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 In this article, the mineralogical, petrographic and geochemical properties of the granite 
columns, which are significant architectural elements in the ancient city of Tyana in the 
Cappadocia region, are documented and their origins are inferred. Tyana granite columns 
have porphyro-aphanitic texture and are characterized by mega crystals. The main mineral 
assemblage in the the granite columns consists of K-feldspar, quartz, plagioclase, biotite, 
amphibole and accessoy titanite, zircon and opaque minerals. XRD analysis supports the 
primary mineral assemblage. CRS (Confocal Raman Spectroskopy) studies also revealed that 
the plagioclase is andesine and amphibolite is actinolite in composition. In addition, 
geochemical analyses revealed that the granite columns are calc-alkali and granodiorite in 
composition. In the tectonic evaluation, the granite samples are located in the area of volcanic 
arc granitoids. According to all analysis results, the Tyana granite columns are compatible with 
the Horoz granitoids. All the above features will be an important step for the conservation and 
restoration of future ancient structures. 
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1. Introduction  
 

Natural stone is one of the main materials used in 
ancient buildings due to its durability and aesthetic 
properties. Natural stones such as marble, limestone, and 
granite were favored in public spaces such as temples 
and colonnades, especially in monumental buildings [1]. 
The natural stones used in historic buildings provided 
aesthetics and functionality, while simultaneously 
allowing them to resist environmental conditions. 
Identifying the sources of natural stone also plays an 
important role in the conservation and restoration of 
built heritage and monuments  [2–8]. Among these 
natural stones, granite is an important building material 
with excellent physical and chemical durability and is 
widely used for various purposes, especially obelisks. 
Granite columns used in ancient architecture were not 
only a decorative element but also formed an important 
structural component that ensured the strength of built 
structures. Granite has played a critical role in the 

preservation of many archaeological structures due to its 
long-term resistance to abrasion, climatic factors, and 
biological degradation [3, 9, 10]. 

Granitic rocks are some of the most important raw 
materials widely used throughout the Egyptian, Greek, 
Roman, Byzantine, and Ottoman eras for various 
purposes, including for obelisks, statues, temples, baths, 
sarcophagi, columns, and decorative building materials. 
Today, as in the past, many people (except geologists) 
use the term “granite” to refer to fully crystalline rocks of 
different colors. For this reason, many granitic rocks, 
especially those used in historic buildings, have been 
classified as granite without adequate petrographic 
research; however, geoscientists use the term “granite” 
without microscopic examination. Granite is composed 
primarily of K-feldspar (orthoclase and microcline), 
plagioclase (albite, oligoclase, and andesine), quartz, 
biotite, and amphibole. In recent years, multiple 
analytical approaches have been applied to identify the 
scientific characteristics and origins of granitic rocks of 
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uncertain provenance [11–19]. Studying the 
mineralogical, petrographic, and chemical properties of 
granite columns provides important insights into the 
sources, processing techniques, and transportation 
methods of the stone used in the periods when these 
structures were built.  

The granite columns selected as the subject of this 
study are situated in the ancient city of Tyana. The 
ancient city of Tyana is located in the Cappadocia region 
in Turkey and was considered an essential trade center 
during the Roman Empire. The granite columns in this 
region stand are an important architectural feature in 
ancient buildings. Despite various studies on granite 
columns in many ancient city to date [20–22] the 
provenance of the Tyana granites remains poorly 
understood. To address this issue, in this article Tyana 
granite columns were analyzed in detail using optical 
microscopy, X-ray diffraction (XRD), X-ray fluorescence 
(XRF), and confocal Raman spectroscopy (CRS) 
techniques to reveal their mineralogical and 
petrographic properties, crystallographic structures, and 
chemical compositions. Mineralogical and petrographic 
investigations of the Tyana granite columns have 
indicated their potential relationship with the region’s 
Horoz Granitoid and Üçkapılı Granite rocks. These 
comparisons can provide important clues regarding the 
origin of the columns. Here, the igneous processes 
affecting the formation of the granite columns were 
interpreted and compared with potential granite sources 
in the region. Understanding this relationship will help 
elucidate the commercial and architectural context of 
Tyana. 

 

2. History of Tyana Ancient City 
 

The ancient city of Tyana, an important settlement 
during the Hittite, Roman, and Byzantine eras, was built 
in the town of Kemerhisar in Niğde (Figure 1). Tyana, 
which is approximately 23 km from Niğde city center, is 
located approximately 5 km to the southeast of Bor 
district. In ancient times, its strategic location in the 
Cappadocia Region, connecting Cilicia and Cappadocia, 
led to the conquest of the city multiple times by different 

civilizations. Throughout history, Tyana was variously 
referred to as “Tuwanuwa” during the Hittite period, 
“Tuwana” during the Late Hittite period, “Dana” during 
the Persian and Hellenistic periods, “Tyana” during the 
Roman Empire, “Kilisehisar” during the Ottoman Empire, 
and “Kemerhisar” during the Republic of Turkey. During 
the Christian era, it was also known as “pilgrims’ road 
(Hacıyolu)” because it was used by pilgrims going to 
Jerusalem due to its location on the pilgrimage route [8, 
23–25]. 

According to Strabo, Tyana was a prominent 
settlement due to its fertile and flat lands, strong 
fortifications, and strategic location. Strabo also noted 
that Tyana was named Eusebeia, near the Taurus 
Mountains, to distinguish it from Kaisareia 
(Mazaka/Kayseri). After their liberation from Seleucid 
rule, two important cities in Cappadocia—Kaisareia and 
Tyana—were rebuilt by Ariarathes V Eusebes Philopator. 
Tyana was named “Eusebeia” in honor of its founder and 
is thought to be connected to the rites held for Zeus in the 
temple of Asbamaios near the sacred lake [23, 26, 27]. 
Septimius Severus’ admiration for Apollonius of Tyana is 
recognized as one of the primary factors that bolstered 
the city’s importance. In later periods, his son Caracalla 
also admired Apollonius greatly. During the Severus 
dynasty, various construction works were conducted in 
the city; structures such as aqueducts, the Roman Pool, a 
temple dedicated to Zeus Asbamaios, the Roman Baths, 
and the Heroon were built. Tyana, which gained 
importance during the empire of Caracalla (211–217 
AD), was elevated to the status of “Colonia” and named 
Antoniana Colonia Tyana [28–30].  It is thought that 
Caracalla’s declaration of Tyana as a Colonia was due to 
his desire to use this region as a base for his campaigns 
to the east by taking advantage of the city’s strategic 
location extending to Syria [28]. In addition, Caracalla 
and his mother Julia Domna attached great importance to 
Tyana and carried out extensive reconstruction in the 
city. The aqueducts to the south of the city were also built 
during the reign of Caracalla and were constructed with 
a complex hydraulic system to bring water to the city 
from the hills. These aqueducts were designed to supply 
water to all residences in the city [24].  
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Figure 1. Location of study area 

 
3. Geological Settings 
 

Tyana is located in the Central Anatolia Region, 5 km 
from Bor district of Niğde province. The Niğde region is 
adjoined by the Aladağlar Mountains to the southeast 
and the Bolkar Mountains to the south. This region 
represents the area in which the Taurides and Anatolides 
meet [31]. The Niğde Massif is located to the southeast of 
Niğde and forms the southernmost part of the Central 
Anatolian Massif [31, 32]. The metamorphic rocks of the 
Niğde Massif form part of the Niğde Group and are 
divided into the Gümüşler, Kaleboynu, and Aşıgediği 
formations based on their lithology and are cut by the 
Üçkapılı granodiorite [32, 33]. The Niğde Group rocks, 
which underlie the study area, are medium–high-grade 
Paleozoic metamorphic rocks and form the southern part 
of the Central Anatolian Crystalline Complex. These 
metamorphic rocks are overlain by Upper Cretaceous 
ophiolites [32, 34]. 

In addition to the Gökbez formation and Kızılkaya 
ignimbrites in the Kemerhisar region, the Horoz 
Granitoid is an igneous unit that has contributed 
significantly to the geological evolution of the region [35–
37].  

The Horoz Granitoid is an intrusive rock belonging to 
the Central Anatolian Igneous Complex with similar 
petrographic and geochemical characteristics to the 
Üçkapılı Granodiorite in the southeast of the Niğde 
Massif. Similar to the Üçkapılı Granodiorite, which cuts 

Paleozoic Niğde Group metamorphic rocks, the Horoz 
Granitoid has intruded the area’s variably 
metamorphosed metamorphic rocks. In the Kemerhisar 
region where the study area is located, the Kızılkaya 
ignimbrites and Gökbez formation unconformably 
overlie Niğde Group metamorphic rocks [38]. The 
Miocene–Pliocene Gökbez Formation occurs in large 
areas around the ancient city of Tyana and comprises 
marl–limestone–mudstone deposits with bituminous 
levels and travertine interlayers in the upper parts of the 
formation. The thickness of the Gökbez formation varies 
in the range of 50–150 m [33]. The travertine deposits in 
the upper part of the Gökbez formation, which is located 
close to the study area and thus a suitable source of 
blocks, were used in the construction of the Tyana 
aqueducts. The Gökbez formation consists of sediments 
deposited in a lake environment with transport from 
north to south, and during its deposition, it received 
clastic input from the Niğde Group metamorphic rocks 
and Havuzlu ignimbrites [8, 39, 40]. 

The primary aim of this study is to investigate the 
mineralogical, petrographic, and geochemical 
characteristics of granite columns located in the ancient 
city of Tyana in order to determine their provenance and 
evaluate their potential connections with nearby 
granitoid formations, particularly the Horoz Granitoid 
and Üçkapılı Granite. By employing a combination of 
analytical techniques—including optical microscopy, X-
ray diffraction (XRD), X-ray fluorescence (XRF), and 
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confocal Raman spectroscopy (CRS)—this research 
seeks to clarify the geological origin, material properties, 
and historical usage of the granite columns. 

 
4. Materials and methods 

 
Based on the study’s objectives, the granite column 

samples were first visually examined on-site, and their 
macroscopic characteristics were determined. It is 
believed that the studied granite columns were building 
materials used in courtyards, columns, and the porticoes 
of buildings. The Tyana granite columns were then 
characterized using the steps detailed below. Thin 
sections were prepared as a basic analysis method to 
examine the mineralogical and petrographic properties 
of the samples in detail, i.e., their mineral associations, 
grain sizes, and textures.  

XRD spectroscopy is a powerful analytical technique 
that can be used to study the crystal structural properties 
of a substance. This technique allows the arrangement of 
atoms in the internal structure of materials to be 
determined and reveals the composition of minerals 
qualitatively. These analyses were performed with an 
Inel Equinox 1000 instrument using a Co tube with a 
wavelength of 1.788970 Å. The XRD analyses were 
performed using a Panalytical X’Pert Powder device at 
the Department of Mineral Analysis and Technology of 
the General Directorate of Mineral Research and 
Exploration. This device was used to examine the crystal 
structure of the granite columns, with the results 
providing important insights into the detailed 
mineralogical characteristics of the rocks. 

For further mineralogical characterization, selected 
granite column samples were analyzed using the CRS 
technique. The CRS analyses were performed on polished 
thin sections using a Jobin Yvon (Horiba) LabRAM-
800HR confocal Raman spectrometer at the Department 
of Geological Engineering, Ankara University. This 
instrument is equipped with a notch filter-based Raman 
microscope system, an Olympus BX41 optical 
microscope, a grating with 1800 grooves per mm, and a 

Peltier-cooled CCD detector. The Raman spectroscopy 
measurements were performed in the spectral range 
100–4000 cm-1 with a resolution of 2 cm-1 using a He–Ne 
laser with a wavelength of 633 nm. Repeat 
measurements were obtained using the highest 
magnification to improve the signal-to-noise ratio, thus 
resulting in clearer spectra. 

The main oxide and trace element compositions of the 
samples were analyzed via XRF spectroscopy. The XRF 
analyses were performed with a Panalytical Axios Max 
brand wavelength-dispersive XRF (WD-XRF) device in 
the Geochemical Analysis Laboratory of Aksaray 
University Application and Research Center Laboratory. 
The samples to be analyzed were first crushed with 
crusher devices and then pulverized to a size of 
approximately 20 microns in ball mills. The obtained 
powder samples were mixed with a binder material and 
pressed into pellets under a pressure of 12 bars. Major 
and trace element analyses were then performed on the 
prepared pellets using the WD-XRF technique. 

 
5. Results 

 
5.1 Mineralogy and Petrography 

 
The fresh surfaces of the Tyana granite columns are 

grayish in color and show a porphyrophaneritic texture 
upon macroscopic examination (Figure 2a). Plagioclase, 
quartz, and mafic minerals can be visually identified in 
hand specimens of the granitic column (Figure 2b, c). 
Mafic minerals (biotite and amphibole) with black color 
and glassy luster were observed. In addition, mafic 
enclaves ranging in size from 5 to 10 cm, darker than the 
bedrock, are observed in the granite columns (Figure 
2d). The granite columns are petrographically 
granodioritic in composition and exhibit a 
holocrystalline hypidiomorphic granular texture. The 
primary mineral assemblage comprises K-feldspar, 
quartz, plagioclase, mafic minerals (biotite and 
amphibole), and to a lesser extent titanite, zircon, and 
opaque minerals.
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Figure 2. a) Tyana granite column b) close-up view of granite column c) granite column sample showing porphyro-
phaneritic texture d) enclavs in granite columns

The observed K-feldspars typically have an 
orthoclase composition and occur as euhedral crystals 
with prismatic forms. Within the large orthoclase 
crystals, there are inclusions of plagioclase, quartz, and 
biotite interpreted as a poikilitic texture. Plagioclase 
occurs as subhedral to euhedral crystals, with Carlsbad 
twinning commonly observed in albite (Figure 3a). The 
plagioclases weathered to sericite and clay minerals have 
a slightly turbid appearance. The quartz minerals in the 

thin sections generally show xenomorphic crystal forms. 
The biotite minerals exhibit strong pleochroism ranging 
from light yellow to dark brown. Some biotite minerals 
have undergone oxidation to iron oxides. Amphibole 
minerals are short prismatic and subhedral crystals, with 
strong pleochroism ranging from light yellow-green to 
dark green (Figure 3b,c,d). The sphene (titanite) is 
characterized by development of rhombohedral crystals 
distinguished by sharp edges.
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Figure 3. Optical microscope images of Tyana granite column samples a) Plagioclase showing albite polysynthetic 
twinning b) Amphibole and biotite minerals c) Euhedral and subhedral amphibole minerals d) Altered plagioclase and 
amphibole minerals (Qtz: quartz, Pl: plagioclase, Amp: amphibole, Bt: biotite)

XRD analysis was performed to determine the main 
mineral phases in the Tyana granite column samples in 
addition to the above optical microscopy analyses. The 
XRD analysis confirmed the presence of major mineral 

phases including plagioclase, quartz, K-feldspar, biotite, 
amphibole and sphene, consistent with the observations 
from optical microscopy (Figure 4).

 

Figure 4. XRD graph of Tyana granite columns
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5.2 Confocal Raman Spectroscopy (CRS) 
 
The essence of Raman spectroscopy involves 

measuring a scattered beam produced by the irradiation 
of a powerful laser source in the visible or near-infrared 
wavelength region, which is used to illuminate a sample 
[2]. The difference in the wavelength of the scattered 
beam relative to the wavelength of the incident beam 
interacting with the molecule is referred to as a Raman 
shift. The Raman shift values of minerals act as 
“fingerprints” and can be used to effectively distinguish 
between minerals [41]. 

To determine the mineral characteristics of the 
Tyana granite column samples, CRS analyses were 
performed for plagioclase, amphibole, biotite, and quartz 
minerals. The characteristic peaks for biotite minerals 
are vibrations due to Mg-O and Fe-O bonds at 180–200 
cm-1, Si-O-Si vibrations at 270–300 cm-1, Al-O and Fe-O 
vibrations at 680–700 cm-1, and Si-O vibrations at 950–
1100 cm-1.  The biotite mineral in the granite column 
samples shows a characteristic Raman spectrum, with 
the strongest peak at 189.46 cm-1 corresponding to Fe-O 
bonds. This supports the formation of ferro-biotite. 
(Figure 5a).   

The CRS measurements identified the amphibolite 
type as actinolite. The characteristic Raman peaks for 
actinolite are typically associated with Si-O-Si tensile 
vibrations, corresponding to a strong peak in the 670–
680 cm-1 range. These spectral features are distinctive 
features that allow the identification of actinolite-type 
amphiboles in Raman analysis (Figure 5b).  

 Strong peaks were detected in the CRS analysis of 
the plagioclase minerals, and the plagioclase species was 
identified as andesine (Figure 5c). The strongest peak 
corresponding to andesine was observed at 512.65 cm-1. 
The prominent peaks in the Raman spectrum of the 
andesine-type plagioclase are Si-O-Si vibrations at 480–
510 cm-1, Al-O-Si vibrations at 500–520 cm-1, and Si-O 
vibrations at 950–1050 cm-1. These peaks may differ 
between andesine and other plagioclase species, and the 
spectrum may exhibit slight variations. The 480–510 cm-

1 band is considered the most characteristic Raman peak 
for plagioclase minerals.  

Quartz (SiO₂) exhibits highly distinct and strong 
peaks in CRS analysis. The most characteristic peak in the 
Raman spectrum of quartz is usually located at a wave 
number of 464 cm-1.  This is consistent with the results 
presented here, where the quartz measured in the 
samples shows a peak at 464.00 cm-1 (Figure 5d). 

 

Figure 5. Point analysis results of Raman spectra of Tyana granite columns on different minerals

5.3 Geochemistry  
 
In this study, the geochemical properties of granite 

columns from the ancient city of Tyana were compared 
with those of the Horoz Granitoid, and Üçkapılı Granitoid. 
The Horoz granitoid has two members, granodiorite and 
granite. The geochemical data for the Horoz Granite and 
Granodiorite were taken from [38] while the data for the 
Üçkapılı Granitoid were taken from [42]. These 

comparisons provide important constraints on the 
potential source region and origin of the columns and a 
better understanding of the connection between the 
granite columns at Tyana and the surrounding 
granitoids. The main oxide and trace element 
compositions of the samples belonging to the Tyana 
granite columns, the average main oxide and trace 
element compositions of the Üçkapılı Granitoid and 
Horoz granotid are listed in Table 1.
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Table 1. Major oxide (wt.%) and trace (ppm) element analyses of Tyana granite columns, Üçkapılı granitoid (data 
taken from [42]), and Horoz granitoid (data taken from [38]) 

 

Element 

Tyana Horoz granitoid Üçkapılı 

granite  granodiorite granite granitoid  

Column samples average average average 

Na2O% 3.41 3.58 3.85 3.72 3.27 

MgO% 2.84 2.81 1.97 1.04 0.47 

Al2O3% 13.85 13.82 17.77 15,05 13.59 

SiO2% 63.8 64.8 64.36 71.06 73.52 

P2O5% 0.37 0.36 0.13 0.13 0.04 

K2O% 4.73 4.7 3.68 3.53 2.78 

CaO% 3.71 3.63 3.05 1.77 1.99 

TiO2% 0.49 0.46 0.29 0.22 0.21 

MnO% 0.11 0.1 0.07 0.03 0.04 

Fe2O3% 4.04 4.01 3.88 2.47 2.45 

LOI 0.64 0.92 0.72 0.82 0.8 

Co (ppm) 17.48 17.3 27.51 27.28 9.46 

Zn (ppm) 42.54 42.3 25.22 22.04 57.66 

Ga (ppm) 18.35 18.35 15.2 14.78 18.46 

Rb (ppm) 209.43 210.3 109 98.1 95.63 

Sr (ppm) 858.66 859.1 353.59 385.22 385.23 

Y (ppm) 46.14 45.2 18.42 13.19 47.23 

Zr (ppm) 229.57 230.3 187.31 152.32 151.2 

Nb (ppm) 0.91 0.91 17.72 17.63 15.43 

Ba (ppm) 1062.63 1064.2 431.25 477.99 395.53 

Hf (ppm) 8.98 8.98 3.71 3.28 4.7 

Pb (ppm) 47.79 47.6 0.66 4.2 2.46 

Th (ppm) 22.45 22.45 11.65 27 9.2 

U (ppm) 13.9 13.9 3.49 6 2.1 

According to the total alkali (Na₂O + K₂O)-silica 
(SiO₂) classification diagram [43], the Tyana granite 
columns and the Horoz Granodiorite samples are located 
in the granodiorite field, while the Üçkapılı Granitoid and 
the Horoz Granite samples are located in the granite field 
(Figure 6a). According to [44], all the rock groups show 
calc-alkaline features used to distinguish sub-alkaline 
rocks (Figure 6b).  According to the (Na₂O + K₂O) - SiO₂ 
(wt.%) diagram, the granite columns lie within the alkali 
granite field  [43] (Figure 6a).  In the Ab-An-Or 
classification diagram, Tyana granite columns and Horoz 
and Üçkapılı granodiorite samples are located in the 
granodiorite area. The granite samples of Horoz 
granotoid were observed in the granite field. (Figure 6c). 
While the average K₂O/Na₂O ratio of the studied granite 
columns is 1.27, the value of this ratio is 0,85 for the 
Üçkapılı Granitoid and 0,95 for the Horoz Granitoid. 
These ratios indicate that all three granitic rocks are K-

series igneous rocks [45].  In the Q-P classification 
diagram based on the cationic ratio of quartz, K-feldspar, 
and plagioclase [46], the studied columns are classified 
as granite (Figure 6d). Overall, considering the 
classification diagrams as a whole, the Tyana granite 
columns exhibit more similarity to the Horoz Granitoid 
samples. 

The Harker diagrams against SiO₂ for Tyana granite 
columns and other granitoid samples were drawn and 
the chemical changes of elements against SiO₂ were 
analyzed (Figure 7). The changes of the elements in the 
Harker diagrams of all the rock groups generally show 
non-regular chemical variations; however, the Tyana 
granite columns exhibit chemical behavior overall more 
consistent with the Horoz Granitoid in the studied 
samples. All the granitoid samples show general negative 
correlation trends for MgO, FeOtot, TiO2, and CaO and 
positive correlation trends for Na2O and K2O.
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Figure 6. Tyana granite columns and other granitoid samples,  a)(Na2O + K2O) (wt.%) vs. SiO2 (wt.%) diagram [43] 
b) AFM diagram [44] c) normative Ab-An-Or diagram  (O’Connor (1965)  d) Q-P diagram [46]

The slightly negative correlations of MgOₜ, FeOₜₜₒₜ, 
TiO₂, and CaO₂ to SiO₂ can be interpreted as a result of 
the separation of these elements from the igneous 
system during fractional crystallization. In particular, the 
decrease of MgO and FeOₜoₜ is associated with the 
crystallization of mafic minerals (e.g., biotite, amphibole, 
and pyroxene). 

In contrast, the positive correlation of Na₂O and K₂O 
against SiO₂ indicates the crystallization of alkaline 
bearing phases such as plagioclase and K-feldspar. These 
chemical variations observed in the Harker diagrams 
support the interpretation that the Tyana granite 

columns and the Horoz Granitoid underwent similar 
magmatic evolutionary processes and that both rocks 
belong to the calc-alkaline series. In this context, the 
Tyana granite columns exhibit a magmatic development 
process more consistent with the Horoz Granitoid than 
that of the Üçkapılı Granitoid. In general, in all the 
granitoid samples, a decrease in MgO, FeOₜₒₜ, TiO₂, and 
CaO content is observed with weathering of mafic 
minerals in the early crystallization periods, while the 
Na₂O and K₂O values increase with late-stage 
crystallization of alkaline minerals. 
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Figure 7. Major oxide Harker diagrams of all granitoid samples

[48] suggested a tectonic classification of granitic 
rocks based on discrimination diagrams using the 
elements Rb, Y, Nb, and Ta. In the Rb–(Y + Nb) diagram, 
which distinguishes between collisional granitoids (syn-
COLG), volcanic arc granitoids (VAG), within-plate 
granitoids (WPG), and ocean ridge granitoids (ORG), the 
column samples plot within the VAG area (Figure 8a). 

In the Nb–Y diagram, both the Tyana granite 
columns and the Horoz and Üçkapılı granitoid samples 

plot within the volcanic arc granitoids (VAG/syn-COLG) 
domain (Figure 8b). The multi-cation R1 and R2 diagram 
proposed by Batchelor & Bowden (1985) is another 
widely used classification diagram used to describe the 
geotectonic environments in which acidic rocks were 
formed. In these diagrams, the Tyana granite columns 
and Üçkapılı Granitoid lie within the pre-plate collision 
area, while the Horoz Granitoid broadly plots within the 
post-collisional uplift and orogenic fields (Figure 8c). 

 

Figure 8. a) Nb -Y tectonic separation diagram [48] b) Rb - (Y + Nb) tectonic separation diagram [48] c) Multi-cation 
R1-. R2 diagram [49] 

 
6. Conclusion 

 
In this study, the mineralogical, petrographic, and 

geochemical properties of Tyana granite columns were 
determined, and petrographic and geochemical analyses 
were applied to determine their possible origin. Some of 
the geochemical properties of the Tyana granite columns 
were compared with those of the nearby Horoz and 
Üçkapılı granitic rocks, which have been widely 
discussed in previous literature and are similar in 
appearance to the Tyana granite columns. The findings 
from these analyses reveal similarities between the 
Tyana granite columns and the Horoz granitoid. The 
results of this study can be summarized as follows. 

The granite columns of the ancient city of Tyana 
exhibit a heterogeneous structure consisting of K-
feldspar, plagioclase, quartz, and mafic minerals when 
evaluated mineralogically and petrographically. The 
presence of the main mineral phases determined by 
optical microscope analysis is also consistent with XRD 
analysis. The CRS studies revealed that the plagioclases 
have an andesine composition, the amphibole minerals 
have an actinolite composition, and the biotite minerals 
are ferro-biotite and biotite in composition.  

The Roman granite columns have calc-alkaline 
affinity with granodiorite composition. In addition, the 
Roman granite column samples plot in the collisional 
granitoid (syn-COLG) and volcanic arc granitoid fields, 
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with similar main oxide and trace element contents to 
those of the Horoz granitoid. The comparison of the 
geochemical data of the Horoz granitoid and the Tyana 
granite columns is also consistent with published data.  

In conclusion, the mineralogical, petrographic, and 
chemical analyses of the granite columns in the ancient 
city of Tyana presented in this work provide valuable 
information about the origin of these structures. The 
analyzed features of the Tyana granite columns are an 
important input for the conservation and restoration of 
ancient structures in the future. 
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