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Abstract: The course timetabling problem is a significant combinatorial optimization problem that
has attracted the attention of researchers since the second half of the 20th century. Traditionally
managed through manual methods, the scheduling process is time-consuming, challenging, and prone
to errors. Therefore, with technological advancements, various algorithms have been developed to
offer more efficient and faster solutions. In this study, the "MVC Algorithm" is applied to the course
timetabling problem. The algorithm operates in two main steps: first, the Malatya Centrality(MC)
values of the nodes in the timetable graph are calculated; then, the node with the highest centrality is
selected and labeled with an appropriate color. Throughout the process, the main objective is to
minimize course conflicts and to generate a valid timetable that complies with defined constraints.
The MVC Algorithm stands out with its predictability of procedural steps and its potential to operate
in polynomial time, thus offering an effective alternative to classical and heuristic methods proposed
in the literature.
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Oz: Ders cizelgeleme problemi, 20. yiizyihn ikinci yarisindan itibaren arastirmacilarm dikkatini
¢eken onemli bir kombinatoryal optimizasyon problemidir. Geleneksel olarak manuel yontemlerle
yiriitiilen ¢izelgeleme siireci, zaman alict ve zorlayict olmakla birlikte hata yapmaya acik bir
yapidadir. Bu nedenle, teknolojik ilerlemelerle birlikte ¢esitli algoritmalar gelistirilerek daha etkili ve
hizli ¢ézlimler sunulmaya ¢alisilmigtir. Bu ¢aligmada, "Malatya Vertex Coloring(MVC) Algoritmasi1"
ders ¢izelgeleme problemine uygulanmaktadir. Algoritma, iki temel adimda ¢aligmaktadir: ilk olarak,
cizelge grafindaki diigiimlerin Malatya Merkezilik degerleri hesaplanmakta; ardindan en yiiksek
merkezilige sahip diigiim secilerek uygun bir renkle etiketlenmektedir. Siire¢ boyunca temel hedef,
ders ¢akigmalarini en aza indirmek ve tanimli kisitlamalara uyumlu, gegerli bir ¢izelge iiretmektir.
MVC Algoritmasi, islem adimlarinin Ongoriilebilirligi ve polinom zamanda c¢alisabilme
potansiyeliyle dikkat ¢ekmekte, bu yoniiyle literatiirde onerilen klasik ve sezgisel yontemlere etkili
bir alternatif sunmaktadir.

1. INTRODUCTION

The Course Scheduling Problem (CSP) is a complex
optimization problem that has been extensively studied in
the fields of operations research and artificial intelligence
since the 1960s. This problem aims to assign courses to
specific time slots, classrooms, and instructors without
conflicts. Particularly in educational institutions, due to
the necessity of managing limited resources (classrooms,
instructors, time slots) along with numerous constraints,

the scheduling process becomes highly time-consuming
and error-prone when handled manually[1].

Technological —advancements have enabled the
development of various algorithms to automate and
improve this process. Among the solution methods
proposed in the literature, heuristic algorithms,
metaheuristic approaches (e.g., genetic algorithms, tabu
search)[2], and graph-based algorithms (e.g., bipartite
edge coloring, vertex coloring)[3] are particularly
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prominent. However, the high computational power
required by existing algorithms when applied to large
datasets poses a significant challenge, especially in
university settings where course repetitions and student
enrollments are dense.

Course scheduling is not merely a matter of assigning
courses to time slots. It also involves ensuring compliance
with various strict constraints, such as preventing
conflicts and adhering to class capacities and lecture
hours. Some fundamental challenges frequently
encountered in universities include:

»  Lecture durations not being uniform,

» Courses sharing common students or instructors
not being scheduled simultaneously,

» The necessity for certain courses to be repeated
more than once a week.

In this context, there is a growing need for more flexible
and computationally efficient algorithms that can reduce
course conflicts and generate optimal timetables under
defined constraints.

In response to these needs, this study proposes a novel
approach called the MVC Algorithm. The algorithm
consists of two fundamental phases. In the first phase, the
Malatya Centrality (MC) values of the nodes representing
the courses are calculated. In the second phase, the node
with the highest MC value is selected, assigned a color,
and removed from the graph. This process continues
iteratively, ensuring that adjacent nodes are assigned
different colors. The main advantage of the proposed
algorithm lies in the predictability of all procedural steps
and its ability to produce solutions in polynomial time.

The remainder of this article is organized as follows:
Section 2 reviews the related literature and graph-
coloring-based approaches. Section 3 presents the method
and proposed approach. Experimental results are provided
in Section 4. Finally, Section 5 offers interpretations of
the findings and discusses recommendations for future
work.

2. LITERATURE REVIEW

CSP is a classical combinatorial optimization problem
that aims to ensure the efficient and conflict-free use of
resources in educational institutions. As the number of
courses and the constraints to be applied increase, the
problem becomes increasingly complex. Therefore,
numerous studies based on various algorithms have been
conducted. These studies can be categorized according to
the methods employed.

Graph-coloring-based algorithms are widely used to
prevent conflicts through structures in which nodes and
edges correspond to time slots. Rina I. proposed a solution
using the Welch-Powell algorithm, treating each course as
anode and assigning the same time slot to nodes with the
same color. This method yielded effective results for basic
scheduling problems due to its simplicity[4]. A resource
scheduling algorithm proposed by Egwuneche

successfully scheduled tasks without resource conflicts
based on graph coloring[5]. Bania and Duarah developed
an examination scheduling model using graph coloring
with institutional data and achieved satisfactory results
under both hard and soft constraints[6]. Mursyidah (2019)
discussed the application of graph coloring to schedule
courses effectively and efficiently based on student needs
and available spaces at the Department of Mathematics
Education, University of Muhammadiyah Surabaya[7]. In
their study, the authors used graph coloring to solve the
CSP by dividing the data into three sets: time slots,
classrooms, and the courses assigned to lecturers[8].
Mishkhal I. and colleagues attempted to solve CSP using
a graph coloring approach implemented in the JEdit
programming language[9].

These methods aim to scan the solution space more
rapidly and manage complex constraints more effectively.
Han and Wang developed a hybrid method, POGA-DP,
which combines genetic algorithms and dynamic
programming for university course timetabling. This
method significantly improves scheduling quality,
especially in cases where multiple classes attend a single
course, and ensures more efficient classroom usage. Tests
on real datasets demonstrated substantial performance
improvements compared to traditional methods[10].
Budiarto applied genetic algorithms (GA) to school-level
CSP. In a study conducted at SMPK Santo Yoseph School
in Bali, the difficulties of manual scheduling were
highlighted, and a fitness value of 0.0880 was achieved
after 100 generations. This method reduced the number of
daily classes from seven to four or five, resulting in a more
balanced and efficient schedule[11]. Rahardjo and
Zulkifli  successfully created conflict-free course
schedules by integrating dynamic matching with Vertex
Graph Coloring, one of the most effective methods for
CSP[12]. Burke and his colleagues applied heuristic
variants of graph coloring methods in curriculum-based
course scheduling problems, modeling constraint sets in
the classroom-time-teacher triangle[13].

Mathematical programming-based approaches are often
preferred in scheduling problems where precision and
optimality are required. E. Rappos and colleagues
developed a Mixed Integer Programming (MIP) model to
solve the university timetabling problem. The model
simultaneously optimizes student, classroom, and time
assignments, addressing both student conflicts and
classroom usage constraints. Due to the large size of the
model, a two-phase solution was proposed: first, a feasible
initial solution is obtained, followed by refinement using
a local search algorithm. The model yielded strong results
when tested on ITC 2019 competition datasets[14].
Steiner and his team used a three-stage modeling process
and integer programming to reduce conflicts caused by
complex structures such as double major selections at the
University of Graz[15]. Subulan argued that timetables
should not only balance scheduling but also aim for skill
development. The model developed for this purpose was
solved using multi-objective mathematical programming
and produced promising results[16]. In another study, the
authors successfully applied linear programming—an
effective method for addressing CSP—to prepare class
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schedules at the Sirindhorn International Institute of
Technology[17].

Due to the increasing volume and complexity of data,
hybrid solutions combining multiple methods have
become more prevalent. Gunawan A. developed a hybrid
algorithm to solve faculty assignment and course
scheduling problems simultaneously. By combining
integer programming, greedy heuristics, and a modified
simulated annealing method, this approach delivered
effective results even on large datasets. The method was
tested on data from a university in Indonesia[18]. The
authors proposed a two-phase hybrid algorithm
combining exact and heuristic methods for university
course scheduling. In the first phase, courses were
clustered using graph coloring; in the second phase, a tabu
search algorithm assigned these clusters to time slots. The
model also incorporated additional constraints based on
teacher and student preferences to generate realistic
schedules[1].

In another study, the authors utilized a hybrid method
combining graph coloring methodology and heuristic
techniques to solve curriculum-based CSP[19]. Fizzano
and Swanson developed an algorithm that assigns only
one student group per class at a specific time and day,
optimizing the allocation of student groups to classrooms
based on this constraint[20].

In this study, a novel algorithm based on the graph
coloring approach—Malatya Vertex Coloring (MVC)
Algorithm—is proposed to solve the CSP. Unlike many
widely used methods in the literature, this algorithm
prioritizes the most critical nodes by calculating their
Malatya Centrality (MC) values. As a result, course
conflicts are minimized, and more efficient timetables are
produced using fewer time slots. Furthermore, the
algorithm enables the easy integration of additional
constraints such as instructor availability, increasing its
applicability in highly constrained environments. Test
results on real-world datasets demonstrate that the
algorithm provides an effective solution in terms of both
accuracy and scheduling quality.

3. PROPOSED METHOD
3.1. Problem Definition and Approach

The Course Scheduling Problem (CSP) is a classical and
computationally complex scheduling problem commonly
encountered in universities and educational institutions.
The CSP requires the allocation of courses, instructors,
classrooms, and students to appropriate time slots while
satisfying a variety of constraints. Due to its broad
applicability across different academic domains, the CSP
has led to the development of numerous algorithms and
solution strategies in the literature. With the advancement
of computer science and optimization techniques,
increasingly effective and efficient algorithms have been
proposed to solve CSPs. Notably, the CSP shares
considerable  similarities with the Examination
Timetabling Problem (ETP). Although some constraints
differ between the two, many of the solution approaches

are similar, which has led several academic studies to treat
them within a unified framework.

In this study, the Malatya Vertex Coloring (MVC)
algorithm is applied to address the CSP. The MVC
algorithm aims to achieve an optimal or near-optimal
coloring of graph vertices, representing courses, in such a
way that the number of required time slots is minimized.
By efficiently assigning colors (i.e., time slots) to
conflicting courses, the algorithm ensures a feasible and
conflict-free timetable, ultimately enhancing the
utilization of limited temporal resources.

3.2. Application of the MVC Algorithm to the Course
Scheduling Problem

In this study, the Malatya Vertex Coloring (MVC)
algorithm was employed to develop a solution for the
university-level Course Scheduling Problem (CSP). MVC
is a graph-theoretic approach that focuses on identifying
the most influential vertex during the coloring process.
For this purpose, a Malatya Centrality (MC) value is
calculated for each vertex, and the vertex with the highest
MC value is selected as the next candidate to be
colored[21].

The MVC algorithm relies on the centrality values of
vertices to determine their relative influence within the
graph. The MC value of a vertex is defined as the sum of
the ratios between the vertex’s degree (i.e., the number of
neighbors) and the degrees of its neighboring vertices[22].
This formulation prioritizes vertices that are highly
connected but surrounded by relatively less connected
neighbors. Consequently, such vertices are selected
earlier in the coloring sequence.

The functioning of the MVC algorithm is illustrated
through an example graph consisting of six vertices, each
representing a course: “Programming,” “Mathematics,”
“Data Structures,” “Physics,” “Database Systems,” and
“Discrete Mathematics.” Edges between vertices indicate
that the corresponding courses are taken by at least one
common student, implying a scheduling conflict if
assigned to the same time slot. In other words, the
existence of an edge between two courses signifies a hard
constraint that they must not be scheduled simultaneously.

The resulting graph structure, as shown in Figure 1,
models the CSP as a graph coloring problem, where the
goal is to assign time slots (colors) to each course (vertex)
such that no adjacent courses share the same slot.
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Figure 1. Graph model of a sample course schedule

In order to illustrate how the MC value, which lies at the
core of the MVC algorithm, is calculated, the Data
Structures course from the sample course graph has been
selected. The degree of each node represents the number
of edges (i.e., neighbors) it possesses. The degree values
of the relevant nodes in the graph are as follows:

Deg(Discrete Mathematics) = 3
Deg(Database) = 4
Deg(Mathematics) = 3
Deg(Physics) =3
Deg(Programming) = 4
Deg(Data Structures) = 4

Z degree(v )
e degree(v;)

* vi: The node for which the MC value is calculated
* N(vi) : The set of neighbors of node v;
* deg(v): The degree of node v (i.e., the number of edges)

When examining the neighbors of the Data Structures
course, it is observed that it is directly connected to the
courses Programming, Discrete Mathematics,
Mathematics, and Database. Therefore, the MC value of
the Data Structures node is calculated by taking the sum
of the ratios of its degree (i.e., number of edges) to the
degree values of its neighboring nodes.

4 4 4 4
MC(Data Structures) = Z:(§ + 3 + 3 + Z)

MC(Data Structures) = 1,3+ 1,34+ 1,3+ 1
MC (Data Structures) = 5

This calculation indicates that the Data Structures node is
highly connected, while some of its neighbors exhibit
relatively lower connectivity. As a result, within the MVC
algorithm, the Data Structures node is prioritized among
those to be colored first.

To implement the MVC algorithm, a duplicate of the
original graph is initially created. This duplicate graph
serves to retain the information of the removed nodes and
facilitates comparison with the colors of adjacent nodes
during the coloring process. In contrast, the original graph

is used for computing MC values and removing nodes as
the algorithm progresses.

The procedure begins with the computation of MC values
for all nodes in the graph. After these values are
calculated, the node with the highest MC wvalue,
representing the most influential node, is identified. The
colors already assigned to its adjacent nodes are then
examined. Starting from the beginning of the color list,
the first color that has not been used by any neighboring
node is selected and assigned to the current node[23]. If
the selected color is already present in a neighboring node,
the next color in the list is considered and the same
verification is performed. Once a color distinct from all
neighboring nodes is found, it is assigned to the selected
node. Following the color assignment, the node is
removed from the original graph.

Subsequently, the MC values of the remaining nodes are
recalculated. The node with the newly highest MC value
is then identified and the same color assignment process
is repeated. This node is also removed from the graph and
the algorithm continues iteratively. This cycle is repeated
until all nodes have been colored. By the end of the
process, all nodes in the duplicate graph will have been
successfully colored with valid assignments.

Algorithm 1. Pseudocode of the MVC Algorithm
MVC Algorithm
Input: Graph g =(V, E)
Output: Colored graph f
f — Copy(g)
Function CentralityCalculate(g):
// Calculates MC value for each node and finds the one with the
//highest centrality.
MaxCentrality « 0
For each vertex i in V(g):
Centrality < 0
For each neighbor j in Neighbors(i):
Centrality < Centrality + Degree(i) / Degree(j)
If Centrality > MaxCentrality:
MaxCentrality «— Centrality
MaxVertex « i
Return MaxVertex
// Return the vertex with the highest MC value.

While VertexCount(g) > 0:
// Repeat until all vertices are removed (colored).
vertex «— CentralityCalculate(g)
For each color ¢ in ColorList: // Iterate over the list of colors.
If ¢ not in Colors of Neighbors(vertex) in f:
Assign color ¢ to vertex in f
Break
Delete vertex from // Remove the colored vertex from the graph.

Show(f)

The detailed steps and control structure of the MVC
algorithm are presented with the help of the pseudocode
shown in Algorithm 1. The algorithm consists of two
fundamental components: the CentralityCalculate
function and the main body. The CentralityCalculate
function is responsible for calculating the MC values of
all nodes in the graph and for selecting the most influential
node. In the main body, a copy of the original graph is first
created. In each iteration, the most influential node is
determined and assigned a color. During the coloring
process, it is checked whether there is any conflict with
the colors of adjacent nodes. These control operations are
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carried out using the copy graph. Once the color is
assigned, the node is removed from the original graph.
The original graph plays an active role in the removal of
nodes and the recalculation of MC values, whereas the
copy graph is used solely for tracking color assignments.
The coloring process continues until there is only one
start to finish, including MC computation, color
comparison, color assignment, and node removal from the
graph. Additionally, a small sample graph with calculated
MC values and step-by-step illustrations of the coloring
process will support the reader in better understanding
how the algorithm functions.

The primary constraints encountered in solving course
timetabling problems are that a student cannot attend
multiple classes at the same time and that each course
must be offered only once per week. These constraints

node left in the original graph. Once all nodes have been
colored, the process ends, and the nodes in the copy graph
are left with valid color assignments. To visualize the
effectiveness and procedural operation of the MVC
algorithm, it is recommended to include a flowchart. This
diagram should clearly represent the entire process from
significantly increase the complexity of the timetabling
problem.

In this study, the MVC algorithm was employed to
address these challenges. During the implementation of
the algorithm, each course was modeled as a node, and
edges were established between courses taken by the same
student, thereby forming a graph structure as illustrated in
Figure 2. Through the coloring process applied to this
graph structure, time conflicts between courses were
effectively avoided[24].

Modeling the Course Schedule as a Graph
Step 2
Step1 Step 3
Example Class Timatable T‘";ﬁi“c‘“:r:;" 3“""”1""' Coursa Schedule Graph

Stud Conflict Graph Edge List
ent Course Course Course . - o
D |1 2 Course3 | Coursed |3 NodedA  |NodeB ) _
25 Mathem | Physics | Wircless | Web Micropr Mathematics | Physics [ Algo rithm Analy9|s

atics | 1 Networks | Program | ocessors 1 .

mang Mathematics | Wireless i

32 Discrete | Algonith | Operating | Web 1 Networks Dpe ra“ng Systems

Mathem | m Systems Program Mathematics | Web o

atics Analysis mng 1 Programming \ Web PFOQ ranm 'ﬂg
35 Mathem | Algonth | Discrete | Micropro Math : Mic -

atics I n Mathemat | cessors 1 athematics | Microprocessors Discrete’ Mathefnatic .

Analysis | ics — ‘RASIC roprocessors

40 Wircless | Mathem | Wircless | Physics [ Physics I “_ ireless .

Network | atics [ Networks Networks

$ Physics Web ) B
50 Algorith | Web Physics | | Micropro Programming Wireless Netwarks

":mly”.‘ i'lr:,g;am cessors | Physics 1 Microprocessors r
55 Mathem | Discrete | Wirgless | Operating \E.”r“:s: Web PhYSICS !

aties [ Mathem | Networks | Systems Networks Programming

atics Wireless Microprocessors

20 | Algorith | Wireless | Web Discrete | Physics Networks

m Network | Program | Mathemat | | Web Microprocessors =

Analysis | s ming ics Programming Mathematics |

Figure 2. Graph-Based Modeling Process of the Course Timetabling Problem

The course timetable datasets used in this study were
obtained from the UNITIME.org platform, specifically
the Computer Science Department Spring: [pu-spr07-cs]
and Fall: [pu-fal07-cs] datasets[25]. In these datasets,

Table 1. Courses Taken by Students

each course is represented as a node, and edges are created

between courses taken by the same student, resulting in a
relational graph-based structure.

Student Lesson 1 Lesson 2 Lesson 3 Lesson 4 Lesson 5
1;50 Mathematics 1 Physics 1 Wireless Networks Web Programming Microprocessors
32 Discrete Algorithm Analysis Operating Systems Web Programming

Mathematics
35 Mathematics 1 Algorithm Analysis Discrete Mathematics Microprocessors
40 Wireless Networks Mathematics 1 Wireless Networks Physics 1
50 Algorithm Analysis Web Programming Physics 1 Microprocessors
55 Mathematics 1 Discrete Mathematics Wireless Networks Operating Systems
20 Algorithm Analysis Wireless Networks Web Programming Discrete Mathematics Physics 1
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The MVC algorithm was applied to a graph structure
representing  student-course relationships, assigning
different colors to potentially conflicting courses. This
approach prevented students from being scheduled for
multiple classes at the same time. Moreover, by
employing a node selection strategy based on MC values,
the algorithm effectively grouped interconnected courses
into a minimal number of sets. As a result, the timetabling
process was optimized by utilizing fewer time slots[21].

Table 2. List Made for the Graph Structure of the Courses Taken by
Student No. 25

Edges
Node Node
Mathematics 1 Physics 1
Mathematics 1 Wireless Networks
Mathematics 1 Web Programming
Mathematics 1 Microprocessors
Physics 1 Wireless Networks
Physics 1 Web
Physics 1 Microprocessors
Wireless Networks Web Programming
Wireless Networks Microprocessors
Web Programming Microprocessors

The primary constraints to be considered in the Course
Scheduling Problem (CSP) are as follows:

*  Courses taken by the same student must not be
scheduled in the same time slot.
»  Each course must be offered only once per week.

In accordance with these constraints, the MVC algorithm
was implemented by modeling each course as a node
(vertex), and establishing edges between courses taken by
the same student so that these courses are treated as
adjacent nodes. Table 2 illustrates the transformation of
the course list of Student 25 into a graph structure. All
possible pairwise combinations among this student’s
courses were generated to form the edge list. This process
was repeated for all students to create a comprehensive
list of course relationships, which was then used to
construct a graph model. The MVC algorithm was applied
to this graph. In the graph structure, nodes (courses)
sharing the same color do not have a direct connection
(edge), meaning that these courses can be scheduled in the
same time slot. Conversely, differently colored courses

Table 3. MC Values in Each Iteration

are directly connected, indicating that they are taken by
the same student and therefore must be scheduled in
separate time slots to avoid conflicts. As such, minimizing
the number of required time slots depends on reducing the
number of colors used. The MVC algorithm provides
efficient results in this context. The student-course data
presented in Table 1 was converted into pairwise
relationships as shown in Table 2 and then imported into
the system. The data was first transformed into a graph
structure, and subsequently, the MVC algorithm was
applied to this graph. In each step of the algorithm, the
MC values of all nodes were calculated as shown in Table
3. Based on these calculations, the iteration process
proceeded as follows:

In the first iteration, the course "Wireless Networks",
having the highest MC value, was assigned the first color
in the list (e.g., green) and then removed from the graph.
In the second iteration, the course with the highest
updated MC value was "Physics 1" (MC = 6.6). Since its
neighbor "Wireless Networks" had been assigned green,
the next available color, purple, was assigned to "Physics
1." In the third iteration, three nodes shared the highest
MC value, so the one that appeared earlier in the system,
"Web Programming", was selected. Its neighbors had
green (Wireless Networks) and purple (Physics 1) colors,
so the next available color, blue, was assigned. In the
fourth iteration, since green had not been used among the
neighbors of "Algorithm Analysis", this course was
assigned green. In the fifth iteration, "Discrete
Mathematics" had neighbors with green, purple, and blue,
thus the next suitable color, turquoise, was assigned. In
the sixth iteration, the neighbors of "Microprocessors"
had green, purple, blue, and turquoise, so the next
available color, light green, was chosen. In the seventh
iteration, "Operating Systems" had neighbors colored
green, blue, and turquoise. Since purple had not been used
among its neighbors, it was assigned purple. Finally, in
the eighth iteration, "Mathematics 1" had neighbors with
green and purple; thus, blue was assigned as the next
available color. With this step, the coloring process was
completed, and all nodes were removed from the graph.
As aresult of executing the MVC algorithm, a total of five
distinct colors were used, indicating that at least five time
slots are needed for scheduling. Once these time slots are
created, courses with the same color are scheduled in the
same slot, while courses with different colors are assigned
to different time periods.

Mathematics Discrete Algorithm Web Physics Wireless Micro Operating
1 Mathematics Analysis Programming 1 Networks processors Systems

Lst Iteration 0.73 7.4 3.13 74 6.0 8.9 4.75 2.9
2nd Iteration 0.25 6.4 39 6.4 6.6 3.59 1.95
3rd Iteration 0 4.6 4.6 4.6 2.25 2.25
4th Iteration 0 4.0 4.0 1.3 1.3
Sth Iteration 0 4.0 0.5 0.5
6th Iteration 0 0 0
7th Iteration 0 0
8th Iteration 0

In solving the CSP, the MVC algorithm prioritizes the
coloring of the region with the highest MC value at each
step. The coloring process of the map following each

execution step is visualized through the stages presented
in Figure 3.
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Figure 3. Color Assignment Process According to the Steps of the MVC Algorithm

This figure illustrates, step by step, which node is selected
and which color is assigned in each iteration of the MVC
algorithm. Starting from the top-left and proceeding to the
bottom-right, the sequential stages clearly demonstrate
the node selection logic based on centrality (MC) values
and the corresponding color assignment process. This
procedure effectively avoids color conflicts and ensures
minimal color usage.

4. EXPERIMENTAL RESULTS

In this study, the “[pu-fal07-cs]” dataset, which belongs
to the Computer Science Department of the University of
Purdue and is publicly available on the Unitime.org
platform, was utilized. Based on this dataset, a graph
structure representing student conflicts between courses
was constructed. The resulting graph consists of 466
nodes (courses) and 3,819 edges (student overlaps
between courses). The MV C algorithm was applied to this
large-scale graph structure, resulting in a coloring with 12
distinct colors. Since nodes with the same color are not
adjacent to each other, these courses can be scheduled in

the same time slot but in different classrooms.
Conversely, courses with different colors are directly
connected, indicating that they must be scheduled in
separate time slots. As shown in Figure 4, the MVC
algorithm enabled the scheduling of all 466 courses using
only 12 time slots for this dataset. Additionally, four other
commonly used graph coloring algorithms from the
literature—DSATUR,  Welsh—Powell, RLF, and
Greedy—were also applied to the same dataset. As
presented in Table 4, the MVC, DSATUR, Welsh—
Powell, and Greedy algorithms all produced solutions
using 12 colors, whereas only the RLF algorithm required
13 colors.

Table 4. Comparison of the Number of Colors Used by Different
Algorithms in the Fall Semester Course Schedule of the Computer
Science Department

Algorithm Number of Colors
Used
MVC (Malatya Vertex Coloring) 12
DSATUR (Degree of Saturation Order) 12
Welsh—Powell 12
RLF (Recursive Largest First) 13
Greedy (Rastgele sira ile) 12
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These results demonstrate that the MVC algorithm
performs comparably to, or even better than, traditional

algorithms, offering an effective approach to the
timetabling process.

Figure 4. Computer science department fall term coloring

In the second phase of the study, the spring semester
course scheduling dataset, labeled “[pu-spr07-cs]” and
obtained from the Unitime.org platform, was utilized. In
this dataset, each course is modeled as a vertex, and an
edge is established between courses that are taken by the
same student. As a result, a graph structure consisting of
884 vertices and 9,190 edges was constructed, based on
884 courses and 725 students. The MVC algorithm was
applied to this large-scale graph, and a successful coloring
was achieved using 14 distinct colors. Each color
represents a separate time slot. Since there are no direct
connections between vertices with the same color, these
courses can be scheduled within the same time period. As
illustrated in Figure 5, the MVC algorithm enabled a
conflict-free scheduling of all courses in this dataset using
only 14 time slots. The aforementioned dataset was also
tested with other algorithms, and the corresponding
results are presented in Table 5.

Table 5. Comparison of the Number of Colors Used by Different
Algorithms in the Spring Semester Course Schedule of the Computer
Science Department

Algorithm Number of Colors Used
MVC (Malatya Vertex Coloring) 14
DSATUR (Degree of Saturation Order) 14
Welsh—Powell 13
RLF (Recursive Largest First) 16
Greedy (Rastgele sira ile) 13

These comparisons demonstrate that the MVC algorithm
yields results equivalent to those of traditional algorithms
and can be effectively applied, particularly to large-scale
datasets.
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Figure 5. Department of computer science spring term coloring
4. CONCLUSION

This study addresses the complex and frequently
encountered Course Scheduling Problem (CSP) in
universities by employing a novel graph-based approach,
the Malatya Vertex Coloring (MVC) algorithm. The
MVC algorithm is designed to minimize conflicts
between courses based on their centrality (MC) values. Its
core principle is to prioritize the coloring of the most
influential (central) nodes, thereby aiming to solve the
scheduling problem using the minimum number of colors
(i.e., time slots). Experimental applications on real-world
datasets demonstrate the effectiveness of the MVC
algorithm. Using two distinct semester datasets (Fall and
Spring) from the Computer Science Department of
Purdue University, the algorithm successfully generated
conflict-free schedules with only 12 and 14 colors,
respectively. These results indicate that even in large-
scale systems involving hundreds of courses and
thousands of students, conflict-free scheduling can be
achieved with as few as 12—14 time slots. Furthermore,
comparative analyses reveal that the MVC algorithm
performs comparably to, or better than, traditional

algorithms such as DSATUR, Welsh—Powell, Greedy,
and RLF. The success of the MVC algorithm lies in its
node selection strategy based on MC values. These values
measure a node’s relative impact within the graph,
allowing for the prioritization of the most critical courses
during the scheduling process. This mechanism not only
optimizes time slot usage but also facilitates the
integration of other scheduling actors, such as instructors,
into the same framework. In fact, instructors’ courses can
be modeled in a similar way to students within the graph
structure, enabling conflict-free scheduling within a
unified algorithmic framework.

In addition, the operational steps of the algorithm were
illustrated in detail through examples and visualizations.
The clear definition of stages such as MC value
calculation, usage of a duplicate graph, and color control
mechanisms contributes to both the theoretical strength
and practical applicability of the algorithm.

The advantages offered by the MVC algorithm can be
summarized as follows:

»  Ability to function under complex constraints,
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» Conflict-free scheduling with a minimal number
of time slots,

» Flexibility to model both student and instructor
data within a single structure,

» Applicability to large datasets due to its
polynomial-time execution.

In conclusion, the MVC algorithm offers a robust
alternative to conventional and heuristic methods for
solving CSPs. Its simplicity, predictability, and efficiency
in practice suggest that this approach has strong potential
for widespread application in educational institutions’
scheduling systems.

Future research may focus on extending the algorithm to
incorporate additional constraints (e.g., classroom
capacities, course priorities, student preferences),
performing multi-objective optimization with data from
various departments, and testing the algorithm in real-
time scheduling environments. Moreover, combining the
algorithm with parallel computing techniques could
significantly improve its performance on larger-scale
problems.
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