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 ABSTRACT  

 

This study investigates the use of extreme ranked set sampling (ERSS) for parameter 

estimation in the Inverted Kumaraswamy (IK) distribution. The Kumaraswamy distribution has 

wide applications in fields such as reliability testing, environmental studies, financial analysis, 

and survival analysis. The paper emphasizes the efficiency advantages of ERSS, particularly in 

capturing extreme values, which are crucial for distributions with heavy tails or skewed data. 

By incorporating ERSS, this research demonstrates that more accurate and efficient parameter 

estimates can be obtained compared to traditional sampling methods like simple random 

sampling (SRS). A simulation study is also performed to demonstrate the performance of the 

proposed estimators. Finally, a real data set is presented for illustrative purposes. The findings 

suggest that ERSS outperforms SRS in terms of precision, particularly in contexts where 

extreme values play a significant role. This work contributes to the advancement of sampling 

techniques for extreme value contexts, with potential applications in various fields, including 

environmental research, finance, and reliability analysis. 

 

 
Keywords: Inverted Kumaraswamy distribution, Ranked set sampling, Extreme ranked set 

sampling, Maximum likelihood estimator.  

 

1 INTRODUCTION 

Statistical sampling methods are fundamental tools in data collection and analysis. One 

of the most widely used techniques is SRS, where every member of the population has an equal 

chance of being selected. Although SRS is straightforward and easy to implement, it can be 

inefficient, particularly when dealing with populations that are difficult to measure or when the 
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data of interest is costly or time-consuming to collect. Additionally, SRS may result in low 

precision when sample sizes are small, especially in situations where extreme values are crucial 

for analysis. To address these limitations, alternative sampling methods have been developed, 

one of the most notable being ranked set sampling (RSS). RSS aims to improve the efficiency 

of the sampling process by using ranked sets of observations rather than individual random 

selections. In this method, a small set of units is randomly selected, and then the units are ranked 

based on some auxiliary variable. The rank order is used to select the final sample, thereby 

reducing variance and improving precision compared to SRS. 

In recent years, RSS has gained significant attention, and several studies have 

demonstrated its advantages in various applications. For instance, conducted a reliability test 

using SRS, RSS, and ERSS methods, showing the efficiency of RSS and ERSS in terms of 

precision [1]. Similarly, explored the application of RSS in estimating population means for 

skewed distributions, highlighting its superiority over traditional sampling techniques [2]. 

Moreover, extended the concept of RSS by incorporating the Kumaraswamy distribution, 

improving sampling efficiency for distributions with heavy tails [3]. Additionally, applied RSS 

in environmental studies, showing its ability to improve the accuracy of parameter estimates 

for extreme value distributions [4]. Another significant contribution is by [5], who compared 

the performance of RSS and traditional sampling methods in agricultural research, 

demonstrating the robustness of RSS in handling highly variable data. 

The ERSS is an extension of the traditional RSS method, specifically designed to 

improve the efficiency of sampling when extreme values are of particular interest. In ERSS, a 

set of units is randomly selected, and these units are ranked based on an auxiliary variable. 

Unlike RSS, where the entire set of ranks is considered, ERSS focuses on selecting the extreme 

(highest or lowest) values from each set to form the final sample. This approach is particularly 

useful when the goal is to estimate parameters that are sensitive to extreme values, such as in 

environmental or financial data. By emphasizing extreme observations, ERSS often leads to 

more precise estimates in cases where traditional sampling methods might be less effective. 

In this study, our primary goal is to investigate IK distribution using ERSS. While 

previous research has applied traditional RSS, SRS, and modified ranked set sampling to 

estimate parameters for various distributions, the use of ERSS with the IK distribution remains 

unexplored. The motivation behind this study stems from the potential advantages of ERSS in 

capturing extreme values, which are crucial when modeling distributions with heavy tails or 

skewed data, such as the IK distribution. By utilizing ERSS, we aim to provide more efficient 
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and accurate parameter estimates compared to conventional sampling methods. This research 

fills a gap in the literature by exploring ERSS as a novel approach for parameter estimation in 

extreme value contexts. Our findings could have significant implications for fields such as 

environmental studies, finance, and reliability analysis, where accurate estimation of extreme 

values is critical. Ultimately, this study contributes to the advancement of sampling techniques 

and their application to complex distributions that have not been adequately addressed in prior 

research. 

2 PRELIMINARIES 

In order to further enhance sampling efficiency, the IK distribution is incorporated into 

the present study. This distribution is particularly well-suited for modeling data with specific 

characteristics, such as heavy tails and skewness, which are commonly encountered in extreme 

value analysis. For the IK distribution with shape parameters α and β the probability density 

function (pdf) and the cumulative distribution function (cdf) are given by Eq. (1) and (2), 

respectively; 

𝑓(𝑥; ;  𝛽) =  𝛽(1 + 𝑥)−(𝛼+1)(1 − (1 +  x)−𝛼)𝛽−1,      𝑥, , 𝛽 > 0 (1) 

𝐹(𝑥; ;  𝛽) = (1 − (1 +  x)−𝛼)𝛽 ,      𝑥,, 𝛽 > 0 (2) 

The Kumaraswamy distribution has been widely used in various fields, including 

reliability and life testing, where it effectively models the time until an event occurs or system 

reliability. For example, demonstrated its effectiveness in estimating parameters for reliability 

testing, particularly in engineering and quality control applications [6]. In environmental 

studies, the IK distribution has been applied to model extreme water quality parameters, with 

showing how this distribution improves the accuracy of environmental predictions by focusing 

on extreme values [7]. Similarly, in hydrological studies, utilized the Kumaraswamy 

distribution for modeling rainfall data and water levels, highlighting its applicability in water 

resource management [8]. The IK distribution has also been valuable in financial data analysis, 

with using it to analyze stock prices and assess risk, particularly in extreme market conditions 

[9]. In survival analysis, Kumaraswamy distribution has been employed to model patient 

recovery times, as demonstrated by [10], offering insights into clinical outcomes. Finally, 

applied the IK distribution to model disease spread rates, emphasizing its usefulness in 

healthcare data and policy analysis, especially in managing extreme disease outbreaks [11]. 
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ERSS and other RSS designs have become increasingly popular in parameter estimation 

due to their ability to improve the precision of sample estimates, especially when dealing with 

populations where extreme values play a significant role. These methods are particularly 

valuable in fields such as environmental studies, reliability testing, and financial analysis, where 

precise estimation of parameters is crucial. Over the years, numerous studies have highlighted 

the advantages of RSS and ERSS in improving estimation accuracy compared to traditional 

sampling methods. The following works illustrate the growing body of research in this area, 

showcasing the evolution of RSS and ERSS applications from earlier to more recent studies. 

For instance, compared the efficiency of RSS and SRS in parameter estimation, showing that 

RSS outperformed SRS in terms of precision, particularly in cases involving skewed 

distributions [12]. Extended the application of RSS to extreme value theory, demonstrating its 

effectiveness in modeling rare events [13]. Applied Kumaraswamy distribution within an RSS 

framework for reliability testing, further proving its utility in real-world engineering 

applications [14]. Followed this up by incorporating ERSS into their work on population mean 

estimation, emphasizing its improved efficiency in capturing extreme observations [15]. 

Applied ERSS in survival analysis for clinical data, underscoring its advantage in estimating 

the survival rates of patients [16]. Finally, introduces ERSS as a practical alternative to 

traditional RSS for estimating the population mean, demonstrating its unbiasedness in 

symmetric populations and its efficiency over SRS with examples [17]. 

By structuring our study around these foundations, we aim to provide a comprehensive 

evaluation of ERSS in estimating the parameters of the IK distribution, filling an existing gap 

in the literature and contributing to advancements in sampling methodologies. 

3 MATERIAL AND METHOD 

In this section, we will examine the maximum likelihood estimates (MLE) of the 

unknown parameters of the IK distribution under SRS and ERSS. 

3.1 MLE Based on SRS 

Inverted kumaraswamy distribution with parameters α and β. The likelihood function of 

α and β is given by 

𝐿(𝛼, 𝛽;  𝑥) = ∏ 𝛼

𝑛

𝑖=1

𝛽(1 + 𝑥𝑖)−(𝛼+1)(1 − (1 +  𝑥𝑖)−𝛼)𝛽−1 (3) 
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𝐿(𝛼, 𝛽;  𝑥) = 𝑛𝛽𝑛 ∏(1 + 𝑥𝑖)
−(𝛼+1)

𝑛

𝑖=1

 ∏(1 − (1 +  𝑥𝑖)
−𝛼)𝛽−1 

𝑛

𝑖=1

 (4) 

and the log-likelihood function is 

𝑙𝑛𝐿(𝛼, 𝛽) = 𝑛𝑙𝑛(𝛼) + 𝑛𝑙𝑛(𝛽) − (𝛼 + 1) ∑ 𝑙𝑛

𝑛

𝑖=1

(1 + 𝑥𝑖) 

+(𝛽 − 1) ∑ 𝑙𝑛(1 − (1 + 𝑥𝑖)
−𝛼)𝑛

𝑖=1    

(5) 

The MLE of parameters are obtained by simultaneously solving the following equations: 

𝜕𝑙

𝜕𝛼
=

𝑛

𝛼
− ∑ 𝑙𝑛

𝑛

𝑖=1

(1 + 𝑥𝑖) + (𝛽 − 1) ∑
𝐼𝑛(1 + 𝑥𝑖)(1 + 𝑥𝑖)−𝛼

1 − (1 + 𝑥𝑖)−𝛼

𝑛

𝑖=1

= 0 (6) 

𝜕𝑙

𝜕𝛽
=

𝑛

𝛽
+ ∑ 𝑙𝑛(1 − (1 +  𝑥𝑖)−𝛼)

𝑛

𝑖=1

= 0 (7) 

3.2 MLE Based on ERSS 

Consider the sample size m is odd. The PDF of 𝑋𝑖𝑗(1), 𝑋𝑖𝑗(𝑚) and 𝑋
𝑖𝑗(

𝑚+1

2
)
 is given by. 

𝑔 (𝑥𝑖𝑗(1), 𝑥𝑖𝑗(𝑚), 𝑥
𝑖𝑗(

𝑚+1

2
)
 ;  𝛼, 𝛽) = 𝑚𝑓(𝑥𝑖𝑗(1);  𝛼, 𝛽) (1 − 𝐹(𝑥𝑖𝑗(1);  𝛼, 𝛽))

𝑚−1

  

× 𝑚𝑓(𝑥𝑖𝑗(𝑚);  𝛼, 𝛽) (𝐹(𝑥𝑖𝑗(𝑚);  𝛼, 𝛽))
𝑚−1 𝑚!

(
𝑚−1

2
)!2

𝑓 (𝑥
𝑖𝑗(

𝑚+1

2
)
;  𝛼, 𝛽)  

× (𝐹 (𝑥
𝑖𝑗(

𝑚+1

2
)
;  𝛼, 𝛽))

𝑚−1

2

(1 − 𝐹 (𝑥
𝑖𝑗(

𝑚+1

2
)
;  𝛼, 𝛽))

𝑚−1

2

,  

(8) 

𝑔 (𝑥𝑖𝑗(1), 𝑥𝑖𝑗(𝑚), 𝑥
𝑖𝑗(

𝑚+1

2
)
 ;  𝛼, 𝛽) = 𝑚  ((𝛼 𝛽 (1 + 𝑥𝑖𝑗(1) )

−(𝛼+1)
)  

× (1 − (1 + 𝑥𝑖𝑗(1))
−𝛼

)
(𝛽−1)

(1−(1 − (1 +  𝑥𝑖𝑗(1))
−𝛼

)
𝛽

)
𝑚−1

  

× 𝑚 ((𝛼 𝛽 (1 + 𝑥𝑖𝑗(𝑚) )
−(𝛼+1)

(1 − (1 +  𝑥𝑖𝑗(𝑚))
−𝛼

)
𝛽−1

)  

× ((1 − (1 +  𝑥𝑖𝑗(𝑚))
−𝛼

)
𝛽

)
𝑚−1

𝑚!

(
𝑚−1

2
)!2

(𝛼 𝛽 (1 + 𝑥
𝑖𝑗(

𝑚+1

2
)
)

−(𝛼+1)

  

× (1 − (1 +  𝑥
𝑖𝑗(

𝑚+1
2

)
)

−𝛼

)
(𝛽−1)

((1 − (1 +  𝑥
𝑖𝑗(

𝑚+1
2

)
)

−𝛼

)
𝛽

)

𝑚−1
2

 

× (1− (1 − (1 + 𝑥
𝑖𝑗(

𝑚+1
2

)
)

−𝛼

)
𝛽

)

𝑚−1
2
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The likelihood function of 𝐸𝑅𝑆𝑆𝑜𝑑𝑑 is given by 

𝐿(𝛼, 𝛽;  𝑥) = ∏ ∏ 𝑔(𝑥𝑖𝑗(1) ;  𝛼, 𝛽) ×
(𝑚−1)/2
𝑖=1

𝑟
𝑗=1 ∏ ∏ 𝑔(𝑥𝑖𝑗(𝑚) ;  𝛼, 𝛽)𝑚−1

𝑖=(𝑚+1)/2
𝑟
𝑗=1   

× ∏ ∏ 𝑔 (𝑥
𝑖𝑗(

𝑚+1

2
)
 ;  𝛼, 𝛽)𝑚

𝑖=𝑚
𝑟
𝑗=1   

(9) 

𝐿(𝛼, 𝛽;  𝑥) =× ∏ ∏ (1 + 𝑥𝑖𝑗(1) )
−(𝛼+1)

(1 − (1 +  𝑥𝑖𝑗(1))
−𝛼

)
𝛽−1

𝑟
𝑗=1

(𝑚−1)/2
𝑖=1   

(1−(1 − (1 +  𝑥𝑖𝑗(1) )
−𝛼

)
𝛽

)
𝑚−1

× ∏ ∏(1 + 𝑥𝑖𝑗(m) )
−(𝛼+1)

 

𝑟

𝑗=1

𝑚−1

𝑖=(𝑚+1)/2

 

(1 − (1 +  𝑥𝑖𝑗(m))
−𝛼

)
𝛽−1

((1 − (1 +  𝑥𝑖𝑗(m))
−𝛼

)
𝛽

)
𝑚−1

 

× ∏ ∏  𝑟
𝑗=1

𝑚
𝑖=𝑚 ( (1 + 𝑥

𝑖𝑗(
𝑚+1

2
)
 )

−(𝛼+1)

(1 − (1 +  𝑥
𝑖𝑗(

𝑚+1

2
)
)

−𝛼

)
𝛽−1

)  

× ((1 − (1 +  𝑥
𝑖𝑗(

𝑚+1

2
)
)

−𝛼

)
𝛽

)

𝑚−1

2

(1− (1 − (1 +  𝑥
𝑖𝑗(

𝑚+1

2
)
)

−𝛼

)
𝛽

)

𝑚−1

2

  

× (𝐾1)𝑚𝑟𝛼𝑚𝑟𝛽𝑚𝑟𝑚(𝑚−1)𝑟 

 

where 𝐾1 =
𝑚!

(
𝑚−1

2
)!2

. Then, the log-likelihood function is 

𝑙(𝛼, ) = 𝑚𝑟𝑙𝑛(𝐾1) + (𝑚 − 1)𝑟𝑙𝑛(𝑚) + 𝑚𝑟𝑙𝑛(𝛼) + 𝑚𝑟𝑙𝑛()  

−( + 1) ∑ ∑ 𝐼𝑛(1 + 𝑥𝑖𝑗(1))
𝑚−1

2

𝑖=1
𝑟
𝑗=1 + ( − 1) ∑ ∑ 𝐼𝑛(1 − (1 + 𝑥𝑖𝑗(1))

−𝛼
)

 

𝑚−1

2

𝑖=1
𝑟
𝑗=1   

+(𝑚 − 1) ∑ ∑ In (1−(1 − (1 +  𝑥𝑖𝑗(1) )
−𝛼

)
𝛽

)
𝑚−1

2

𝑖=1
𝑟
𝑗=1   

−( + 1) ∑ ∑ 𝐼𝑛(1 + 𝑥𝑖𝑗(𝑚))

𝑚−1

𝑖=
𝑚+1

2

𝑟

𝑗=1

+  ( − 1) ∑ ∑ 𝐼𝑛(1 − (1 + 𝑥𝑖𝑗(𝑚))
−𝛼

)
 

𝑚−1

𝑖=
𝑚+1

2

𝑟

𝑗=1

 

+(𝑚 − 1) ∑ ∑ 𝐼𝑛 ((1 − (1 +  𝑥𝑖𝑗(𝑚))
−𝛼

)
𝛽

)
 

𝑚−1

𝑖=
𝑚+1

2

𝑟
𝑗=1   

−( + 1) ∑ 𝐼𝑛(1 + 𝑥
𝑖𝑗(

𝑚+1

2
)

𝑟
𝑗=1  +  ( − 1) ∑ 𝑙𝑛 (1 − (1 +  𝑥

𝑖𝑗(
𝑚+1

2
)
)

−𝛼

)𝑟
𝑗=1   

+  (
𝑚−1

2
) ∑ 𝑙𝑛 ((1 − (1 +  𝑥

𝑖𝑗(
𝑚+1

2
)
)

−𝛼

)
𝛽

)𝑟
𝑗=1   

+( 
𝑚−1

2
) ∑ 𝐼𝑛 (1− (1 − (1 +  𝑥

𝑖𝑗(
𝑚+1

2
)
)

−𝛼

)
𝛽

)𝑟
𝑗=1   

(10) 
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The likelihood equations of α and β are given by 

𝜕𝑙

𝜕𝛼
=

𝑚𝑟

𝛼
− ∑ ∑ 𝐼𝑛(1 + 𝑥𝑖𝑗(1))

𝑚−1

2

𝑖=1
𝑟
𝑗=1 + ( − 1) ∑ ∑

𝐼𝑛(1+𝑥𝑖𝑗(1))(1+𝑥𝑖𝑗(1))
−𝛼

1−(1+𝑥𝑖𝑗(1))
−𝛼

𝑚−1

2

𝑖=1
𝑟
𝑗=1   

− (𝑚 − 1) ∑ ∑ 
 (1−(1+𝑥𝑖𝑗(1))

−
)
−1

(1+𝑥𝑖𝑗(1))
−𝛼

𝑙𝑛(1+𝑥𝑖𝑗(1))

1−(1−(1+𝑥𝑖𝑗(1))
−𝛼

)

𝑚−1

2

𝑖=1
𝑟
𝑗=1   

− ∑ ∑ 𝐼𝑛(1 + 𝑥𝑖𝑗(𝑚))𝑚−1

𝑖=
𝑚+1

2

𝑟
𝑗=1 + ( − 1) ∑ ∑

𝐼𝑛(1+𝑥𝑖𝑗(𝑚))(1+𝑥𝑖𝑗(𝑚))
−𝛼

1−(1+𝑥𝑖𝑗(𝑚))
−𝛼

𝑚−1

𝑖=
𝑚+1

2

𝑟
𝑗=1   

+(𝑚 − 1) ∑ ∑ 
𝐼𝑛(1+𝑥𝑖𝑗(𝑚))(1+𝑥𝑖𝑗(𝑚))

−𝛼−1

1−(1+𝑥𝑖𝑗(𝑚))
−𝛼

𝑚−1

𝑖=
𝑚+1

2

𝑟
𝑗=1 − ∑ 𝐼𝑛(1 + 𝑥

𝑖𝑗(
𝑚+1

2
)

𝑟
𝑗=1 )  

+( − 1) ∑
𝐼𝑛(1+𝑥

𝑖𝑗(
𝑚+1

2
)

)(1+𝑥
𝑖𝑗(

𝑚+1
2

)
)

−𝛼

1−(1+𝑥
𝑖𝑗(

𝑚+1
2

)
)

−𝛼
𝑗
𝑖=1 + 

(
𝑚−1

2
) ∑ 

𝐼𝑛(1+𝑥
𝑖𝑗(

𝑚+1
2

)
)(1+𝑥

𝑖𝑗(
𝑚+1

2
)

)

−𝛼−1

1−(1+𝑥
𝑖𝑗(

𝑚+1
2

)
)

−𝛼
𝑗
𝑖=1 + 

( 
𝑚−1

2
) ∑ 

 (1−(1+𝑥
𝑖𝑗(

𝑚+1
2

)
)

−

)

−1

(1+𝑥
𝑖𝑗(

𝑚+1
2

)
)

−𝛼

𝑙𝑛(1+𝑥
𝑖𝑗(

𝑚+1
2

)
)

1−(1−(1+𝑥
𝑖𝑗(

𝑚+1
2

)
)

−𝛼

)

𝑗
𝑖=1   

𝜕𝑙

𝜕
=

𝑚𝑟


+  ∑ ∑ 𝑙𝑛(1 − (1 +  𝑥𝑖𝑗(1))

−𝛼
)

𝑚−1

2

𝑖=1
𝑟
𝑗=1    

− (𝑚 − 1) ∑ ∑
 (1−(1+𝑥𝑖𝑗(1))

−
)


𝑙𝑛(1−(1+𝑥𝑖𝑗(1))−)

1−(1−(1+𝑥𝑖𝑗(1))
−𝛼

)

𝑚−1

2

𝑖=1
𝑟
𝑗=1   

+∑ ∑ 𝑙𝑛(1 − (1 +  𝑥𝑖𝑗(𝑚))
−𝛼

)𝑚−1

𝑖=
𝑚+1

2

𝑟
𝑗=1    

−(𝑚 − 1) ∑ ∑ 𝐼𝑛(1 − (1 +  𝑥𝑖𝑗(𝑚))
−𝛼

)𝑚−1

𝑖=
𝑚+1

2

+𝑟
𝑗=1  ∑ 𝐼𝑛(1 − (1 +  𝑥

𝑖𝑗(
𝑚+1

2
)
)

−𝛼
𝑟
𝑗=1   

+ (
𝑚−1

2
) ∑ 𝐼𝑛 (1 − (1 +  𝑥

𝑖𝑗(
𝑚+1

2
)
)

−𝛼

) +𝑟
𝑗=1   

(
𝑚−1

2
) ∑

 (1−(1+𝑥
𝑖𝑗(

𝑚+1
2

)
)

−

)



𝐼𝑛(1−(1+ 𝑥
𝑖𝑗(

𝑚+1
2

)
)

−𝛼

)

1−(1−(1+𝑥
𝑖𝑗(

𝑚+1
2

)
)

−𝛼

)

𝑟
𝑗=1   

(11) 
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𝜕𝑙

𝜕
=

𝑚𝑟


+  ∑ ∑ 𝑙𝑛(1 − (1 +  𝑥𝑖𝑗(1))

−𝛼
)

𝑚−1

2

𝑖=1
𝑟
𝑗=1   

− (𝑚 − 1) ∑ ∑
 (1−(1+𝑥𝑖𝑗(1))

−
)


𝑙𝑛(1−(1+𝑥𝑖𝑗(1))−)

1−(1−(1+𝑥𝑖𝑗(1))
−𝛼

)

𝑚−1

2

𝑖=1
𝑟
𝑗=1   

+ ∑ ∑ 𝑙𝑛(1 − (1 +  𝑥𝑖𝑗(𝑚))
−𝛼

) −

𝑚−1

𝑖=
𝑚+1

2

𝑟

𝑗=1

(𝑚 − 1) ∑ ∑ 𝐼𝑛(1 − (1 +  𝑥𝑖𝑗(𝑚))
−𝛼

)

𝑚−1

𝑖=
𝑚+1

2

𝑟

𝑗=1

 

∑ 𝐼𝑛(1 − (1 +  𝑥
𝑖𝑗(

𝑚+1

2
)
)

−𝛼
𝑟
𝑗=1 ) + (

𝑚−1

2
) ∑ 𝐼𝑛 (1 − (1 + 𝑥

𝑖𝑗(
𝑚+1

2
)
)

−𝛼

)𝑟
𝑗=1   + 

(
𝑚−1

2
) ∑

 (1−(1+𝑥
𝑖𝑗(

𝑚+1
2

)
)

−

)



𝐼𝑛(1−(1+ 𝑥
𝑖𝑗(

𝑚+1
2

)
)

−𝛼

)

1−(1−(1+𝑥
𝑖𝑗(

𝑚+1
2

)
)

−𝛼

)

𝑟
𝑗=1   

(12) 

Consider the sample size m is even. The PDF of 𝑋𝑖𝑗(1) and 𝑋𝑖𝑗(𝑚) is given by 

𝑔(𝑥𝑖𝑗(1), 𝑥𝑖𝑗(𝑚);  𝛼, 𝛽) = 𝑚𝑓(𝑥𝑖𝑗(1);  𝛼, 𝛽) (1 − 𝐹(𝑥𝑖𝑗(1);  𝛼, 𝛽))
𝑚−1

  

× 𝑚𝑓(𝑥𝑖𝑗(𝑚);  𝛼, 𝛽) (𝐹(𝑥𝑖𝑗(𝑚);  𝛼, 𝛽))
𝑚−1

 

𝑔(𝑥𝑖𝑗(1), 𝑥𝑖𝑗(𝑚);  𝛼, 𝛽) =  𝑚 ((𝛼 𝛽 (1 + 𝑥𝑖𝑗(1) )
−(𝛼+1)

(1 − (1 +  𝑥𝑖𝑗(1))
−𝛼

)
𝛽−1)

)  

(1−(1 − (1 +  𝑥𝑖𝑗(1))
−𝛼

)
𝛽

)
𝑚−1

×  𝑚 × 

((𝛼 𝛽 (1 + 𝑥𝑖𝑗(𝑚) )
−(𝛼+1)

(1 − (1 + 𝑥𝑖𝑗(𝑚))
−𝛼

)
𝛽−1

) ((1 − (1 +  𝑥𝑖𝑗(𝑚))
−𝛼

)
𝛽

)
𝑚−1

 

(13) 

𝐿(𝛼, 𝛽;  𝑥) = ∏ ∏ 𝑔(𝑥𝑖𝑗(1) ;  𝛼, 𝛽)
𝑚/2
𝑖=1

𝑟
𝑗=1 ∏ ∏ 𝑔(𝑥𝑖𝑗(𝑚) ;  𝛼, 𝛽)𝑚

𝑖=(𝑚+2)/2  𝑟
𝑗=1   

𝐿(𝛼, 𝛽;  𝑥) = 𝑚𝑚𝑟𝛼𝑚𝑟𝛽𝑚𝑟 ∏ ∏  (1 + 𝑥𝑖𝑗(1) )
−(𝛼+1)

(1 − (1 +  𝑥𝑖𝑗(1))
−𝛼

)
(𝛽−1)𝑚

2

𝑖=1
𝑟
𝑗=1  

(1−(1 − (1 +  𝑥𝑖𝑗(1))
−𝛼

)
𝛽

)
𝑚−1

  

∏ ∏ ( (1 + 𝑥𝑖𝑗(𝑚) )
−(𝛼+1)

(1 − (1 +  𝑥𝑖𝑗(𝑚))
−𝛼

)
(𝛽−1)

)𝑚

𝑖=
(𝑚+2)

2

 𝑟
𝑗=1   

((1 − (1 +  𝑥𝑖𝑗(𝑚))
−𝛼

)
𝛽

)
𝑚−1

  

(14) 
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Then, the log-likelihood function is 

𝑙(𝛼, 𝛽) = 𝑚𝑟𝑙𝑛(𝑚) + 𝑚𝑟𝑙𝑛(𝛼) + 𝑚𝑟𝑙𝑛( 𝛽)  

−( + 1) ∑ ∑ 𝐼𝑛(1 + 𝑥𝑖𝑗(1))

𝑚
2

𝑖=1

𝑟

𝑗=1

+ ( − 1) ∑ ∑ 𝑙𝑛(1 − (1 +  𝑥𝑖𝑗(1))
−𝛼

)

𝑚
2

𝑖=1

𝑟

𝑗=1

 

+(𝑚 − 1) ∑ ∑ In (1−(1 − (1 +  𝑥𝑖𝑗(1) )
−𝛼

)
𝛽

)
𝑚

2

𝑖=1
𝑟
𝑗=1     

−( + 1) ∑ ∑ 𝐼𝑛(1 + 𝑥𝑖𝑗(𝑚))𝑚
𝑖=(𝑚+2)/2

𝑟
𝑗=1   

+ ( − 1) ∑ ∑ 𝑙𝑛(1 − (1 +  𝑥𝑖𝑗(𝑚))
−𝛼

)𝑚
𝑖=(𝑚+2)/2

𝑟
𝑗=1 +  

(𝑚 − 1) ∑ ∑ 𝐼𝑛 ((1 − (1 +  𝑥𝑖𝑗(𝑚))
−𝛼

)
𝛽

)
 

𝑚
𝑖=(𝑚+2)/2

𝑟
𝑗=1   

(15) 

The likelihood equations of α and β are given by 

𝜕𝑙

𝜕𝛼
=

𝑚𝑟

𝛼
 − ∑ ∑ 𝐼𝑛(1 + 𝑥𝑖𝑗(1))

𝑚

2

𝑖=1
𝑟
𝑗=1 + ( − 1) ∑ ∑

𝐼𝑛(1+𝑥𝑖𝑗(1))(1+𝑥𝑖𝑗(1))
−𝛼

1−(1+𝑥𝑖𝑗(1))
−𝛼

𝑚

2

𝑖=1
𝑟
𝑗=1  

− (𝑚 − 1) ∑ ∑ 
 (1−(1+𝑥𝑖𝑗(1))

−
)
−1

(1+𝑥𝑖𝑗(1))
−𝛼

𝑙𝑛(1+𝑥𝑖𝑗(1))

1−(1−(1+𝑥𝑖𝑗(1))
−𝛼

)

𝑚

2

𝑖=1
𝑟
𝑗=1   

− ∑ ∑ 𝐼𝑛(1 + 𝑥𝑖𝑗(𝑚)) +𝑚−1

𝑖=
𝑚+1

2

𝑟
𝑗=1 ( − 1) ∑ ∑

𝐼𝑛(1+𝑥𝑖𝑗(𝑚))(1+𝑥𝑖𝑗(𝑚))
−𝛼

1−(1+𝑥𝑖𝑗(𝑚))
−𝛼

𝑚−1

𝑖=
𝑚+1

2

𝑟
𝑗=1   

+(𝑚 − 1) ∑ ∑ 
𝐼𝑛(1+𝑥𝑖𝑗(𝑚))(1+𝑥𝑖𝑗(𝑚))

−𝛼−1

1−(1+𝑥𝑖𝑗(𝑚))
−𝛼

𝑚−1

𝑖=
𝑚+1

2

𝑟
𝑗=1   

𝜕𝑙

𝜕
=

𝑚𝑟


+ ∑ ∑ 𝑙𝑛(1 − (1 + 𝑥𝑖𝑗(1))

−𝛼
)

𝑚

2

𝑖=1
𝑟
𝑗=1   

−(𝑚 − 1) ∑ ∑
 (1−(1+𝑥𝑖𝑗(1))

−
)


𝑙𝑛(1−(1+𝑥𝑖𝑗(1))−)

1−(1−(1+𝑥𝑖𝑗(1))
−𝛼

)

𝑚

2

𝑖=1
𝑟
𝑗=1   

∑ ∑ 𝑙𝑛(1 − (1 +  𝑥𝑖𝑗(𝑚))
−𝛼

)

𝑚

𝑖=
(𝑚+2)

2

𝑟

𝑗=1

 

+(𝑚 − 1) ∑ ∑ 𝐼𝑛(1 − (1 +  𝑥𝑖𝑗(𝑚))
−𝛼

)
 

𝑚
𝑖=(𝑚+2)/2

𝑟
𝑗=1   

(16) 

The likelihood equation cannot be solved analytically; therefore, numerical methods 

were used. In our study, we utilized the “fminsearch” function in MATLAB, which is based on 

the Nelder-Mead simplex algorithm, a well-established derivative-free optimization method. 

The “fminsearch” function iteratively searches for the optimal parameter values by minimizing 

the negative log-likelihood function. By applying “fminsearch”, we ensured that our parameter 

estimates were efficiently obtained even when the likelihood function exhibited complex, non-

convex behavior. This approach allowed us to achieve reliable estimates for the distribution 

parameters under different sampling scenarios. 
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4 RESULTS AND DISCUSSION 

In this study, we assess the performance of ERSS for parameter estimation of the 

Inverted Kumaraswamy distribution through a Monte Carlo simulation approach. The 

simulation algorithm utilized in the study is designed to replicate the sampling process and 

evaluate the efficiency of the proposed methodology. The simulation algorithm used in the 

study involves the following steps: 

• Generation of Pseudo-Random Samples: For each combination of the specified sample 

sizes n=12, 24, 36, 48 and parameter values α=0.8,0.3,0.4,1.0 and β=0.8,0.4,2.0. 10.000 

pseudo-random samples were generated from the IK distribution using MATLAB. 

• Application of ERSS: For each sample, the ERSS method was applied to focus on 

extreme values, enhancing the efficiency of parameter estimation in skewed or heavy-

tailed data. 

• Maximum Likelihood Estimation: The parameters α and β were estimated for each 

sample using the MLE method. 

• Evaluation Metrics: The performance of ERSS was assessed by calculating the bias and 

mean square error (MSE) for the parameter estimates, which are standard criteria for 

evaluating accuracy and precision. 

• Comparison with SRS: Finally, the ERSS-based results were compared with those 

obtained using SRS to assess the improvements in parameter estimation. 

This algorithm ensures a systematic approach to simulate and evaluate the performance 

of ERSS in the context of parameter estimation for the IK distribution. To enhance the clarity 

and understanding of the results, we have included the definitions of MSE and Bias, which were 

used to evaluate the performance of the ERSS method. 

The Bias is defined as the difference between the expected value of the estimator and 

the true parameter value. Mathematically, it is expressed as Eq. (17); 

𝐵𝑖𝑎𝑠(𝜃) = 𝐸[𝜃] −  𝜃 (17) 

where 𝜃  is the estimator of the parameter θ, and 𝐸[𝜃] is the expected value of 𝜃. MSE is a 

measure of the average squared difference between the estimated values and the true value. It 

is calculated as Eq. (18); 

𝑀𝑆𝐸(𝜃) = 𝐸[(𝜃 − 𝜃)2] = 𝑉𝑎𝑟(𝜃) + (𝐵𝑖𝑎𝑠(𝜃))2 (18) 

where 𝑉𝑎𝑟(𝜃) represents the variance of the estimator 𝜃. 
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By focusing on extreme values, ERSS is expected to offer improvements in the 

estimation of parameters, particularly in distributions characterized by heavy tails or skewness. 

The results are given in Tables 1-10. 

Table 1. Biases of the 𝜶 = 𝟎. 𝟖 , 𝜷 = 𝟎. 𝟐 estimator of the IK distribution. 

 ERSS SRS 

𝜶; 𝜷 n m;r α β α β 

0.8;0.2 

12 

3;4 0,1061 0,6893 

0,1507 0,9629 4;3 0,1345 0,9114 

6;2 0,1376 1,0500 

24 

3;8 0,0502 0,2689 

0,0665 0,3435 4;6 0,0613 0,3356 

6;4 0,0665 0,3567 

36 

3;12 0,0310 0,1658 

0,0445 0,2204 4;9 0,0400 0,2115 

6;6 0,0405 0,2083 

48 

3;16 0,0230 0,1187 

0,0328 0,1567 4;12 0,0311 0,1593 

6;8 0,0298 0,1527 

 

 

Table 2. MSEs of the 𝜶 = 𝟎. 𝟖 , 𝜷 = 𝟎. 𝟐  estimator of the IK distribution. 

  ERSS SRS 

𝜶; 𝜷 n m;r α β α β 

0.8;0.2 

12 

3;4 0,0984 4,3337 

0,1369 7,6193 4;3 0,1308 7,5281 

6;2 0,1430 9,8960 

24 

3;8 0,0363 0,7296 

0,0467 0,9435 4;6 0,0464 1,0207 

6;4 0,0502 1,1404 

36 

3;12 0,0221 0,3678 

0,0279 0,4602 4;9 0,0276 0,4782 

6;6 0,0282 0,4988 

48 

3;16 0,0154 0,2274 

0,0192 0,2868 4;12 0,0196 0,3176 

6;8 0,0203 0,3285 
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Table 3. Biases of the 𝜶 = 𝟎. 𝟑 , 𝜷 = 𝟐  estimator of the IK distribution.  

  ERSS SRS 

𝜶; 𝜷 n m;r α β α β 

0.3;2 

12 

3;4 0,0403 0,6851 

0,0553 0,9271 4;3 0,0523 0,9965 

6;2 0,0508 1,0182 

24 

3;8 0,0184 0,2632 

0,0262 0,3553 4;6 0,0227 0,3395 

6;4 0,0261 0,3844 

36 

3;12 0,0114 0,1609 

0,0164 0,2092 4;9 0,0146 0,2040 

6;6 0,0155 0,2109 

48 

3;16 0,0090 0,1194 

0,0126 0,1595 4;12 0,0105 0,1430 

6;8 0,0116 0,1615 

 

 

Table 4. MSEs of the 𝜶 = 𝟎. 𝟑 , 𝜷 = 𝟐  estimator of the IK distribution.  

  ERSS SRS 

𝜶; 𝜷 n m;r α β α β 

0.3;2 

12 

3;4 0,0138 3,8903 

0,0189 5,5753 4;3 0,0192 6,7795 

6;2 0,0197 8,2940 

24 

3;8 0,0051 0,7124 

0,0067 0,9830 4;6 0,0065 1,1000 

6;4 0,0073 1,3516 

36 

3;12 0,0031 0,3569 

0,0039 0,4298 4;9 0,0038 0,4734 

6;6 0,0040 0,4888 

48 

3;16 0,0022 0,2349 

0,0028 0,2917 4;12 0,0028 0,3013 

6;8 0,0030 0,3445 
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Table 5. Biases of the 𝜶 = 𝟎. 𝟒 , 𝜷 = 𝟎. 𝟖  estimator of the IK distribution.  

  ERSS SRS 

𝜶; 𝜷 n m;r α β α β 

0.4;0.8 

12 

3;4 0,0738 0,1635 

0,1039 0,2263 4;3 0,0947 0,2245 

6;2 0,1049 0,2525 

24 

3;8 0,0357 0,0763 

0,0494 0,1023 4;6 0,0453 0,0949 

6;4 0,0486 0,0990 

36 

3;12 0,0237 0,0464 

0,0311 0,0623 4;9 0,0287 0,0600 

6;6 0,0297 0,0608 

48 

3;16 0,0165 0,0333 

0,0234 0,0448 4;12 0,0220 0,0426 

6;8 0,0217 0,0433 

 

 

Table 6. MSEs of the 𝜶 = 𝟎. 𝟒 , 𝜷 = 𝟎. 𝟖  estimator of the IK distribution.  

  ERSS SRS 

𝜶; 𝜷 n m;r α β α β 

0.4;0.8 

12 

3;4 0,0423 0,2092 

0,0673 0,3731 4;3 0,0606 0,3957 

6;2 0,0730 0,5167 

24 

3;8 0,0156 0,0614 

0,0214 0,0868 4;6 0,0211 0,0880 

6;4 0,0221 0,0896 

36 

3;12 0,0096 0,0340 

0,0120 0,0443 4;9 0,0120 0,0449 

6;6 0,0121 0,0454 

48 

3;16 0,0066 0,0229 

0,0083 0,0292 4;12 0,0084 0,0297 

6;8 0,0086 0,0304 
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Table 7. Biases of the 𝜶 = 𝟏 , 𝜷 = 𝟎. 𝟒  estimator of the IK distribution.  

  ERSS SRS 

𝜶; 𝜷 n m;r α β α β 

1;0.4 

12 

3;4 0,2921 0,0636 

0,4329 0,0937 4;3 0,3876 0,0854 

6;2 0,4126 0,0927 

24 

3;8 0,1371 0,0281 

0,1899 0,0398 4;6 0,1743 0,0363 

6;4 0,1767 0,0366 

36 

3;12 0,0915 0,0192 

0,1172 0,0249 4;9 0,1038 0,0242 

6;6 0,1170 0,0243 

48 

3;16 0,0684 0,0147 

0,0838 0,0185 4;12 0,0809 0,0164 

6;8 0,0831 0,0187 

 

 

Table 8. MSEs of the 𝜶 = 𝟏 , 𝜷 = 𝟎. 𝟒  estimator of the IK distribution.  

  ERSS SRS 

𝜶; 𝜷 n m;r α β α β 

1;0.4 

12 

3;4 0,5877 0,0334 

1,0747 0,0616 4;3 0,9510 0,0544 

6;2 1,1405 0,0805 

24 

3;8 0,1861 0,0100 

0,2755 0,0147 4;6 0,2574 0,0143 

6;4 0,2786 0,0152 

36 

3;12 0,1089 0,0062 

0,1428 0,0084 4;9 0,1314 0,0078 

6;6 0,1477 0,0083 

48 

3;16 0,0732 0,0043 

0,0923 0,0057 4;12 0,0936 0,0054 

6;8 0,0976 0,0057 
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Table 9. Biases of the 𝜶 = 𝟏 , 𝜷 = 𝟎. 𝟖  estimator of the IK distribution.  

  ERSS SRS 

𝜶; 𝜷 n m;r α β α β 

1;0.8 

12 

3;4 0,1818 0,1644 

0,2715 0,2416 4;3 0,2424 0,2302 

6;2 0,2498 0,2380 

24 

3;8 0,0899 0,0742 

0,1171 0,0942 4;6 0,1115 0,0910 

6;4 0,1072 0,0933 

36 

3;12 0,0589 0,0458 

0,0849 0,0649 4;9 0,0720 0,0565 

6;6 0,0751 0,0631 

48 

3;16 0,0408 0,0325 

0,0538 0,0456 4;12 0,0556 0,0444 

6;8 0,0540 0,0441 

 

 

Table 10. MSEs of the 𝜶 = 𝟏 , 𝜷 = 𝟎. 𝟖  estimator of the IK distribution.  

  ERSS SRS 

𝜶; 𝜷 n m;r α β α β 

1;0.8 

12 

3;4 0,2562 0,2307 

0,4312 0,3941 4;3 0,3841 0,4282 

6;2 0,4196 0,4366 

24 

3;8 0,0967 0,0607 

0,1272 0,0821 4;6 0,1243 0,0840 

6;4 0,1340 0,0889 

36 

3;12 0,0590 0,0334 

0,0778 0,0440 4;9 0,0753 0,0427 

6;6 0,0803 0,0485 

48 

3;16 0,0408 0,0226 

0,0522 0,0302 4;12 0,0533 0,0307 

6;8 0,0549 0,0313 

 

Findings on the Biases: 

When examining the model as a whole, it is evident that the values of the ERSS 

estimators yield better results compared to those derived using SRS. Furthermore, as the sample 

size increases, the estimator values for SRS tend to decrease. In contrast, for ERSS estimators, 

when the sample size is held constant, the values increase as the number of cycles grows. 

However, in general, as the sample size increases, the results tend to decrease. 
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When comparing the ERSS and SRS values in the model, it is observed that the α values 

provide better results than the β values. Regarding the biases in the model, the best results for 

α are found in the initial trial findings. For instance, when (α; β = 1; 0.8), the best results are 

observed across all sample sizes (12, 24, 36, 48) in the first cycle sizes (3, 4). This trend is 

consistent for all estimators. 

When the α parameter is fixed and β is increased, better results are obtained for the β 

values, while the α values do not yield optimal results for the largest sample size. Conversely, 

when the β parameter is fixed and α is increased, better results are obtained for the β values, 

and all results for α values are superior to those obtained using SRS. 

Findings on the MSE: 

Overall, it was observed that as the number of cycles in ERSS increases with sample 

size, higher MSE values are recorded. The ERSS method generally provides lower average 

MSE, indicating better overall performance in parametric estimation. In contrast, the SRS 

method shows higher errors, particularly in estimating the β parameter for certain combinations, 

highlighting weaker performance in complex datasets. 

For both α and β parameters, consistency was achieved with both ERSS and SRS 

methods. However, higher MSE values were observed for the β parameter, especially for small 

sample sizes (e.g., n=12). Additionally, as the number of cycles increases in ERSS, higher MSE 

values are noted. 

5 ILLUSTRATIVE EXAMPLE 

In this section, to demonstrate the ML estimators obtained in Section 3, we present a 

real data set which is available in Castillo et al. [18]. The data set included yearly maximum 

flow (in cubic meters) at a given location of a river for 60 years. We fitted IK distribution to 

this data set. The ML estimates of the α and β are respectively 0.0858 and 3.6815. A random 

sample of size 12 is drawn without replacement by using different sampling schemes namely 

SRS and ERSS. For the analysis, we determined m=6 and r=2. The results of the parameter 

estimates are presented in Table 11. From Table 11, we see that the ML estimates based on 

ERSS scheme are closer to the given value of both parameters α and β. This result show once 

again that the ERSS estimates better than SRS scheme. 
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Table 11. ML estimation of the parameters α and β for IK distribution. 

�̂� �̂� 

SRS ERSS SRS ERSS 

0.0839 0.0863 3.6284 3.6488 

6 CONCLUSION AND SUGGESTIONS 

In this study, we applied ERSS for parameter estimation of the IK distribution using the 

MLE method. The performance of ERSS was compared to the traditional sampling method, 

SRS. The results showed that ERSS provides more accurate and efficient estimates than SRS, 

particularly in terms of bias and MSE. The simulation study confirmed that the use of ERSS 

improves estimation precision, especially when dealing with distributions characterized by 

heavy tails or skewness. ERSS outperformed SRS in terms of MSE, demonstrating its 

advantage in extreme value estimation. Overall, the MLE based on ERSS exhibited smaller 

biases and lower MSEs compared to those obtained through SRS. These findings underscore 

the potential of ERSS as an effective alternative to traditional sampling methods for parameter 

estimation in extreme value contexts. Finally, the results from the simulation study suggest that 

ERSS can be a valuable tool in various applications, offering superior estimation performance 

compared to conventional methods. 

In future studies, we recommend expanding the research to include odd sample sizes 

(e.g., n = 9, 15, 21, 25) and evaluating their impact on the results, particularly in terms of bias 

and MSE. Due to the increased complexity and computational load, this option was not included 

in the current study. However, assessing its effect could provide valuable insights into the ERSS 

approach. Additionally, future research could explore alternative RSS designs beyond ERSS, 

assessing their potential advantages in parameter estimation. Various estimation methods could 

also be implemented and compared to evaluate their accuracy and efficiency across different 

scenarios. Furthermore, investigating the proposed methodology under different probability 

distributions could help examine its robustness and applicability in diverse statistical contexts. 
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