UAV navigation, particularly in critical applications such as surveying, infrastructure inspection, 

and precision farming [3, 8]. 
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These enhancements in IMU technology and integration with other systems have made UAVs more 

robust, accurate, and reliable, enabling their use in a wide range of applications, from autonomous 

delivery to disaster response. Figure 4 depicts sample IMU sensor placement and orientation of the 

quadrotor. 

 
Figure 4. IMU sensor placement and orientation of the quadrotor [23] 

2.2 Comparative Analysis of GPS and IMU Systems 

GPS and IMU systems are critical for UAV navigation, providing complementary capabilities. GPS 

offers long-term positional accuracy, global coverage, and support for real-time corrections via methods 

such as RTK and DGPS, making it indispensable for tasks like surveying, mapping, and waypoint 

navigation. IMU, on the other hand, provides high-frequency orientation and motion data, enabling 

stability and control in dynamic environments. Its independence from external signals allows reliable 

performance in GPS-denied areas like urban canyons or dense forests. 

However, both systems also have their limitations. GPS is susceptible to signal loss or degradation due 

to environmental obstructions such as buildings and trees, as well as atmospheric interference. 

Additionally, it is vulnerable to intentional disruptions like jamming and spoofing. IMU, meanwhile, 

experiences drift over time due to sensor biases and noise, leading to reduced accuracy during extended 

operations. It is also sensitive to environmental conditions such as temperature changes. 

So, integrating these two systems has its benefits. Combining GPS and IMU mitigates individual 

limitations, ensuring both absolute and relative accuracy. GPS corrects IMU drift, while IMU 

compensates for temporary GPS outages, enabling robust navigation even in challenging environments. 

3. INTEGRATION of GPS and IMU SYSTEMS 

The integration of GPS and IMU systems enhances UAV navigation by addressing the limitations of 

each. GPS corrects long-term drift in IMUs, while IMUs provide continuous data during GPS signal 

loss. Advanced fusion algorithms, such as Kalman filtering, ensure seamless integration, enabling UAVs 

to navigate accurately even in challenging environments. 

GPS provides highly accurate absolute positioning but is susceptible to signal interruptions or 

degradation due to environmental factors such as buildings, trees, or poor satellite geometry. IMUs, on 

the other hand, are not affected by external factors and provide continuous measurements of orientation 

and relative movement. Integration of the two systems helps mitigate GPS signal loss or errors, 

significantly improving overall accuracy and reliability. This is particularly beneficial in GPS-denied 

environments or when GPS signals are weak or unavailable, such as urban canyons or indoors [17, 24]. 

IMUs, particularly MEMS-based units, offer real-time orientation data that can fill in gaps during GPS 

outages, such as when passing through tunnels or dense urban environments. IMUs track motion 

continuously, making it possible to maintain a stable and continuous navigation solution, even in the 

absence of GPS. This is crucial for applications requiring uninterrupted movement tracking, such as 

autonomous vehicles and robotics [25]. 
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While IMUs excel in providing short-term stability, they suffer from drift over time due to sensor biases 

and noise. GPS, when available, provides a reliable external reference to correct this drift. By applying 

sensor fusion algorithms, such as Kalman filters, GPS and IMU data can be combined to minimize drift 

and improve long-term positioning accuracy. The correction of IMU drift through GPS significantly 

enhances system performance over extended periods [21, 26] 

GPS signals can be weak or unavailable in certain environments, such as indoors or in GPS-denied areas. 

IMUs, however, are independent of external signals and can operate in these conditions, providing 

continuous navigation data. The fusion of IMU data with GPS ensures that, even when GPS signals are 

temporarily lost, the system continues to function effectively by relying on the IMU’s motion data. This 

combination enhances the versatility of navigation systems across a variety of challenging 

environments, as noted in several studies [10, 26]. 

The integration of GPS and IMU enhances the resilience of navigation systems. When GPS is available, 

it provides accurate absolute positioning, while IMU data can fill in when GPS is unavailable, 

maintaining continuous and reliable navigation. This redundancy is particularly beneficial for 

autonomous driving, UAVs, and robotics, where safe and accurate operation is essential. Robustness to 

system failures and signal degradation is a key advantage of GPS/IMU integration [24]. 

While high-end GPS systems can be costly, MEMS IMUs offer a more affordable solution for 

orientation and motion tracking. Integrating low-cost IMUs with GPS provides a scalable and 

economical approach to improve system performance without the need for expensive equipment. This 

makes GPS/IMU integration accessible for a wide range of applications, from consumer-grade UAVs 

to industrial autonomous systems [16, 19]. 

In summary, the integration of GPS and IMU systems offers a versatile, accurate, and cost-effective 

solution that overcomes the limitations of each technology. By complementing each other’s strengths 

and compensating for weaknesses, the combination of GPS and IMU is essential for reliable and 

continuous navigation in dynamic and GPS-challenged environments [10, 27, 28]. 

Each of the GPS and IMU systems has significant limitations. GPS provides high accuracy in open 

areas, but its signal can be lost or degraded in challenging environments such as urban canyons or 

mountainous regions. On the other hand, IMU sensors offer internal data when GPS signals are 

unavailable, but they suffer from drift over time, leading to reduced accuracy. Both systems, when used 

individually, have limited reliability and precision. To overcome these standalone limitations, UAVs 

often use GPS-IMU sensor fusion techniques, such as Kalman filtering, which combines the strengths 

of both systems. This integration allows UAVs to maintain accurate, real-time navigation data, 

compensating for GPS signal loss and IMU drift, especially in challenging environments. 

4. SENSOR FUSION TECHNIQUES in UAVs 

Sensor fusion in UAVs involves combining data from multiple sensors, primarily GPS and IMU, to 

enhance navigation accuracy, reliability, and performance. This process mitigates the limitations of 

standalone systems by leveraging their complementary strengths. Under sub-headings 4.1 to 4.3, the 

following topics will be discussed in order: Kalman filter-based fusion (4.1), complementary filtering 

(4.2), and machine learning approaches (4.3). 

4.1 Kalman Filter-Based Fusion 

The Kalman Filter (KF) has been extensively used in GPS/IMU integration due to its ability to combine 

measurements from multiple sensors in a statistically optimal manner. This algorithm operates by 

predicting the state of a system and then updating this prediction based on new measurements, 

minimizing the influence of noise and uncertainties. For GPS and IMU systems, the Kalman Filter has 

historically proven effective in addressing their complementary strengths and weaknesses. The filter 

enables the fusion of GPS and IMU data, allowing GPS to correct IMU drift and IMU to interpolate 

GPS measurements during signal loss [29, 30]. Mathematically, the Kalman Filter follows a recursive 

estimation process consisting of two main steps: prediction and update [31]. In the prediction step, the 

system's state is estimated using the process model, defined as in (1): 
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�̂�𝑘|𝑘−1 = 𝐹𝑘  �̂�𝑘−1|𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘                                                            (1) 

where �̂�𝑘|𝑘−1  is the predicted state vector at time k, 𝐹𝑘  is the state transition matrix, 𝐵𝑘 is the matrix 

representing the effect of control input on the system, 𝑢𝑘 is the external control input, and 𝑤𝑘 represents 

the process noise. 

The corresponding error covariance is updated as in (2): 

 𝑃𝑘|𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘                               (2) 

where 𝑃𝑘|𝑘−1 is the predicted error covariance, 𝑃𝑘_1|𝑘−1 is the updated error covariance from the 

previous step, 𝑄𝑘 is the process noise covariance matrix, which accounts for uncertainties in the system 

model. 

During the update step, the Kalman Gain is computed as in (3): 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)−1                 (3) 

where 𝐾𝑘 is the Kalman Gain, which determines how much the measurement should influence the state 

estimate, 𝐻𝑘 is the measurement matrix that maps the system state to the observed measurements, and 

𝑅𝑘 is the measurement noise covariance matrix, representing uncertainties in sensor measurements. 

The state estimate is then corrected as in (4): 

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘�̂�𝑘|𝑘−1)                               (4) 

where 𝑧𝑘 is the actual measurement at time k, and the term (𝑧𝑘 − 𝐻𝑘�̂�𝑘|𝑘−1) represents the measurement 

residual (innovation), which quantifies the difference between the predicted and observed values. 

Finally, the updated error covariance is computed as in (5): 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1                   (5) 

where 𝐼 is the identity matrix. This equation ensures that the uncertainty in the estimated state is 

minimized as new data is processed. 

In earlier applications, Kalman Filter-based fusion methods predominantly relied on the Standard 

Kalman Filter (SKF) for linear systems. However, as UAV navigation evolved to involve increasingly 

complex and nonlinear dynamics, the Extended Kalman Filter (EKF) emerged as the preferred approach. 

The EKF linearizes nonlinear functions around the current state estimate, offering a highly effective 

solution for UAV applications. Additionally, adaptive variants of the Kalman Filter were developed to 

manage time-varying noise levels, addressing challenges caused by environmental factors or changes in 

UAV velocity. Unlike the standard KF, the EKF can handle nonlinearities by linearizing the system 

dynamics around the current estimate using a first-order Taylor expansion. The nonlinear state-space 

model is given in (6) and (7): 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘) + 𝑤𝑘                    (6)  

𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘                                (7) 

where f and h are nonlinear functions describing the system dynamics and measurements, respectively. 

The EKF approximates these equations by computing the Jacobians of f(x) and h(x), which are used in 

place of Fk and Hk in the standard Kalman equations. This approach allows the filter to handle complex 

UAV motion models, including those involving attitude estimation and high-speed maneuvers. 

In addition to improving accuracy, Kalman Filter-based fusion demonstrated resilience in GPS-denied 

environments. For instance, during temporary GPS outages, the filter's predictive step relied solely on 

IMU measurements to estimate the UAV’s position. Though prone to increased drift during prolonged 

outages, this approach significantly improved operational reliability in challenging conditions such as 

urban canyons or under dense foliage [32]. In Figure 5, advanced work illustrated how tightly coupled 

GPS/IMU integration, leveraging Kalman Filtering, could further mitigate the limitations of standalone 
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systems by processing raw satellite signals and IMU data simultaneously, rather than relying on 

processed GPS outputs [10]. 

 
Figure 5. System implementation diagram [33] 

Despite these advantages, the Kalman Filter has limitations. Its performance depended on accurate 

modeling of system dynamics and noise covariance matrices, which often required manual tuning. This 

tuning process was time-consuming and sensitive to sensor quality, particularly in low-cost UAV 

applications. Modern advancements have shifted focus toward machine learning-based fusion methods, 

but the Kalman Filter remains a benchmark in sensor fusion, particularly for its computational efficiency 

and real-time applicability in resource-constrained UAV platforms.  

4.2 Complementary Filtering 

Complementary Filtering has been widely used as a lightweight and effective method for fusing GPS 

and IMU data, especially in resource-constrained UAV systems. Unlike the computationally intensive 

Kalman Filter, the Complementary Filter operates on a straightforward principle, combining high-

frequency data from IMUs with low-frequency, long-term accurate data from GPS to produce a reliable 

and stable navigation solution. This method assumes that the errors in each data source are 

complementary short-term inaccuracies in GPS data are corrected by IMU measurements, while long-

term drift in IMU data is mitigated using GPS corrections [11]. 

Historically, Complementary Filters have been applied in scenarios where computational simplicity and 

low power consumption were critical. For UAVs, these filters proved particularly useful for attitude 

estimation, where gyroscope data from the IMU provided rapid orientation changes, and accelerometer 

or GPS measurements ensured long-term stability. Complementary Filters were well-suited for small 

UAVs due to their ease of implementation and low demand on processing resources [10]. 

The mathematical foundation of Complementary Filtering lies in the use of frequency-domain filtering. 

High-pass filters are applied to IMU gyroscope data to capture rapid changes, while low-pass filters 

smooth GPS position data to remove high-frequency noise. These filtered components are then 

combined to produce an accurate and stable estimate of the UAV's state. This simple structure made 

Complementary Filters particularly attractive for earlier UAV applications where high-cost or high-

performance processing units were unavailable. 

However, the performance of Complementary Filters depends on the accurate tuning of the filter gains, 

which balance the contributions of GPS and IMU data. Early implementations often relied on fixed gain 

values, which could lead to suboptimal performance in dynamic environments where noise 

characteristics varied over time. Recent advancements have addressed this limitation by introducing 

adaptive gain mechanisms that adjust filter parameters based on the operating conditions. For example, 

adaptive filters have been used to dynamically weigh GPS input more heavily in stable conditions and 

rely on IMU data during GPS outages. 

Despite these advancements, Complementary Filters are not without limitations. Unlike Kalman Filters, 

they do not provide probabilistic estimates of uncertainty, making them less robust in situations with 

highly variable noise or extreme sensor errors. Moreover, they cannot handle the intricate coupling of 
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sensor states in tightly integrated navigation systems. As UAV applications demand increasingly 

complex maneuvers and higher levels of precision, Complementary Filtering is often used in tandem 

with more advanced algorithms, such as Extended Kalman Filters, to enhance overall performance [24]. 

Nevertheless, Complementary Filters remain a popular choice for low-cost UAVs and other systems 

where computational efficiency and simplicity outweigh the need for more sophisticated data fusion 

techniques. Their continued relevance lies in their adaptability and effectiveness for lightweight sensor 

fusion, particularly in emerging applications where basic yet reliable navigation solutions are required. 

4.3 Machine Learning Approaches 

Machine learning (ML) has emerged as a transformative approach for sensor fusion in GPS/IMU 

integration, offering innovative solutions to address challenges in UAV navigation. Unlike traditional 

methods such as Kalman or Complementary Filtering, ML-based approaches can learn complex patterns 

and nonlinear relationships directly from data, enabling adaptive and robust performance even in highly 

dynamic environments. This capability has made ML increasingly popular in scenarios where traditional 

algorithms struggle, such as GPS-denied environments, abrupt maneuvers, or varying sensor noise 

characteristics [34, 35]. 

Machine learning techniques applied to GPS/IMU integration typically fall into two categories: 

supervised learning and reinforcement learning. Supervised learning involves training models on labeled 

datasets to predict navigation states, such as position, orientation, or velocity. For example, neural 

networks have been utilized to estimate position and correct IMU drift based on historical GPS/IMU 

data. Reinforcement learning, on the other hand, can optimize decision-making by learning from 

interactions with the environment, making it useful for dynamic or GPS-denied scenarios. 

Deep learning models, such as Long Short-Term Memory (LSTM) networks, have been shown to 

effectively capture temporal dependencies in sensor data, outperforming traditional algorithms in 

dynamic conditions [36]. Other architectures, such as Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), and Gated Recurrent Units (GRUs) have also demonstrated strong 

performance in capturing spatial and temporal patterns in sensor data, depending on the specific 

characteristics of the data and the application.  

LSTM networks are especially effective when working with time-series data, where long-range temporal 

dependencies are crucial. For instance, in applications like UAV attitude estimation, LSTMs can model 

the sequential nature of sensor measurements and predict future sensor states with higher accuracy, even 

in the presence of noise or complex environmental conditions. The ability of LSTMs to maintain the 

memory of past data points through their gating mechanisms allows them to outperform traditional 

methods, such as Kalman filters, in dynamic and non-linear scenarios [37, 38]. 

On the other hand, CNNs are typically applied to problems involving spatial data, such as images or 

video frames. CNNs are capable of identifying hierarchical spatial features in sensor data, making them 

particularly useful in multi-modal sensor fusion, where data from sources like cameras, LiDAR, or 

thermal sensors must be combined [39]. When paired with temporal models like LSTMs, CNNs can 

extract both spatial and temporal features, which is beneficial for tasks such as object detection, scene 

recognition, and path planning in autonomous systems. 

RNNs, along with their more efficient variants, GRUs, are another powerful class of models for 

sequential data processing. Unlike traditional feedforward networks, RNNs and GRUs maintain an 

internal state that helps capture the temporal dependencies between data points in sequences. GRUs are 

particularly effective in reducing computational complexity compared to LSTMs while still handling 

sequential data well. These models are well-suited for continuous data streams, such as those generated 

by IMU or GPS sensors, where real-time processing is essential [40]. 

One of the key advantages of ML approaches is their ability to incorporate a wide variety of input 

features beyond GPS and IMU data, such as barometric altitude, magnetometer readings, and 

environmental context (e.g., visual data from cameras). This multimodal integration allows for richer 

and more accurate navigation solutions. Additionally, ML models can adapt to sensor degradation or 

failures, making them particularly valuable for long-term UAV operations [35]. 
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Despite their advantages, ML-based methods face challenges, particularly in the context of UAV 

navigation. First, the reliance on large-labeled datasets for training can be a barrier, as collecting and 

annotating high-quality GPS/IMU data under various environmental conditions is resource-intensive. 

Second, the computational demands of ML models, especially deep learning, can strain the limited 

processing power and battery life of UAVs [41, 42]. Researchers have explored lightweight ML 

architectures and edge computing solutions to address these constraints. Lastly, the generalization of 

ML models across different UAV platforms and environments remains a challenge, as models trained 

in one scenario may perform poorly in others. Techniques such as domain adaptation and online learning 

have been proposed to improve robustness [21, 34, 41]. 

Looking ahead, the integration of ML with traditional methods, such as hybrid models combining neural 

networks with Kalman Filters, offers promising directions for UAV navigation. These hybrid systems 

leverage the strengths of both approaches, using ML to capture complex dynamics and traditional 

methods to ensure reliability and interpretability. As UAV applications expand, ML-based approaches 

are expected to play an increasingly critical role in achieving autonomous, efficient, and adaptive 

navigation. 

To help readers compare the various sensor fusion methods discussed in this section, Table 1 provides 

a concise overview of their advantages and limitations. It summarizes the key characteristics of each 

method, highlighting factors such as computational efficiency, adaptability, and suitability for different 

UAV navigation scenarios. 

Table 1. Comparison of sensor fusion methods for GPS/IMU integration 

Method Advantages Limitations 

 

Kalman Filter 

Provides optimal estimation by 

modeling probabilistic 

uncertainty. Works well in 

sensor fusion. 

Requires accurate system 

modeling and fine-tuning of 

noise covariance. Sensitive to 

poor system models. 

 

Extended Kalman Filter 

(EKF) 

Effectively addresses 

nonlinearities by linearizing the 

system based on the current 

state. 

Computationally expensive and 

performance degrades with 

large nonlinearities in the 

system model. 

 

Complementary Filter 

Simple and computationally 

efficient, making it suitable for 

lightweight UAVs and real-time 

applications. 

Struggles with highly dynamic 

conditions, especially with 

rapid changes in motion or 

acceleration. Does not provide 

uncertainty estimates. 

 

Machine Learning (ML) 

Can adapt to complex and 

dynamic environments, 

effectively incorporating 

multiple data sources. 

Requires large-labeled datasets, 

is computationally intensive, 

and may not generalize well 

across platforms. 

 

Deep Learning (LSTM, CNN, 

RNN, GRU) 

Adapts to dynamic and complex 

environments, efficiently 

combining multiple data 

sources. 

Requires large datasets, high 

computational power, and may 

have difficulty with real-time 

processing due to slow 

inference times. 
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5. OPEN CHALLENGES in GPS/IMU INTEGRATION 

One of the most significant challenges in UAV navigation is mitigating the impact of GPS signal loss 

or degradation. UAVs frequently operate in environments where GPS signals are obstructed, such as 

urban canyons, dense forests, or underwater. Intentional interference, including jamming and spoofing, 

further exacerbates GPS reliability issues [13]. While IMU systems can temporarily compensate during 

GPS outages, their drift errors accumulate over time, reducing navigational accuracy. Addressing these 

issues requires advancements in anti-jamming capabilities, the adoption of alternative positioning 

systems such as GLONASS or Galileo, and the development of enhanced sensor fusion techniques to 

ensure uninterrupted navigation [7, 13, 27]. 

Low-cost IMUs, commonly used in consumer UAVs, present additional challenges due to significant 

errors stemming from sensor noise and temperature sensitivity. These limitations hinder precise 

navigation during extended GPS outages. Advanced calibration methods, high-performance MEMS-

based IMUs, and machine learning models that predict and correct sensor-specific errors could mitigate 

long-term drift and improve reliability [12, 19]. 

The computational demands of GPS/IMU integration, particularly with advanced techniques like 

Extended Kalman Filters or machine learning-based fusion methods, strain the limited processing power 

of UAV platforms. This issue is especially pronounced in small UAVs where weight and power 

efficiency are critical. Optimized algorithms that balance computational efficiency with navigational 

accuracy, such as lightweight neural networks and adaptive filters, are essential to enable real-time 

processing in resource-constrained systems [7, 9, 34]. 

UAVs also face dynamic and unpredictable environments, such as disaster zones or crowded airspaces, 

which require navigation systems capable of adapting to rapid changes in motion, obstacles, and 

environmental conditions. Adaptive frameworks that adjust parameters in real-time based on operational 

contexts are critical for ensuring reliability under such conditions [2,15]. Swarm operations introduce 

further complexity, necessitating precise relative positioning among UAVs. GPS inaccuracies and IMU 

drift pose challenges to synchronized swarm behaviors, making decentralized fusion algorithms and 

robust inter-UAV communication protocols essential [14]. 

Integrating GPS/IMU systems with emerging technologies such as Light Detection and Ranging 

(LiDAR), cameras, and 5G-based positioning systems holds great promise for enhancing UAV 

navigation. However, incorporating additional sensors increases the complexity of data fusion, requiring 

advanced algorithms capable of managing diverse data streams with varying levels of uncertainty and 

frequency. Developing hybrid techniques that integrate these modalities seamlessly without imposing 

significant computational overhead will be crucial [24, 27]. 

Energy constraints represent another significant hurdle, particularly for long-duration UAV missions. 

The continuous operation of GPS and IMU sensors, combined with real-time processing requirements, 

places a heavy burden on battery life. Innovations in low-power hardware design and energy-efficient 

computational techniques are critical to extending operational endurance [7, 40]. 

As UAV operations expand, GPS/IMU integration systems must also align with evolving regulatory and 

safety requirements. Reliable performance in GPS-denied conditions and robust fail-safe mechanisms 

will be essential for compliance and the safe integration of UAVs into shared airspace, particularly in 

urban and commercial settings [13, 23]. 

6. FUTURE DIRECTIONS 

Future research in GPS/IMU integration will likely focus on developing hybrid sensor fusion 

frameworks that combine traditional methods with machine learning techniques. These frameworks 

could provide greater adaptability to diverse operating environments by leveraging the strengths of 

deterministic models like Kalman Filters and data-driven approaches to improve robustness and 

accuracy. 

Advancements in hardware, particularly in low-power, high-precision MEMS-based IMUs, will play a 

pivotal role. Emerging IMUs with higher sensitivity and reduced drift, coupled with miniaturized multi-
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constellation GNSS receivers, could significantly enhance UAV navigation reliability. Additionally, 

novel positioning technologies such as 5G and visual odometry may further improve performance, 

especially in GPS-degraded or denied environments. 

The increasing demand for UAV swarm operations will drive innovations in decentralized navigation 

systems. Real-time inter-UAV communication and collaborative sensor fusion will be critical for precise 

relative positioning and coordinated flight paths, enabling applications ranging from disaster response 

to large-scale agricultural monitoring. 

Computational and energy efficiency will remain key areas of focus. Lightweight algorithms, edge 

computing, and energy-efficient hardware are essential for extending UAV operational durations 

without compromising accuracy. Future systems may also incorporate self-learning capabilities, 

allowing UAVs to adapt to new environments and sensor degradation over time. 

By addressing these challenges and pursuing these advancements, GPS/IMU integration will continue 

to evolve, supporting the growing complexity and demands of modern UAV applications while 

unlocking new possibilities in navigation and autonomous operation. 

7. CONCLUSION 

This review highlighted the essential roles, advantages, and limitations of GPS and IMU systems in 

UAV navigation. The complementary nature of GPS and IMU systems has led to the development of 

sensor fusion techniques that significantly enhance the accuracy and reliability of UAV navigation. 

While GPS provides long-term absolute positioning, IMUs offer high-frequency orientation data, 

allowing UAVs to navigate effectively. However, challenges such as IMU drift, GPS signal loss, sensor 

fusion complexity, and environmental sensitivity can affect the overall performance of these systems. 

Sensor fusion techniques, including Kalman Filtering, Complementary Filtering, and machine learning-

based methods, offer promising solutions to address the limitations of standalone GPS and IMU systems. 

Advances in AI and sensor technology are expected to drive further improvements in UAV navigation 

systems, making them more resilient to environmental factors and adaptable to a broader range of 

applications. 
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