

46

Volume 14, Issue 3, Page 46-56, 2025 https://doi.org/10.46810/tdfd.1629184 Research Article

Graph-Based Course Scheduling Using the Malatya Vertex Coloring Algorithm for

Constraint Optimization

Cezayir KARACA1* , Selman YAKUT2

1 İnönü University, Faculty of Engineering, Department of Computer Engineering, Malatya, Türkiye
2 İnönü University, Faculty of Engineering, Department of Software Engineering, Malatya, Türkiye

Cezayir KARACA ORCID No: 0009-0007-9250-2612

Selman YAKUT ORCID No: 0000-0002-0649-1993

*Corresponding author: cezayirkaraca0242@gmail.com

(Received: 29.01.2025, Accepted: 10.07.2025, Online Publication: 26.09.2025)

Keywords

Course

scheduling,

Centrality,

Malatya

coloring,

Timetabling

Abstract: The course timetabling problem is a significant combinatorial optimization problem that

has attracted the attention of researchers since the second half of the 20th century. Traditionally

managed through manual methods, the scheduling process is time-consuming, challenging, and prone

to errors. Therefore, with technological advancements, various algorithms have been developed to

offer more efficient and faster solutions. In this study, the "MVC Algorithm" is applied to the course

timetabling problem. The algorithm operates in two main steps: first, the Malatya Centrality(MC)

values of the nodes in the timetable graph are calculated; then, the node with the highest centrality is

selected and labeled with an appropriate color. Throughout the process, the main objective is to

minimize course conflicts and to generate a valid timetable that complies with defined constraints.

The MVC Algorithm stands out with its predictability of procedural steps and its potential to operate

in polynomial time, thus offering an effective alternative to classical and heuristic methods proposed

in the literature.

Kısıt Optimizasyonu için Malatya Vertex Coloring Algoritması Kullanılarak Graf Tabanlı

Ders Çizelgeleme

Anahtar

Kelimeler

Ders

çizelgeleme,

Merkezilik,

Malatya

coloring,

Zaman

çizelgesi

Öz: Ders çizelgeleme problemi, 20. yüzyılın ikinci yarısından itibaren araştırmacıların dikkatini

çeken önemli bir kombinatoryal optimizasyon problemidir. Geleneksel olarak manuel yöntemlerle

yürütülen çizelgeleme süreci, zaman alıcı ve zorlayıcı olmakla birlikte hata yapmaya açık bir

yapıdadır. Bu nedenle, teknolojik ilerlemelerle birlikte çeşitli algoritmalar geliştirilerek daha etkili ve

hızlı çözümler sunulmaya çalışılmıştır. Bu çalışmada, "Malatya Vertex Coloring(MVC) Algoritması"

ders çizelgeleme problemine uygulanmaktadır. Algoritma, iki temel adımda çalışmaktadır: ilk olarak,

çizelge grafındaki düğümlerin Malatya Merkezilik değerleri hesaplanmakta; ardından en yüksek

merkeziliğe sahip düğüm seçilerek uygun bir renkle etiketlenmektedir. Süreç boyunca temel hedef,

ders çakışmalarını en aza indirmek ve tanımlı kısıtlamalara uyumlu, geçerli bir çizelge üretmektir.

MVC Algoritması, işlem adımlarının öngörülebilirliği ve polinom zamanda çalışabilme

potansiyeliyle dikkat çekmekte, bu yönüyle literatürde önerilen klasik ve sezgisel yöntemlere etkili

bir alternatif sunmaktadır.

1. INTRODUCTION

The Course Scheduling Problem (CSP) is a complex

optimization problem that has been extensively studied in

the fields of operations research and artificial intelligence

since the 1960s. This problem aims to assign courses to

specific time slots, classrooms, and instructors without

conflicts. Particularly in educational institutions, due to

the necessity of managing limited resources (classrooms,

instructors, time slots) along with numerous constraints,

the scheduling process becomes highly time-consuming

and error-prone when handled manually[1].

Technological advancements have enabled the

development of various algorithms to automate and

improve this process. Among the solution methods

proposed in the literature, heuristic algorithms,

metaheuristic approaches (e.g., genetic algorithms, tabu

search)[2], and graph-based algorithms (e.g., bipartite

edge coloring, vertex coloring)[3] are particularly

www.dergipark.gov.tr/tdfd

https://orcid.org/0009-0007-9250-2612
https://orcid.org/0000-0002-0649-1993

Tr. J. Nature Sci. Volume 14, Issue 3, Page 46-56, 2025

47

prominent. However, the high computational power

required by existing algorithms when applied to large

datasets poses a significant challenge, especially in

university settings where course repetitions and student

enrollments are dense.

Course scheduling is not merely a matter of assigning

courses to time slots. It also involves ensuring compliance

with various strict constraints, such as preventing

conflicts and adhering to class capacities and lecture

hours. Some fundamental challenges frequently

encountered in universities include:

➢ Lecture durations not being uniform,

➢ Courses sharing common students or instructors

not being scheduled simultaneously,

➢ The necessity for certain courses to be repeated

more than once a week.

In this context, there is a growing need for more flexible

and computationally efficient algorithms that can reduce

course conflicts and generate optimal timetables under

defined constraints.

In response to these needs, this study proposes a novel

approach called the MVC Algorithm. The algorithm

consists of two fundamental phases. In the first phase, the

Malatya Centrality (MC) values of the nodes representing

the courses are calculated. In the second phase, the node

with the highest MC value is selected, assigned a color,

and removed from the graph. This process continues

iteratively, ensuring that adjacent nodes are assigned

different colors. The main advantage of the proposed

algorithm lies in the predictability of all procedural steps

and its ability to produce solutions in polynomial time.

The remainder of this article is organized as follows:

Section 2 reviews the related literature and graph-

coloring-based approaches. Section 3 presents the method

and proposed approach. Experimental results are provided

in Section 4. Finally, Section 5 offers interpretations of

the findings and discusses recommendations for future

work.

2. LITERATURE REVIEW

CSP is a classical combinatorial optimization problem

that aims to ensure the efficient and conflict-free use of

resources in educational institutions. As the number of

courses and the constraints to be applied increase, the

problem becomes increasingly complex. Therefore,

numerous studies based on various algorithms have been

conducted. These studies can be categorized according to

the methods employed.

Graph-coloring-based algorithms are widely used to

prevent conflicts through structures in which nodes and

edges correspond to time slots. Rina I. proposed a solution

using the Welch-Powell algorithm, treating each course as

a node and assigning the same time slot to nodes with the

same color. This method yielded effective results for basic

scheduling problems due to its simplicity[4]. A resource

scheduling algorithm proposed by Egwuneche

successfully scheduled tasks without resource conflicts

based on graph coloring[5]. Bania and Duarah developed

an examination scheduling model using graph coloring

with institutional data and achieved satisfactory results

under both hard and soft constraints[6]. Mursyidah (2019)

discussed the application of graph coloring to schedule

courses effectively and efficiently based on student needs

and available spaces at the Department of Mathematics

Education, University of Muhammadiyah Surabaya[7]. In

their study, the authors used graph coloring to solve the

CSP by dividing the data into three sets: time slots,

classrooms, and the courses assigned to lecturers[8].

Mishkhal I. and colleagues attempted to solve CSP using

a graph coloring approach implemented in the JEdit

programming language[9].

These methods aim to scan the solution space more

rapidly and manage complex constraints more effectively.

Han and Wang developed a hybrid method, POGA-DP,

which combines genetic algorithms and dynamic

programming for university course timetabling. This

method significantly improves scheduling quality,

especially in cases where multiple classes attend a single

course, and ensures more efficient classroom usage. Tests

on real datasets demonstrated substantial performance

improvements compared to traditional methods[10].

Budiarto applied genetic algorithms (GA) to school-level

CSP. In a study conducted at SMPK Santo Yoseph School

in Bali, the difficulties of manual scheduling were

highlighted, and a fitness value of 0.0880 was achieved

after 100 generations. This method reduced the number of

daily classes from seven to four or five, resulting in a more

balanced and efficient schedule[11]. Rahardjo and

Zulkifli successfully created conflict-free course

schedules by integrating dynamic matching with Vertex

Graph Coloring, one of the most effective methods for

CSP[12]. Burke and his colleagues applied heuristic

variants of graph coloring methods in curriculum-based

course scheduling problems, modeling constraint sets in

the classroom-time-teacher triangle[13].

Mathematical programming-based approaches are often

preferred in scheduling problems where precision and

optimality are required. E. Rappos and colleagues

developed a Mixed Integer Programming (MIP) model to

solve the university timetabling problem. The model

simultaneously optimizes student, classroom, and time

assignments, addressing both student conflicts and

classroom usage constraints. Due to the large size of the

model, a two-phase solution was proposed: first, a feasible

initial solution is obtained, followed by refinement using

a local search algorithm. The model yielded strong results

when tested on ITC 2019 competition datasets[14].

Steiner and his team used a three-stage modeling process

and integer programming to reduce conflicts caused by

complex structures such as double major selections at the

University of Graz[15]. Subulan argued that timetables

should not only balance scheduling but also aim for skill

development. The model developed for this purpose was

solved using multi-objective mathematical programming

and produced promising results[16]. In another study, the

authors successfully applied linear programming—an

effective method for addressing CSP—to prepare class

Tr. J. Nature Sci. Volume 14, Issue 3, Page 46-56, 2025

48

schedules at the Sirindhorn International Institute of

Technology[17].

Due to the increasing volume and complexity of data,

hybrid solutions combining multiple methods have

become more prevalent. Gunawan A. developed a hybrid

algorithm to solve faculty assignment and course

scheduling problems simultaneously. By combining

integer programming, greedy heuristics, and a modified

simulated annealing method, this approach delivered

effective results even on large datasets. The method was

tested on data from a university in Indonesia[18]. The

authors proposed a two-phase hybrid algorithm

combining exact and heuristic methods for university

course scheduling. In the first phase, courses were

clustered using graph coloring; in the second phase, a tabu

search algorithm assigned these clusters to time slots. The

model also incorporated additional constraints based on

teacher and student preferences to generate realistic

schedules[1].

In another study, the authors utilized a hybrid method

combining graph coloring methodology and heuristic

techniques to solve curriculum-based CSP[19]. Fizzano

and Swanson developed an algorithm that assigns only

one student group per class at a specific time and day,

optimizing the allocation of student groups to classrooms

based on this constraint[20].

In this study, a novel algorithm based on the graph

coloring approach—Malatya Vertex Coloring (MVC)

Algorithm—is proposed to solve the CSP. Unlike many

widely used methods in the literature, this algorithm

prioritizes the most critical nodes by calculating their

Malatya Centrality (MC) values. As a result, course

conflicts are minimized, and more efficient timetables are

produced using fewer time slots. Furthermore, the

algorithm enables the easy integration of additional

constraints such as instructor availability, increasing its

applicability in highly constrained environments. Test

results on real-world datasets demonstrate that the

algorithm provides an effective solution in terms of both

accuracy and scheduling quality.

3. PROPOSED METHOD

3.1. Problem Definition and Approach

The Course Scheduling Problem (CSP) is a classical and

computationally complex scheduling problem commonly

encountered in universities and educational institutions.

The CSP requires the allocation of courses, instructors,

classrooms, and students to appropriate time slots while

satisfying a variety of constraints. Due to its broad

applicability across different academic domains, the CSP

has led to the development of numerous algorithms and

solution strategies in the literature. With the advancement

of computer science and optimization techniques,

increasingly effective and efficient algorithms have been

proposed to solve CSPs. Notably, the CSP shares

considerable similarities with the Examination

Timetabling Problem (ETP). Although some constraints

differ between the two, many of the solution approaches

are similar, which has led several academic studies to treat

them within a unified framework.

In this study, the Malatya Vertex Coloring (MVC)

algorithm is applied to address the CSP. The MVC

algorithm aims to achieve an optimal or near-optimal

coloring of graph vertices, representing courses, in such a

way that the number of required time slots is minimized.

By efficiently assigning colors (i.e., time slots) to

conflicting courses, the algorithm ensures a feasible and

conflict-free timetable, ultimately enhancing the

utilization of limited temporal resources.

3.2. Application of the MVC Algorithm to the Course

Scheduling Problem

In this study, the Malatya Vertex Coloring (MVC)

algorithm was employed to develop a solution for the

university-level Course Scheduling Problem (CSP). MVC

is a graph-theoretic approach that focuses on identifying

the most influential vertex during the coloring process.

For this purpose, a Malatya Centrality (MC) value is

calculated for each vertex, and the vertex with the highest

MC value is selected as the next candidate to be

colored[21].

The MVC algorithm relies on the centrality values of

vertices to determine their relative influence within the

graph. The MC value of a vertex is defined as the sum of

the ratios between the vertex’s degree (i.e., the number of

neighbors) and the degrees of its neighboring vertices[22].

This formulation prioritizes vertices that are highly

connected but surrounded by relatively less connected

neighbors. Consequently, such vertices are selected

earlier in the coloring sequence.

The functioning of the MVC algorithm is illustrated

through an example graph consisting of six vertices, each

representing a course: “Programming,” “Mathematics,”

“Data Structures,” “Physics,” “Database Systems,” and

“Discrete Mathematics.” Edges between vertices indicate

that the corresponding courses are taken by at least one

common student, implying a scheduling conflict if

assigned to the same time slot. In other words, the

existence of an edge between two courses signifies a hard

constraint that they must not be scheduled simultaneously.

The resulting graph structure, as shown in Figure 1,

models the CSP as a graph coloring problem, where the

goal is to assign time slots (colors) to each course (vertex)

such that no adjacent courses share the same slot.

Tr. J. Nature Sci. Volume 14, Issue 3, Page 46-56, 2025

49

Figure 1. Graph model of a sample course schedule

In order to illustrate how the MC value, which lies at the

core of the MVC algorithm, is calculated, the Data

Structures course from the sample course graph has been

selected. The degree of each node represents the number

of edges (i.e., neighbors) it possesses. The degree values

of the relevant nodes in the graph are as follows:

Deg(Discrete Mathematics) = 3

Deg(Database) = 4

Deg(Mathematics) = 3

Deg(Physics) = 3

Deg(Programming) = 4

Deg(Data Structures) = 4

• vᵢ: The node for which the MC value is calculated

• N(vᵢ) : The set of neighbors of node vᵢ

• deg(v): The degree of node v (i.e., the number of edges)

When examining the neighbors of the Data Structures

course, it is observed that it is directly connected to the

courses Programming, Discrete Mathematics,

Mathematics, and Database. Therefore, the MC value of

the Data Structures node is calculated by taking the sum

of the ratios of its degree (i.e., number of edges) to the

degree values of its neighboring nodes.

𝑀𝐶(Data Structures) = ∑(
4

3
+

4

3
+

4

3
+

4

4
)

𝑀𝐶(Data Structures) = 1, 3 + 1, 3 + 1, 3 + 1

𝑀𝐶(Data Structures) = 5

This calculation indicates that the Data Structures node is

highly connected, while some of its neighbors exhibit

relatively lower connectivity. As a result, within the MVC

algorithm, the Data Structures node is prioritized among

those to be colored first.

To implement the MVC algorithm, a duplicate of the

original graph is initially created. This duplicate graph

serves to retain the information of the removed nodes and

facilitates comparison with the colors of adjacent nodes

during the coloring process. In contrast, the original graph

is used for computing MC values and removing nodes as

the algorithm progresses.

The procedure begins with the computation of MC values

for all nodes in the graph. After these values are

calculated, the node with the highest MC value,

representing the most influential node, is identified. The

colors already assigned to its adjacent nodes are then

examined. Starting from the beginning of the color list,

the first color that has not been used by any neighboring

node is selected and assigned to the current node[23]. If

the selected color is already present in a neighboring node,

the next color in the list is considered and the same

verification is performed. Once a color distinct from all

neighboring nodes is found, it is assigned to the selected

node. Following the color assignment, the node is

removed from the original graph.

Subsequently, the MC values of the remaining nodes are

recalculated. The node with the newly highest MC value

is then identified and the same color assignment process

is repeated. This node is also removed from the graph and

the algorithm continues iteratively. This cycle is repeated

until all nodes have been colored. By the end of the

process, all nodes in the duplicate graph will have been

successfully colored with valid assignments.

Algorithm 1. Pseudocode of the MVC Algorithm

MVC Algorithm

Input: Graph g = (V, E)

Output: Colored graph f
f ← Copy(g)

Function CentralityCalculate(g):

 // Calculates MC value for each node and finds the one with the
//highest centrality.

 MaxCentrality ← 0

 For each vertex i in V(g):

 Centrality ← 0

 For each neighbor j in Neighbors(i):

 Centrality ← Centrality + Degree(i) / Degree(j)
 If Centrality > MaxCentrality:

 MaxCentrality ← Centrality

 MaxVertex ← i
 Return MaxVertex

// Return the vertex with the highest MC value.

While VertexCount(g) > 0:

 // Repeat until all vertices are removed (colored).

 vertex ← CentralityCalculate(g)
 For each color c in ColorList: // Iterate over the list of colors.

 If c not in Colors of Neighbors(vertex) in f:

 Assign color c to vertex in f
 Break

 Delete vertex from // Remove the colored vertex from the graph.

Show(f)

The detailed steps and control structure of the MVC

algorithm are presented with the help of the pseudocode

shown in Algorithm 1. The algorithm consists of two

fundamental components: the CentralityCalculate

function and the main body. The CentralityCalculate

function is responsible for calculating the MC values of

all nodes in the graph and for selecting the most influential

node. In the main body, a copy of the original graph is first

created. In each iteration, the most influential node is

determined and assigned a color. During the coloring

process, it is checked whether there is any conflict with

the colors of adjacent nodes. These control operations are

Tr. J. Nature Sci. Volume 14, Issue 3, Page 46-56, 2025

50

carried out using the copy graph. Once the color is

assigned, the node is removed from the original graph.

The original graph plays an active role in the removal of

nodes and the recalculation of MC values, whereas the

copy graph is used solely for tracking color assignments.

The coloring process continues until there is only one

node left in the original graph. Once all nodes have been

colored, the process ends, and the nodes in the copy graph

are left with valid color assignments. To visualize the

effectiveness and procedural operation of the MVC

algorithm, it is recommended to include a flowchart. This

diagram should clearly represent the entire process from

start to finish, including MC computation, color

comparison, color assignment, and node removal from the

graph. Additionally, a small sample graph with calculated

MC values and step-by-step illustrations of the coloring

process will support the reader in better understanding

how the algorithm functions.

The primary constraints encountered in solving course

timetabling problems are that a student cannot attend

multiple classes at the same time and that each course

must be offered only once per week. These constraints

significantly increase the complexity of the timetabling

problem.

In this study, the MVC algorithm was employed to

address these challenges. During the implementation of

the algorithm, each course was modeled as a node, and

edges were established between courses taken by the same

student, thereby forming a graph structure as illustrated in

Figure 2. Through the coloring process applied to this

graph structure, time conflicts between courses were

effectively avoided[24].

Figure 2. Graph-Based Modeling Process of the Course Timetabling Problem

The course timetable datasets used in this study were

obtained from the UNITIME.org platform, specifically

the Computer Science Department Spring: [pu-spr07-cs]

and Fall: [pu-fal07-cs] datasets[25]. In these datasets,

each course is represented as a node, and edges are created

between courses taken by the same student, resulting in a

relational graph-based structure.

Table 1. Courses Taken by Students

Student

No

Lesson 1 Lesson 2 Lesson 3 Lesson 4 Lesson 5

25 Mathematics 1

Physics 1

Wireless Networks

Web Programming

Microprocessors

32 Discrete
Mathematics

Algorithm Analysis Operating Systems

Web Programming

35 Mathematics 1

Algorithm Analysis Discrete Mathematics Microprocessors

40 Wireless Networks

Mathematics 1

Wireless Networks

Physics 1

50 Algorithm Analysis Web Programming

Physics 1

Microprocessors

55 Mathematics 1

Discrete Mathematics Wireless Networks

Operating Systems

20 Algorithm Analysis Wireless Networks

Web Programming

Discrete Mathematics

Physics 1

Tr. J. Nature Sci. Volume 14, Issue 3, Page 46-56, 2025

51

The MVC algorithm was applied to a graph structure

representing student-course relationships, assigning

different colors to potentially conflicting courses. This

approach prevented students from being scheduled for

multiple classes at the same time. Moreover, by

employing a node selection strategy based on MC values,

the algorithm effectively grouped interconnected courses

into a minimal number of sets. As a result, the timetabling

process was optimized by utilizing fewer time slots[21].

Table 2. List Made for the Graph Structure of the Courses Taken by

Student No. 25

The primary constraints to be considered in the Course

Scheduling Problem (CSP) are as follows:

• Courses taken by the same student must not be

scheduled in the same time slot.

• Each course must be offered only once per week.

In accordance with these constraints, the MVC algorithm

was implemented by modeling each course as a node

(vertex), and establishing edges between courses taken by

the same student so that these courses are treated as

adjacent nodes. Table 2 illustrates the transformation of

the course list of Student 25 into a graph structure. All

possible pairwise combinations among this student’s

courses were generated to form the edge list. This process

was repeated for all students to create a comprehensive

list of course relationships, which was then used to

construct a graph model. The MVC algorithm was applied

to this graph. In the graph structure, nodes (courses)

sharing the same color do not have a direct connection

(edge), meaning that these courses can be scheduled in the

same time slot. Conversely, differently colored courses

are directly connected, indicating that they are taken by

the same student and therefore must be scheduled in

separate time slots to avoid conflicts. As such, minimizing

the number of required time slots depends on reducing the

number of colors used. The MVC algorithm provides

efficient results in this context. The student-course data

presented in Table 1 was converted into pairwise

relationships as shown in Table 2 and then imported into

the system. The data was first transformed into a graph

structure, and subsequently, the MVC algorithm was

applied to this graph. In each step of the algorithm, the

MC values of all nodes were calculated as shown in Table

3. Based on these calculations, the iteration process

proceeded as follows:

In the first iteration, the course "Wireless Networks",

having the highest MC value, was assigned the first color

in the list (e.g., green) and then removed from the graph.

In the second iteration, the course with the highest

updated MC value was "Physics 1" (MC = 6.6). Since its

neighbor "Wireless Networks" had been assigned green,

the next available color, purple, was assigned to "Physics

1." In the third iteration, three nodes shared the highest

MC value, so the one that appeared earlier in the system,

"Web Programming", was selected. Its neighbors had

green (Wireless Networks) and purple (Physics 1) colors,

so the next available color, blue, was assigned. In the

fourth iteration, since green had not been used among the

neighbors of "Algorithm Analysis", this course was

assigned green. In the fifth iteration, "Discrete

Mathematics" had neighbors with green, purple, and blue,

thus the next suitable color, turquoise, was assigned. In

the sixth iteration, the neighbors of "Microprocessors"

had green, purple, blue, and turquoise, so the next

available color, light green, was chosen. In the seventh

iteration, "Operating Systems" had neighbors colored

green, blue, and turquoise. Since purple had not been used

among its neighbors, it was assigned purple. Finally, in

the eighth iteration, "Mathematics 1" had neighbors with

green and purple; thus, blue was assigned as the next

available color. With this step, the coloring process was

completed, and all nodes were removed from the graph.

As a result of executing the MVC algorithm, a total of five

distinct colors were used, indicating that at least five time

slots are needed for scheduling. Once these time slots are

created, courses with the same color are scheduled in the

same slot, while courses with different colors are assigned

to different time periods.

Table 3. MC Values in Each Iteration

. Mathematics

1

Discrete

Mathematics

Algorithm

Analysis

Web

Programming

Physics

1

Wireless

Networks

Micro

processors

Operating

Systems

1st Iteration 0.73 7.4 3.13 7.4 6.0 8.9 4.75 2.9

2nd Iteration 0.25 6.4 3.9 6.4 6.6 3.59 1.95

3rd Iteration 0 4.6 4.6 4.6 2.25 2.25

4th Iteration 0 4.0 4.0 1.3 1.3

5th Iteration 0 4.0 0.5 0.5

6th Iteration 0 0 0

7th Iteration 0 0

8th Iteration 0

In solving the CSP, the MVC algorithm prioritizes the

coloring of the region with the highest MC value at each

step. The coloring process of the map following each

execution step is visualized through the stages presented

in Figure 3.

Edges

Node Node

Mathematics 1 Physics 1

Mathematics 1 Wireless Networks

Mathematics 1 Web Programming

Mathematics 1 Microprocessors

Physics 1 Wireless Networks

Physics 1 Web

Physics 1 Microprocessors

Wireless Networks Web Programming

Wireless Networks Microprocessors

Web Programming Microprocessors

Tr. J. Nature Sci. Volume 14, Issue 3, Page 46-56, 2025

52

Figure 3. Color Assignment Process According to the Steps of the MVC Algorithm

This figure illustrates, step by step, which node is selected

and which color is assigned in each iteration of the MVC

algorithm. Starting from the top-left and proceeding to the

bottom-right, the sequential stages clearly demonstrate

the node selection logic based on centrality (MC) values

and the corresponding color assignment process. This

procedure effectively avoids color conflicts and ensures

minimal color usage.

4. EXPERİMENTAL RESULTS

In this study, the “[pu-fal07-cs]” dataset, which belongs

to the Computer Science Department of the University of

Purdue and is publicly available on the Unitime.org

platform, was utilized. Based on this dataset, a graph

structure representing student conflicts between courses

was constructed. The resulting graph consists of 466

nodes (courses) and 3,819 edges (student overlaps

between courses). The MVC algorithm was applied to this

large-scale graph structure, resulting in a coloring with 12

distinct colors. Since nodes with the same color are not

adjacent to each other, these courses can be scheduled in

the same time slot but in different classrooms.

Conversely, courses with different colors are directly

connected, indicating that they must be scheduled in

separate time slots. As shown in Figure 4, the MVC

algorithm enabled the scheduling of all 466 courses using

only 12 time slots for this dataset. Additionally, four other

commonly used graph coloring algorithms from the

literature—DSATUR, Welsh–Powell, RLF, and

Greedy—were also applied to the same dataset. As

presented in Table 4, the MVC, DSATUR, Welsh–

Powell, and Greedy algorithms all produced solutions

using 12 colors, whereas only the RLF algorithm required

13 colors.

Table 4. Comparison of the Number of Colors Used by Different

Algorithms in the Fall Semester Course Schedule of the Computer

Science Department

Algorithm Number of Colors

Used

MVC (Malatya Vertex Coloring) 12

DSATUR (Degree of Saturation Order) 12

Welsh–Powell 12

RLF (Recursive Largest First) 13

Greedy (Rastgele sıra ile) 12

Tr. J. Nature Sci. Volume 14, Issue 3, Page 46-56, 2025

53

These results demonstrate that the MVC algorithm

performs comparably to, or even better than, traditional

algorithms, offering an effective approach to the

timetabling process.

Figure 4. Computer science department fall term coloring

In the second phase of the study, the spring semester

course scheduling dataset, labeled “[pu-spr07-cs]” and

obtained from the Unitime.org platform, was utilized. In

this dataset, each course is modeled as a vertex, and an

edge is established between courses that are taken by the

same student. As a result, a graph structure consisting of

884 vertices and 9,190 edges was constructed, based on

884 courses and 725 students. The MVC algorithm was

applied to this large-scale graph, and a successful coloring

was achieved using 14 distinct colors. Each color

represents a separate time slot. Since there are no direct

connections between vertices with the same color, these

courses can be scheduled within the same time period. As

illustrated in Figure 5, the MVC algorithm enabled a

conflict-free scheduling of all courses in this dataset using

only 14 time slots. The aforementioned dataset was also

tested with other algorithms, and the corresponding

results are presented in Table 5.

Table 5. Comparison of the Number of Colors Used by Different
Algorithms in the Spring Semester Course Schedule of the Computer

Science Department

Algorithm Number of Colors Used

MVC (Malatya Vertex Coloring) 14

DSATUR (Degree of Saturation Order) 14

Welsh–Powell 13

RLF (Recursive Largest First) 16

Greedy (Rastgele sıra ile) 13

These comparisons demonstrate that the MVC algorithm

yields results equivalent to those of traditional algorithms

and can be effectively applied, particularly to large-scale

datasets.

Tr. J. Nature Sci. Volume 14, Issue 3, Page 46-56, 2025

54

Figure 5. Department of computer science spring term coloring

4. CONCLUSION

This study addresses the complex and frequently

encountered Course Scheduling Problem (CSP) in

universities by employing a novel graph-based approach,

the Malatya Vertex Coloring (MVC) algorithm. The

MVC algorithm is designed to minimize conflicts

between courses based on their centrality (MC) values. Its

core principle is to prioritize the coloring of the most

influential (central) nodes, thereby aiming to solve the

scheduling problem using the minimum number of colors

(i.e., time slots). Experimental applications on real-world

datasets demonstrate the effectiveness of the MVC

algorithm. Using two distinct semester datasets (Fall and

Spring) from the Computer Science Department of

Purdue University, the algorithm successfully generated

conflict-free schedules with only 12 and 14 colors,

respectively. These results indicate that even in large-

scale systems involving hundreds of courses and

thousands of students, conflict-free scheduling can be

achieved with as few as 12–14 time slots. Furthermore,

comparative analyses reveal that the MVC algorithm

performs comparably to, or better than, traditional

algorithms such as DSATUR, Welsh–Powell, Greedy,

and RLF. The success of the MVC algorithm lies in its

node selection strategy based on MC values. These values

measure a node’s relative impact within the graph,

allowing for the prioritization of the most critical courses

during the scheduling process. This mechanism not only

optimizes time slot usage but also facilitates the

integration of other scheduling actors, such as instructors,

into the same framework. In fact, instructors’ courses can

be modeled in a similar way to students within the graph

structure, enabling conflict-free scheduling within a

unified algorithmic framework.

In addition, the operational steps of the algorithm were

illustrated in detail through examples and visualizations.

The clear definition of stages such as MC value

calculation, usage of a duplicate graph, and color control

mechanisms contributes to both the theoretical strength

and practical applicability of the algorithm.

The advantages offered by the MVC algorithm can be

summarized as follows:

➢ Ability to function under complex constraints,

Tr. J. Nature Sci. Volume 14, Issue 3, Page 46-56, 2025

55

➢ Conflict-free scheduling with a minimal number

of time slots,

➢ Flexibility to model both student and instructor

data within a single structure,

➢ Applicability to large datasets due to its

polynomial-time execution.

In conclusion, the MVC algorithm offers a robust

alternative to conventional and heuristic methods for

solving CSPs. Its simplicity, predictability, and efficiency

in practice suggest that this approach has strong potential

for widespread application in educational institutions’

scheduling systems.

Future research may focus on extending the algorithm to

incorporate additional constraints (e.g., classroom

capacities, course priorities, student preferences),

performing multi-objective optimization with data from

various departments, and testing the algorithm in real-

time scheduling environments. Moreover, combining the

algorithm with parallel computing techniques could

significantly improve its performance on larger-scale

problems.

REFERENCES

[1] Xiang, K., Hu, X., Yu, M., & Wang, X. (2024).

Exact and heuristic methods for a university course

scheduling problem. Expert Systems with

Applications, 248.

https://doi.org/10.1016/j.eswa.2024.123383.

[2] Zhaohui, F., 2000, A. L.-T. with A. Intelligence. I.,

& 2000, undefined. (n.d.). Heuristics for the exam

scheduling problem. Ieeexplore.Ieee.OrgF Zhaohui,

A LimProceedings 12th IEEE Internationals

Conference on Tools with,

2000•ieeexplore.Ieee.Org. Retrieved October 21,

2024, from

https://ieeexplore.ieee.org/abstract/document/88986

4/

[3] Pillay, N., & Banzhaf, W. (2007). A genetic

programming approach to the generation of hyper-

heuristics for the uncapacitated examination

timetabling problem. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in

Bioinformatics), 4874 LNAI, 223–234.

https://doi.org/10.1007/978-3-540-77002-2_19.

[4] Rina, I., Sulistiowati, D., & Raudhatuloktavi, D.

(2022). Graph Coloring Applications in Scheduling

Courses using Welch-Powell Algorithm - A Case

Study. Proceeding - 2022 International Symposium

on Information Technology and Digital Innovation:

Technology Innovation During Pandemic, ISITDI

2022, 131–135.

https://doi.org/10.1109/ISITDI55734.2022.994451

1

[5] Egwuche, O. S. (2020, March 1). Examination

Timetabling with Graph Coloring for Emerging

Institutions. 2020 International Conference in

Mathematics, Computer Engineering and Computer

Science, ICMCECS 2020.

https://doi.org/10.1109/ICMCECS47690.2020.246

988

[6] Bania, R. K., & Duarah, P. (2018). Exam Time Table

Scheduling using Graph Coloring Approach.

International Journal of Computer Sciences and

Engineering, 6(5), 84–93.

https://doi.org/10.26438/ijcse/v6i5.8493

[7] Mursyidah, H. (2019). Graph edges coloring to

determine lecture classroom of mathematics

education department at muhammadiyah university

of surabaya. Journal of Physics: Conference Series,

1188(1). https://doi.org/10.1088/1742-

6596/1188/1/012096

[8] Lampung, U. B., Kesuma, R., #2, W., & Yusman,

M. (n.d.). The Use of Edge Coloring Concept for

Solving The Time Schedule Problem at Senior High

School (Case Study at SMAN 9 Bandarlampung).

[9] 2019 1st AL-Noor International Conference for

Science and Technology (NICST). (2019). IEEE.

[10] Han, X., & Wang, D. (2025). Gradual Optimization

of University Course Scheduling Problem Using

Genetic Algorithm and Dynamic Programming.

Algorithms, 18(3).

https://doi.org/10.3390/a18030158

[11] Budiarto, A. S., Satvika Iswari, N. M., & Dharma,

E. M. (2024). Application of Genetic Algorithm for

School Timetable Scheduling. 2024 International

Conference on Informatics Electrical and

Electronics, ICIEE 2024 - Proceedings.

https://doi.org/10.1109/ICIEE63403.2024.1092044

6

[12] Rahardjo, E. Tjipto., & Zulkifli, F. Yuli. (2013).

2013 International Conference on QiR (Quality in

Research). Faculty of Engineering, Universitas

Indonesia.

[13] Burke, E. K., McCollum, B., Meisels, A., Petrovic,

S., & Qu, R. (2007). A graph-based hyper-heuristic

for educational timetabling problems. European

Journal of Operational Research, 176(1), 177–192.

https://doi.org/10.1016/j.ejor.2005.08.012

[14] Rappos, E., Thiémard, E., Robert, S., & Hêche, J. F.

(2022). A mixed-integer programming approach for

solving university course timetabling problems.

Journal of Scheduling, 25(4), 391–404.

https://doi.org/10.1007/s10951-021-00715-5

[15] Steiner, E., Pferschy, U., & Schaerf, A. (2024).

Curriculum-based university course timetabling

considering individual course of studies. Central

European Journal of Operations Research.

https://doi.org/10.1007/s10100-024-00923-2

[16] Subulan, K. (2024). A multi-objective mathematical

programming model for a novel capability-based

university course timetabling problem. Journal of

the Faculty of Engineering and Architecture of Gazi

University, 40(1), 365–379.

https://doi.org/10.17341/gazimmfd.1391236

[17] Nakasuwan, J., Asia, P. S.-S. & T., & 1999,

undefined. (n.d.). Class scheduling optimization.

Thaiscience.Info. Retrieved January 28, 2025, from

https://www.thaiscience.info/Journals/Article/TSTJ

/10480612.pdf

[18] Gunawan, A., Leng, K., Gunawan, A. ;, Ng, M. ;, &

Poh, K. L. (2007). Solving the teacher assignment-

https://doi.org/10.1109/ISITDI55734.2022.9944511
https://doi.org/10.1109/ISITDI55734.2022.9944511
https://doi.org/10.1109/ICMCECS47690.2020.246988
https://doi.org/10.1109/ICMCECS47690.2020.246988
https://doi.org/10.26438/ijcse/v6i5.8493
https://doi.org/10.1088/1742-6596/1188/1/012096
https://doi.org/10.1088/1742-6596/1188/1/012096
https://doi.org/10.3390/a18030158
https://doi.org/10.1109/ICIEE63403.2024.10920446
https://doi.org/10.1109/ICIEE63403.2024.10920446
https://doi.org/10.1016/j.ejor.2005.08.012
https://doi.org/10.1007/s10951-021-00715-5
https://doi.org/10.1007/s10100-024-00923-2
https://doi.org/10.17341/gazimmfd.1391236
https://www.thaiscience.info/Journals/Article/TSTJ/10480612.pdf
https://www.thaiscience.info/Journals/Article/TSTJ/10480612.pdf

Tr. J. Nature Sci. Volume 14, Issue 3, Page 46-56, 2025

56

course scheduling problem by a Solving the teacher

assignment-course scheduling problem by a hybrid

Algorithm hybrid Algorithm Kien Ming NG

Citation Citation Solving the teacher assignment-

course scheduling problem by a hybrid Algorithm.

In International Journal of Computer, Information,

and Systems Science, and Engineering (Vol. 1, Issue

2). https://ink.library.smu.edu.sg/sis_research

[19] Computers & Informatics (ISCI), 2013 IEEE

Symposium on. (2013). Institute of Electrical and

Electronics Engineers.

[20] Fizzano, P., & Swanson, S. (2000). Scheduling

Classes on a College Campus. In Computational

Optimization and Applications (Vol. 16).

[21] Özavci, A., & Yakut1, S. (n.d.). Based on Malatya

Centrality Algorithm Development of Suggestion

System in Social Platforms and Commercial

Applications.

[22] Karci, A., Yakut, S., & Öztemiz, F. (2022). A New

Approach Based on Centrality Value in Solving the

Minimum Vertex Cover Problem: Malatya

Centrality Algorithm. Computer Science.

https://doi.org/10.53070/bbd.1195501

[23] Yakut, S., Öztemiz, F., & Karci, A. (2023). A new

robust approach to solve minimum vertex cover

problem: Malatya vertex-cover algorithm. Journal of

Supercomputing, 79(17), 19746–19769.

https://doi.org/10.1007/s11227-023-05397-8

[24] YAKUT, S., & BAKAN, C. T. (2023). Development

of Text Summarization Method based on Graph

Theory and Malatya Centrality Algorithm.

Computer Science.

https://doi.org/10.53070/bbd.1350971

[25] UniTime | University Course Timetabling

Benchmark Benchmark Datasets. (n.d.). Retrieved

January 28, 2025, from

https://www.unitime.org/uct_datasets.php

https://ink.library.smu.edu.sg/sis_research
https://doi.org/10.53070/bbd.1195501
https://doi.org/10.1007/s11227-023-05397-8
https://doi.org/10.53070/bbd.1350971

