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 Only a few studies have so far addressed the applicability of Multi-Criteria Decision-Making 
(MCDM) methods in the optimization of geodetic control networks. For instance, the methods 
such as Višekriterijumsko Kompromisno Rangiranje/Rešenje (VIKOR) (in english: Multi-
Criteria Optimization and Compromise Ranking/Solution), Analytic Hierarchy Process (AHP), 
Preference Ranking Organization Method for Enrichment of Evaluations (PROMETHEE), 
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Multi-Attributive 
Border Approximation Area Comparison (MABAC), Multi-Attributive Ideal-Real Comparative 
Analysis (MAIRCA), Combined Compromise Solution (COCOSO), Range of Value (ROV) can be 
mentioned. Among them, the VIKOR method, it can be said, proved to be the most suitable tool 
in the mention area of engineering geodesy as it allows treating alternative solutions identified 
in a specific task in a desired way by using different preferential approaches represented by 
sets of criterion weights. Thus, the VIKOR method is used as a reference herein, and methods 
whose applicability is tested are four novel methods that have been used in some other areas, 
different from geodesy. It is about Multiple Criteria Ranking by Alternative Trace (MCRAT), 
Ranking the Alternatives by Perimeter Similarity (RAPS), Ranking by Alternatives Median 
Similarity (RAMS) and Ranking by Alternatives Using the Trace to Median Index (RATMI). The 
subject of this study is optimization of a 2D geodetic control network established to provide 
information regarding horizontal movements of a dam. The dam is located in Montenegro. The 
optimization is performed considering several pre-set constraints related to precision and 
reliability in the corresponding geodetic network. It turned out the four tested MCDM methods 
provided exactly the same results that were highly correlated with those obtained using the 
selected reference method. This fact led to the conclusion those four novel methods could be 
equally used in tasks similar to the one presented herein. 
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1. Introduction  
 

In earlier studies, there were many words regarding 
old, classical, geodetic optimization methods and their 
application in designing geodetic networks. Namely, as 
already known, there are four orders of geodetic network 
design and those are the following [1,2]: 

 Zero-Order Design (ZOD) – the datum problem; 
 First-Order Design (FOD) – the configuration 

problem; 
 Second-Order Design (SOD) – the weight 

problem; 
 Third-Order Design (THOD) – the optimal 

improvement of an existing geodetic network.  

However, such a classification is conditional due to 
disadvantage that is reflected in the fact that each of the 
listed tasks is solved individually, or by partially solving 
another task. For instance, in the SOD the design matrix 
varies, which partially solves the FOD, etc. [3]. 

The classical geodetic methods, based on the 
previously mentioned four optimization tasks, are not 
used herein. On the contrary, a MCDM-based approach is 
applied. It is about a completely different approach to 
optimizing special-purpose geodetic networks that 
involves solving a complex geodetic optimization task 
and provides the optimal solution for designing a 
geodetic network by considering multiple conflicting 
requirements simultaneously. 

https://dergipark.org.tr/en/pub/ijeg
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A great number of articles deal with the application of 
MCDM methods in various scientific fields. Some of the 
most recent ones are related to environmental fields (e.g. 
[4], [5], [6], [7]), photogrammetry (e.g. [8]), land 
consolidation (e.g. [9]), etc. However, only a few scientific 
articles presenting the application of MCDM methods in 
engineering geodesy have been published so far. As far as 
the author is aware, those articles, chronologically 
ordered, are the following: [10], [11], [3] and [12]. 

In [10] the VIKOR method was used in a geodetic task 
for the first time. It was applied on a bridge geodetic 
network represented by four alternatives, three of which 
involved different observation plans consisting of both 
horizontal directions and lengths, and one that included 
only measured lengths. In the research, only one geodetic 
instrument (total station) was used. The article [3] deals 
with using the VIKOR method, but this time in finding the 
optimal solution for a special-purpose trilateration 
geodetic network. The network was established to 
ensure the detection of deviation of the realized position 
of a structure pillar centre relative to the corresponding 
projected one for each of six evenly distributed pillars. 
The geodetic network design was established fourfold by 
considering four alternatives based on different number 
and location of reference points. In this study, same-
precision length measurements were also considered. It 
was confirmed once again that the VIKOR method was an 
effective mathematical tool in such type of geodetic tasks.  

On the other hand, the application of the AHP, 
PROMETHEE and TOPSIS methods was demonstrated in 
[11]. The author of this paper also proposed a new 
method as an alternative to the AHP and PROMETHEE 
and called it PROTERRA (PROcessing TEchnique of 
Ratings for Ranking of Alternatives) method. The entire 
process was based just on ranking the alternatives 
established by defining the reference system with 
assumption of fixed location of a specified pair of 
network points.  

When it comes to the recent research presented in 
[12], it deals with the multi-criteria optimization of a 
tower geodetic micro-network. This research aimed to 
check applicability of the MABAC, MAIRCA, COCOSO and 
ROV methods with geodetic networks. It turned out that 
the MABAC, MAIRCA and ROV methods provided exactly 
the same results, while the results obtained using the 
COCOSO strategy were slightly different. However, in the 
final conclusion it was ascertained that all the four 
examined methods can also be successfully used in 
optimization of geodetic networks due to their 
effectiveness in handling a greater number of conflicting 
requirements. 

Given that this study is the first research that deals 
with the application of the MCRAT, RAPS, RAMS and 
RATMI methods in engineering geodesy, due to its 
novelty, it will make a significant contribution to the 
current literature. Namely, this paper presents the 
performance of these four recent methods in optimizing 
a special-purpose geodetic network, whereby several 
key requirements in terms of precision and reliability are 
considered simultaniously. 

The results obtained will serve as a valuable dataset 
for comparing the performance of the four methods in 
such a task, that is, to conclude whether there are 

differences in their application in this or similar 
engineering geodesy tasks. 

A reader interested in application of these methods 
(or hybrid models that include some of them) in other 
fields, different from geodesy, can see, for instance, 
publications: [13], [14], [15], [16], [17], [18], [19], [20]. 

 

2. Descrition of the system to be optimized in the 
study 

 

The system to be optimized in this study is a dam 
geodetic control network (hereinafter: geodetic 
network). It is about a concrete arch dam located in 
Montenegro. and discretized by eight control points, 
denoted in the text by N1, N2, …, N8 (see subsection 
2.1.2). All reference points are materialized by concrete 
pillars. Each pillar has a built-in forced-centring device 
on the top, so miscentring, i.e. centring error at a pillar, 
regardless of whether it is an instrument (total station) 
or a signal (prism), is assumed to be negligible and, 
therefore, it is not considered in horizontal directions 
and lengths measured between reference points. In 
addition, as there is a built-in forced-centring device at 
each control point as well, there is no impact of signal 
miscentring on horizontal direction measurements, 
which are performed from the pillars to the control 
points. 

Six variants of the geodetic network, with varying 
number of reference points, are established for the 
purpose of the study. Each of them represents a 
particular acceptable solution, i.e. alternative which 
fulfills certain pre-set requirements related to precision 
and reliability (see subsection 2.1.2). The six alternatives 
are subjected to multi-criteria optimization, being 
ranked using five different MCDM methods (MCRAT, 
RAPS, RAMS, RATMI), one of which (VIKOR) is elected as 
a reference. Considering the ranking results, the 
applicability of the first four methods in optimizing 
geodetic control networks will be evaluated. The 
alternatives are presented in detail in subsection 2.1.4.     

 

2.1.1. Mathematical background of geodetic 
network adjustment in a nutshell   

 

The mathematical tool used in performing the 
adjustment of the geodetic network is the widely known 
Least Squares method. Thus, it is briefly presented 
herein, but a reader who needs more details can find a 
detailed description in [21]. 

Calculations start with establishing the design matrix 
(𝐀) and weight matrix (𝐏) in a well-known way. Then, 
using those matrices, the singular normal equation 
coefficient matrix is calculated as 𝐍 = 𝐀T𝐏𝐀. For further 
procedure performing, it is necessary to calculate the 
pseudoinverse 𝐍+ (for more details, see e.g. [3,12]), that, 
in fact, represents the cofactor matrix for the estimates of 
unknowns, i.e. 𝐐�̂� = 𝐍+. After that, for this study, two 
more cofactor matrices are obtained: cofactor matrix for 
the estimates of values of measured lengths and 
horizontal directions, 𝐐𝐥 = 𝐀𝐐�̂�𝐀T, and cofactor matrix 
for the estimates of corrections of measured lengths and 
horizontal directions, 𝐐�̂� = 𝐏−1 − 𝐐𝐥. Then, the 
redundancy matrix is calculated as 𝐑 = 𝐐�̂�𝐏. 
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2.1.2. Pre-set constraints introduced for extrication 
of acceptable geodetic network design 
solutions    

 

Let’s first introduce the following denotations: 
 𝑎 – alternative (𝑎 ∈ {A1, … , A6}); 
 𝑟, 𝑐 – reference point and control point, 

respectively, whereby 𝑟 ∈ {R1, … , R𝑛𝑟,𝑎}, 𝑐 ∈
{N1, … , N𝑛𝑐}, with 𝑛𝑟,𝑎 ∈ {4,5,6,7,8} and 𝑛𝑐 = 8; 

 𝑛𝑚,𝑎 – total number of measurements in 

alternative 𝑎, i.e. the sum of the number of 
measured horizontal directions (𝑛ℎ𝑑,𝑎) and 

lengths (𝑛𝑙,𝑎); 

 𝐴𝑟(𝑐) and 𝐵𝑟(𝑐) – semi-major and semi-minor axis 

of the standard error ellipse in reference 
(control) point 𝑟 (𝑐), respectively; 

 𝑖 – measurement (𝑖 ∈ {1, … , 𝑛𝑚,𝑎}); 

 𝜎𝑖  – standard deviation of measurement 𝑖; 
 𝜎0 – square root of an adopted variance 

coefficient (a priori); 
 𝑟𝑖𝑖  – redundancy coefficient of measurement 𝑖, 

i.e. 𝑖th diagonal element of the redundancy 
matrix 𝐑; 

 𝑟𝑡𝑟 – redundancy coefficient threshold value (in 
this study 𝑟𝑡𝑟 = 0.20); 

 (1 − 𝛽0), 𝛼0 – test power and significance level in 
one-dimensional statistical hypotheses, 
respectively; 

 𝑡1−𝛽0
 and 𝑡1−𝛼0 2⁄  – normal distribution quantiles 

in the data snooping test; 
 |𝐺𝑖

∗| – marginal gross-error that can be detected 
in measurement 𝑖 (obtained adopting 1 − 𝛽0;𝑖 ≡

1 − 𝛽0 = 0.80 and 𝛼0;𝑖 ≡ 𝛼0 = 0.01 herein); 

 |𝐺𝑖,𝑡𝑟
∗ | – gross-error threshold value for 

measurement 𝑖 (obtained adopting 1 − 𝛽0;𝑡𝑟 ≡

1 − 𝛽0 = 0.80, 𝛼0;𝑡𝑟 ≡ 𝛼0 = 0.01 and 𝑟𝑖𝑖 ≡ 𝑟𝑡𝑟  

herein); 
 1 − 𝛽0;𝐺𝑖,𝑡𝑟

∗  – test power in detecting the gross-

error limit value in measurement 𝑖. 
Now, the pre-set constraints can be listed as follows: 
 max

𝑟
(𝐴𝑟 𝐵𝑟⁄ ) < 3.5 (1) 

 max
𝑐

(𝐴𝑐 𝐵𝑐⁄ ) < 3.5 (2) 

 𝑟𝑖𝑖 ≥ 𝑟𝑡𝑟 = 0.20 (3) 

 |𝐺𝑖
∗| < |𝐺𝑖,𝑡𝑟

∗ | (4) 

 1 − 𝛽0;𝐺𝑖,𝑡𝑟;𝑎
∗ ≥ 0.80 (5) 

The semi axes appearing in Inequality (1) and (2) are 
obtained in the following way: 

 𝐴𝑟(𝑐) = 𝜎0√0.5(𝑆𝑟(𝑐) + 𝑅𝑟(𝑐))𝜒1−𝛼;2
2  (6) 

 𝐵𝑟(𝑐) = 𝜎0√0.5(𝑆𝑟(𝑐) − 𝑅𝑟(𝑐))𝜒1−𝛼;2
2  (7) 

whereby 𝜒1−𝛼;2
2  is the Chi-square distribution quantile 

(obtained in the study for significance level 𝛼 = 0.05 and 
two degrees of freedom) and 

 𝑆𝑟(𝑐) = 𝑄𝑥𝑟(𝑐)𝑥𝑟(𝑐)
+ 𝑄�̂�𝑟(𝑐)�̂�𝑟(𝑐)

 (8) 

 𝑅𝑟(𝑐) = √(𝑄𝑥𝑟(𝑐)𝑥𝑟(𝑐)
− 𝑄�̂�𝑟(𝑐)�̂�𝑟(𝑐)

)
2

+ 4𝑄𝑥𝑟(𝑐)�̂�𝑟(𝑐)
 (9) 

The Inequality (4) involves the detectable marginal 
gross-error and its threshold value that are calculated as: 

 |𝐺𝑖
∗| = (𝑡1−𝛽0;𝑖

+ 𝑡1−𝛼0;𝑖 2⁄ )𝜎𝑖 √𝑟𝑖𝑖⁄  (10) 

 |𝐺𝑖,𝑡𝑟
∗ | = (𝑡1−𝛽0;𝑡𝑟

+ 𝑡1−𝛼0;𝑡𝑟 2⁄ )𝜎𝑖 √𝑟𝑡𝑟⁄  (11) 

The test power from Inequality (5) is calculated based 
on the equation: 

 |𝐺𝑖
∗| = |𝐺𝑖,𝑡𝑟

∗ | (12) 

from which, after fixing 1 − 𝛽0;𝑡𝑟 = 0.80 and 𝛼0;𝑖 =

𝛼0;𝑡𝑟 = 0.01, and considering 𝑟𝑡𝑟 = 0.20, the following 

equality is obtained:  

 1 − 𝛽0;𝐺𝑖,𝑡𝑟
∗ = normsdist(7.64√𝑟𝑖𝑖 − 𝑡1−𝛼0;𝑖 2⁄ ) (13) 

 

2.1.3. Criteria for ranking the alternatives    
 

In this study, the author introduces eight criteria. 
They are represented by the following eight functions 

(𝑎 ∈ {A1, … , A6}, 𝑖ℎ𝑑 ∈ {1, … , 𝑛ℎ𝑑,𝑎}, 𝑖𝑙 ∈ {1, … , 𝑛𝑙,𝑎}, 𝑖 ∈

{1, … , 𝑛𝑚,𝑎}, 𝑐 ∈ {N1, … , N𝑛𝑐}): 

First criterion function: 
The mean standard positional error obtained for 
control points 

 𝑓1 = �̅�𝑝,𝑎 = ∑ 𝑚𝑝,𝑐;𝑎
N𝑛𝑐
𝑐=N1 𝑛𝑐⁄  (14) 

where standard positional error of control point 𝑐 is 
obtained using the square root of an adopted variance 
coefficient and the corresponding diagonal elements 
of the cofactor matrix for the estimates of unknowns, 
i.e.  

 𝑚𝑝,𝑐;𝑎 = 𝜎0,𝑎√𝑄�̂�𝑐�̂�𝑐,𝑎
+ 𝑄𝑥𝑐𝑥𝑐,𝑎

 (15) 

Second criterion function: 
The mean ratio of semi axes of the standard error 
ellipse obtained for control points  

 𝑓2 = (𝐴 𝐵⁄ )̅̅ ̅̅ ̅̅ ̅̅
𝑎 = ∑ (𝐴𝑐,𝑎 𝐵𝑐,𝑎⁄ )

N𝑛𝑐
𝑐=N1 𝑛𝑐⁄  (16) 

Third criterion function: 
The difference between mean redundancy coefficient 
that is calculated for all measurements in the geodetic 
network and the optimal redundancy coefficient 
(𝑟𝑜𝑝𝑡 = 0.40 herein) 

 𝑓3 = �̅�𝑎 − 𝑟𝑜𝑝𝑡 = (∑ 𝑟𝑖𝑖,𝑎
𝑛𝑚,𝑎

𝑖=1
𝑛𝑚,𝑎⁄ ) − 0.40 (17) 

Fourth criterion function: 
The sum of the numerical values of marginal gross-
errors that can be detected obtained for all horizontal 
directions and lengths in the geodetic network  

 𝑓4 = ∑ |𝐺𝑖ℎ𝑑,𝑎
∗ | ′′⁄

𝑛ℎ𝑑,𝑎

𝑖ℎ𝑑=1 + ∑ |𝐺𝑖𝑙,𝑎
∗ | mm⁄

𝑛𝑙,𝑎

𝑖𝑙=1  (18) 

Fifth criterion function: 
The mean test power in detecting the gross-error 
limit value calculated for all measurements in the 
geodetic network 

 𝑓5 = 1 − 𝛽0;𝐺𝑡𝑟;𝑎
∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∑ (1 − 𝛽0;𝐺𝑖,𝑡𝑟;𝑎

∗ )
𝑛𝑚,𝑎

𝑖=1 𝑛𝑚,𝑎⁄  (19) 

Sixth criterion function: 
The mean Cook-Perović’s distance that is obtained for 
all measurements in the geodetic network  

 𝑓6 = 𝐶𝑃̅̅ ̅̅
𝑎 = ∑ 𝐶𝑃𝑖,𝑎

𝑛𝑚,𝑎

𝑖=1
𝑛𝑚,𝑎⁄  (20) 

whereby (𝛼0 = 0.01 is used in the study) 

 𝐶𝑃𝑖,𝑎 = 𝑡1−𝛼0 2⁄
2 (1 − 𝑟𝑖𝑖,𝑎)r(𝐐�̂�,𝑎)

−1
𝑟𝑖𝑖,𝑎

−1 𝑛𝑚,𝑎⁄  (21) 

Seventh criterion function: 
The sum of the influence coefficients on adjusted 
measurements calculated for all measurements in the 
geodetic network  
 𝑓7 = tr(𝐏𝑎𝐐𝐥,𝑎𝐏𝑎) 𝑛𝑚,𝑎⁄  (22) 

Eighth criterion function: 
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The mean value of the minimal movements that can 
be detected in each control point between two epochs 
using the figure (network) congruence test 

 𝑓8 = 𝑑𝑝̅̅̅̅
𝑎 = ∑ 𝑑𝑝𝑐,𝑎

N𝑛𝑐
𝑐=N1 𝑛𝑐⁄  (23) 

where the minimal movement in control point 𝑐 
between two epochs is calculated as follows: 

 𝑑𝑝𝑐,𝑎 = 𝜎0,𝑎√𝜆𝑎 √𝐜𝑐,𝑎
T 𝐐𝐝,𝑎

+ 𝐜𝑐,𝑎⁄  (24) 

whereby 𝜆𝑎 is the non-centrality parameter (the 
value read from the corresponding table, given, for 
instance, in [21], for test power of 0.80, significance 

level of 0.05 and 𝑓𝑎 = 2(𝑛𝑟,𝑎 + 𝑛𝑐) − 3 degrees of 

freedom), 𝐐𝐝,𝑎
+  is the pseudoinverse of the cofactor 

matrix 𝐐𝐝,𝑎 = 2𝐐�̂�,𝑎  (the same observation plan is 

assumed for both epochs, i.e. 𝐐�̂�,𝑎(𝟏) = 𝐐�̂�,𝑎(𝟐) ≡ 𝐐�̂�,𝑎), 

and   
 𝐜𝑐,𝑎

T = (0 ⋯ sin 𝜃𝑐,𝑎     cos 𝜃𝑐,𝑎 ⋯ 0) (25) 

with trigonometric terms at the places that 
correspond to unknowns �̂�𝑐,𝑎 and �̂�𝑐,𝑎 and 𝜃𝑐,𝑎  

denoting the standard error ellipse azimuth angle 
obtained from the following equation:   
 tan 2𝜃𝑐,𝑎 = 2𝑄𝑥𝑐,𝑎�̂�𝑐,𝑎

(𝑄𝑥𝑐,𝑎𝑥𝑐,𝑎
− 𝑄�̂�𝑐,𝑎�̂�𝑐,𝑎

)⁄  (26) 

Only the fifth criterion function represents a loss, 
which is why it should be minimized. On the other hand, 
the remaining ones are to be maximized, as they 
represent gains. 

This choice of criteria was made because the quality 
of a special-purpose geodetic network is primarily 
determined based on its precision and reliability 
indicators, as appropriate quality measures. 

 

2.1.4. Six alternatives to be ranked    
 

This section provides a detailed review of the six 
alternatives (previously denoted by A1, A2, A3, A4, A5 and 
A6) that are to be ranked in the study. 

In establishing these six alternatives, the author’s 
intention was to provide different network 
configurations. Namely, by the chosen alternatives, 
design solutions with different number of reference 
points, horizontal directions and lengths are given. As 
already pointed out in subsection 2.1.2 (see the second 
bullet point of the first paragraph), eight reference points 
were used to identify the alterbatives.  

Varying the (number of) reference points and 
measurements led to different geometry and, 
consequently, different values representing the precision 
and reliability in the network. That way, a variety of 
datasets of values related to the introduced criterion 
functions were available for the analysis conducted 
herein.        

The geometrical representation for each alternative is 
given in the continuation, in figures 1-6. 

 

 
Figure 1. Geodetic network configuration with standard 
error ellipses in all reference and control points (A1) 

 

 
Figure 2. Geodetic network configuration with standard 
error ellipses in all reference and control points (A2) 

 

 
Figure 3. Geodetic network configuration with standard 
error ellipses in all reference and control points (A3) 
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Figure 4. Geodetic network configuration with standard 
error ellipses in all reference and control points (A4) 

 

 
Figure 5. Geodetic network configuration with standard 
error ellipses in all reference and control points (A5) 

 

 
Figure 6. Geodetic network configuration with standard 
error ellipses in all reference and control points (A6) 

Tables 1-6 include the information regarding 
observation plan (twice measured quantities are marked 
by ‘(×2)’ that follows after a target station label). 

 

Table 1. Alternative 1 observation plan 
Instrument 
station 

Target station 

 Horizontal direction Length 

R1 R2, R3, R4, R5, R7, R8 
N1, N2, N3, N4, N5, N6, N7, 
N8 

R2 

R2 R1, R3, R4, R5, R7, R8 
N1, N2, N3, N4, N5, N6, N7, 
N8 

 

R3 R1, R2, R4, R5, R6, R7, R8 
N1(×2), N2, N3, N4, N5, N6, 
N7, N8 

R1, R2, R4, R5, 
R6, R7, R8 

R4 R1, R2, R3, R5, R6, R7 
N1, N2, N3, N4, N5, N6, N7, 
N8(×2) 

R1, R2, R5, R6, 
R7 

R5 R1, R2, R3, R4, R6, R7, R8 R1, R2, R6, R7, 
R8 

R6 R3, R4, R5, R7 R7 

R7 R1, R2, R3, R4, R5, R6, R8 R1, R2 

R8 R1, R2, R3, R5, R7 R1, R2 

 

Table 2. Alternative 2 observation plan 
Instrument 
station 

Target station 

 Horizontal direction Length 

R1 R2, R3, R4, R7, R8 
N1, N2, N3, N4, N5, N6, N7, 
N8 

R2 

R2 R1, R3, R4, R7, R8 
N1, N2, N3, N4, N5, N6, N7, 
N8 

 

R3 R1, R2, R4, R6, R7, R8 
N1(×2), N2, N3, N4, N5, N6, 
N7, N8 

R1, R2, R4, R6, 
R7, R8 

R4 R1, R2, R3, R6, R7 
N1, N2, N3, N4, N5, N6, N7, 
N8(×2) 

R1, R2, R6, R7 

R6 R3, R4, R7 R7 

R7 R1, R2, R3, R4, R6, R8 R1, R2, R8 

R8 R1, R2, R3, R7 R1, R2 

 

Table 3. Alternative 3 observation plan 
Instrument 
station 

Target station 

 Horizontal direction Length 

R1 R2, R3, R4, R7 
N1, N2, N3, N4, N5, N6, N7, 
N8 

R2 

R2 R1, R3, R4, R7 
N1, N2, N3, N4, N5, N6, N7, 
N8 

 

R3 R1, R2, R4, R6, R7 
N1(×2), N2, N3, N4, N5, N6, 
N7, N8 

R1, R2, R4, R6, 
R7 

R4 R1, R2, R3, R6, R7 
N1, N2, N3, N4, N5, N6, N7, 
N8(×2) 

R1, R2, R6, R7 

R6 R3, R4, R7 R7 

R7 R1, R2, R3, R4, R6 R1, R2 
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Table 4. Alternative 4 observation plan 
Instrument 
station 

Target station 

 Horizontal direction Length 

R1 R2, R3, R4, R7 
N1, N2, N3, N4, N5, N6, N7, 
N8 

R2 

R2 R1, R3, R4, R7 
N1, N2, N3, N4, N5, N6, N7, 
N8 

 

R3 R1, R2, R4, R7 
N1(×2), N2, N3, N4, N5, N6, 
N7, N8 

R1, R2, R4, R7 

R4 R1, R2, R3, R7 
N1, N2, N3, N4, N5, N6, N7, 
N8(×2) 

R1, R2, R7 

R7 R1, R2, R3, R4 R1, R2 

 

Table 5. Alternative 5 observation plan 
Instrument 
station 

Target station 

 Horizontal direction Length 

R3 R4, R5, R7, R8 
N1, N2, N3, N4, N5, N6, N7, 
N8 

R4, R5, R7, R8 

R4 R3, R5, R7 
N1, N2, N3, N4(×2) 

R5, R7 

R5 R3, R4, R7, R8 
N1, N2, N3, N4, N5, N6, N7, 
N8 

R7, R8 

R7 R3, R4, R5, R8 
N1, N2, N3, N4, N5, N6, N7, 
N8 

R8 

R8 R3, R5, R7 
N1, N2, N3, N4, N5, N6, N7, 
N8 

 

 

Table 6. Alternative 6 observation plan 
Instrument 
station 

Target station 

 Horizontal direction Length 

R1 R2, R5, R8 
N1(×2), N2, N3, N4, N5, N6, 
N7, N8 

R2, R5, R8 

R2 R1, R5, R8 
N1, N2, N3, N4, N5(×2), 
N6(×2), N7(×2), N8(×2) 

R5, R8 

R5 R1, R2, R8 
N1, N2, N3, N4, N5, N6, N7, 
N8 

R8 

R8 R1, R2, R5 
N1, N2, N3, N4, N5, N6, N7, 
N8 

 

 

For each of the six alternatives the geodetic network 
adjustment is done by defining the reference system 
(datum) by the minimum trace of the covariance matrix 
of the unknown coordinate estimates (tr(𝐊 �̂�) =
𝜎0

2tr(𝐐�̂�) → minimum) for all reference and control 
points in the geodetic network. The number of unknown 
coordinates is calculated as 𝑢𝑎 = 2𝑛𝑟,𝑎 + 2𝑛𝑐 = 2𝑛𝑟,𝑎 +

2 ∙ 8 = 2(𝑛𝑟,𝑎 + 8), 𝑎 ∈ {A1, … , A6}. 

The weight matrix (𝐏) is calculated based on the 
variances of measurements (horizontal directions and 
lengths) that differ between alternatives. The reason for 
this is reflected in the fact that total stations of varying 

precision are used, for both horizontal directions and 
lengths. 

Table 7 lists the standard deviation values from 
manufacturers’ declarations and numbers of sets (one 
set includes observations in both total station telescope 
face positions) used herein. 

 

Table 7. Declared standard deviations and numbers of 
sets in measuring the horizontal directions 

Alternative Standard deviation Number 
of sets  Horizontal 

direction 
Length 

A1 7′′ 3 + 2 ppm 3 

A2 5′′ 3 + 2 ppm 1 

A3 7′′ 2 + 2 ppm 3 

A4 5′′ 1.5 + 2 ppm 2 

A5 3′′ 3 + 2 ppm 2 

A6 3′′ 2 + 2 ppm 1 

 

The extreme values of the precision and reliability 
indicators for the geodetic network are shown in Table 8.  

 

Table 8. Values of the main geodetic network quality 
indicators for all six alternatives 

Indicator Alternative 

A1 A2 A3 A4 A5 A6 

 min 
max 

min 
max 

min 
max 

min 
max 

min 
max 

min 
max 

𝐴𝑟 𝐵𝑟⁄  1.20 1.17 1.15 1.18 1.27 1.22 

 1.83 1.95 1.61 1.49 3.21 2.10 

𝐴𝑐 𝐵𝑐⁄  1.27 1.26 1.25 1.23 1.46 1.12 

 1.40 1.42 1.43 1.40 3.42 2.25 

𝑚𝑝,𝑟[mm] 0.76 1.02 0.81 0.74 0.87 1.21 

 1.18 1.44 1.16 0.97 1.53 1.32 

𝑚𝑝,𝑐[mm] 1.20 1.46 1.16 1.00 1.12 1.35 

 1.72 2.11 1.70 1.47 2.04 1.65 

𝑟 0.20 0.20 0.20 0.20 0.20 0.23 

 0.94 0.89 0.83 0.80 0.93 0.71 

|𝐺ℎ𝑑
∗ |[′′] 15.0 18.8 15.4 13.5 8.2 12.4 

 30.7 38.0 30.8 27.0 16.1 21.6 

|𝐺𝑙
∗|[mm] 10.9 11.4 8.0 6.3 10.8 9.0 

 12.5 13.2 9.6 7.6 13.3 9.9 

𝐶𝑃ℎ𝑑 0.03 0.04 0.05 0.06 0.07 0.12 

 0.71 0.77 0.85 0.95 0.93 0.91 

𝐶𝑃𝑙 0.01 0.03 0.04 0.07 0.02 0.11 

 0.04 0.07 0.10 0.11 0.10 0.16 

1 − 𝛽0;𝐺𝑡𝑟
∗  0.81 0.81 0.80 0.80 0.81 0.85 

 1.00 1.00 1.00 1.00 1.00 1.00 

 

The author made this selection of alternatives with 
the aim of providing a multi-criteria analysis that 
includes geodetic network configurations with different 
numbers of reference points and different numbers of 
measured quantities.  

 

3. Methods 
 

This section briefly presents all the methods used in 
this study. 
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3.1. The MCRAT method 
 

This is a nine-step procedure that, according to [13], 
involves the next steps: 

Step 1. Evaluating each of 𝑚 alternatives (A1, A2, …, 
A𝑚) against each of 𝑛 criteria (C1, C2, …, C𝑛), i.e. obtaining 
values 𝑥𝑖𝑗 , with (𝑖, 𝑗) ∈ {1,2, … , 𝑚} × {1,2, … , 𝑛}, as the 

elements of the so-called decision matrix (𝐗), written as 
follows: 

 𝐗𝑚×𝑛 = (𝑥𝑖𝑗)
1≤𝑖≤𝑚,1≤𝑗≤𝑛

= (

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑚1 ⋯ 𝑥𝑚𝑛

) (27) 

Step 2. Calculation of the normalized decision matrix 
(𝐑) in the following way:  

 𝐑𝑚×𝑛 = (𝑟𝑖𝑗)
1≤𝑖≤𝑚,1≤𝑗≤𝑛

= (

𝑟11 ⋯ 𝑟1𝑛

⋮ ⋱ ⋮
𝑟𝑚1 ⋯ 𝑟𝑚𝑛

) (28) 

where the elements 𝑟𝑖𝑗 , (𝑖, 𝑗) ∈ {1,2, … , 𝑚} × {1,2, … , 𝑛}, 

are obtained as: 

 𝑟𝑖𝑗 = 𝑥𝑖𝑗 max
𝑖

(𝑥𝑖𝑗)⁄  (29) 

if the criterion 𝐶𝑗  is maximized, i.e. 

 𝑟𝑖𝑗 = min
𝑖

(𝑥𝑖𝑗) 𝑥𝑖𝑗⁄  (30) 

if it is minimized. 
Step 3. Calculating the weighted normalized decision 

matrix (𝐔) as follows: 

 𝐔𝑚×𝑛 = (𝑢𝑖𝑗)
1≤𝑖≤𝑚,1≤𝑗≤𝑛

= (

𝑢11 ⋯ 𝑢1𝑛

⋮ ⋱ ⋮
𝑢𝑚1 ⋯ 𝑢𝑚𝑛

) (31) 

with the elements 𝑢𝑖𝑗 = 𝑤𝑗𝑟𝑖𝑗 , (𝑖, 𝑗) ∈ {1,2, … , 𝑚} ×
{1,2, … , 𝑛}, whereby 𝑤𝑗  is the weight of the criteria C𝑗 , 

obtained herein using the SWING method [22], 
performed through the following steps: 

Step 3.1. Establishing a 𝑛-tuple (𝑝1, 𝑝2, … , 𝑝𝑛) by 
assigning a number of points to each of the criteria 
C1, C2, …, C𝑛 according to a preference that is 
introduced to express their individual importance 
(this way, the most important and least important 
criteria are, respectively, assigned the greatest and 
least number of points); 
 Step 3.2. Calculation of the criterion weight values 
in the following way: 
 𝑤𝑗 = 𝑝𝑗 ∑ 𝑝𝑗

𝑛
𝑗=1⁄ ,  𝑗 ∈ {1,2, … , 𝑛} (32) 

Step 4. Determination of the ’ideal’ alternative as 
follows: 

 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑛} (33) 
with elements of the set obtained as: 

 𝑞𝑗 = max
𝑖

(𝑢𝑖𝑗) = 𝑞𝑗,max (34) 

if 𝐶𝑗  is the criterion to be maximized, i.e. 

 𝑞𝑗 = max
𝑖

(𝑢𝑖𝑗) = 𝑞𝑗,min (35) 

if it is minimized, with (𝑖, 𝑗) ∈ {1,2, … , 𝑚} × {1,2, … , 𝑛}. 
Step 5. Rearranging the 𝑞𝑗-values so that the first 𝑘 of 

them are those that correspond to the criteria to be 
maximized and the remaining 𝑛 − 𝑘 = ℎ are related to 
the criteria to be minimized. Then, decomposition of the 
set 𝑄 is performed as follows: 

 𝑄 = {𝑞1,max, … , 𝑞𝑘,max} ∪ {𝑞1,min, … , 𝑞ℎ,min} (35) 

Step 6. Rearranging the 𝑢𝑖𝑗-values in the matrix 𝐔𝑚×𝑛 

by rows in a way analogous to that shown in Step 5. Then, 
for each alternative, the following decomposition is 
obtained: 

 𝑈𝑖 = {𝑢𝑖1,max, … , 𝑢𝑖𝑘,max} ∪ {𝑢𝑖1,min, … , 𝑢𝑖ℎ,min} (37) 

with 𝑖 ∈ {1,2, … , 𝑚}. 
Step 7. Calculating magnitudes for each component of 

the ’ideal’ alternative, which is to say: 

 𝑄𝑘 = √𝑞1,max
2 + 𝑞2,max

2 + ⋯ + 𝑞𝑘,max
2  (38) 

 𝑄ℎ = √𝑞1,min
2 + 𝑞2,min

2 + ⋯ + 𝑞ℎ,min
2  (39) 

as well as 

 𝑈𝑖𝑘 = √𝑢𝑖1,max
2 + 𝑢𝑖2,max

2 + ⋯ + 𝑢𝑖𝑘,max
2  (40) 

 𝑈𝑖ℎ = √𝑢𝑖1,min
2 + 𝑢𝑖2,min

2 + ⋯ + 𝑢𝑖ℎ,min
2  (41) 

whereby 𝑖 ∈ {1,2, … , 𝑚}. 
Step 8. Creating the following matrix for each 

alternative: 

 𝐓𝑖 = (
𝑄𝑘 0
0 𝑄ℎ

) (
𝑈𝑖𝑘 0
0 𝑈𝑖ℎ

) = (
𝑡11,𝑖 0

0 𝑡22,𝑖
) (42) 

and calculating the corresponding trace as: 
 𝑡𝑖 = tr(𝐓𝑖) = 𝑡11,𝑖 + 𝑡22,𝑖,  𝑖 ∈ {1,2, … , 𝑚} (43) 

Step 9. Ranking the alternatives according to 
descending order of tr(𝐓𝑖)-values. So, the alternative 
with the maximum value of tr(𝐓𝑖) is declared the optimal 
(best) solution. 

 

3.2. The RAPS method  
 

This method also carried out in nine steps which are 
the following (after [13]): 

Step 1 to 7. The same as Step 1 to 7 presented for the 
MCRAT method (see subsection 3.1). 

Step 8. Calculating the perimeter of the ’ideal’ 
alternative (it is expressed as the perimeter of the right-
angle triangle, whereby components 𝑄𝑘  and 𝑄ℎ  represent 
the base and perpendicular side of that triangle, 
respectively) and perimeter of each alternative. These 
calculations are performed as follows: 

 𝑃 = 𝑄𝑘 + 𝑄ℎ + √𝑄𝑘
2 + 𝑄ℎ

2 (44) 

 𝑃𝑖 = 𝑈𝑖𝑘 + 𝑈𝑖ℎ + √𝑈𝑖𝑘
2 + 𝑈𝑖ℎ

2  (45) 
Then, using Equation (44) and (45), the perimeter 

similarity value is obtained in the following way: 
 𝑃𝑆𝑖 = 𝑃𝑖 𝑃⁄ ,  𝑖 ∈ {1,2, … , 𝑚} (46) 
Step 9. Ranking the alternatives according to 

descending order of 𝑃𝑆𝑖-values. Thus, the optimal (best) 
alternative (solution) is the one that the maximum value 
of 𝑃𝑆𝑖  corresponds to. 

 

3.3. The RAMS method 
 

In [15] the RAMS method was introduced as an 
extension to the previously developed RAPS method. The 
procedure is performed in nine steps as follows: 

Step 1 to 7. The same as Step 1 to 7 presented for the 
RAPS method (see subsection 3.2). 

Step 8. Calculating the median of the ’ideal’ 
alternative, expressed as the median of the right angle 
used for the RAPS, i.e. 

 𝑀 = √𝑄𝑘
2 + 𝑄ℎ

2 2⁄  (47) 
and the median of each alternative 

 𝑀𝑖 = √𝑈𝑖𝑘
2 + 𝑈𝑖ℎ

2 2⁄  (48) 
as well. 

Now, using Equation (47) and (48), the median 
similarity value is calculated as: 
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 𝑀𝑆𝑖 = 𝑀𝑖 𝑀⁄ ,  𝑖 ∈ {1,2, … , 𝑚} (49) 
Step 9. Ranking the alternatives according to 

descending order of 𝑀𝑆𝑖-values. The alternative that the 
maximum value of 𝑀𝑆𝑖  corresponds to is declared the 
optimal (best) alternative (solution). 

 

3.4. The RATMI method 
 

The second method proposed in [15] is the RATMI 
method. It was based on a majority index and the concept 
of the VIKOR method (see subsection 3.5). The RATMI 
procedure entails an eleven-step algorithm involving the 
following steps: 

Step 1 to 8. The same as Step 1 to 8 presented for the 
MCRAT method (see subsection 3.1). 

Step 9. The same as Step 8 presented for the RAMS 
method (see subsection 3.3).  

Step 10. Calculating the majority index between the 
strategies of the MCRAT and RAMS methods, i.e. 

 𝐸𝑖 = 𝑣𝐸𝑡,𝑖 + (1 − 𝑣)𝐸𝑀𝑆,𝑖 (50) 

with 𝑖 ∈ {1,2, … , 𝑚}, whereby 𝑣 and 1 − 𝑣 represent the 
weights of the MCRAT and RAMS strategies, respectively, 
and  

 𝐸𝑡,𝑖 = (𝑡𝑖 − 𝑡∗) (𝑡− − 𝑡∗)⁄  (51) 

 𝐸𝑀𝑆,𝑖 = (𝑀𝑆𝑖 − 𝑀𝑆∗) (𝑀𝑆− − 𝑀𝑆∗)⁄  (52) 

whereby 
 𝑡𝑖 = tr(𝐓𝑖),  𝑡∗ = min

𝑖
tr(𝐓𝑖),  𝑡− = max

𝑖
tr(𝐓𝑖) (53) 

 𝑀𝑆∗ = min
𝑖

𝑀𝑆𝑖 ,  𝑀𝑆− = max
𝑖

𝑀𝑆𝑖  (54) 

The 𝑣-value fulfills condition 0 < 𝑣 < 1, and herein 
𝑣 = 0.5 is adopted. 

Step 11. Ranking the alternatives according to 
descending order of 𝐸𝑖-values. The the optimal (best) 
solution is represented by the alternative having the 
maximum value of 𝐸𝑖 . 

 

3.5. Reference method in the study – VIKOR 
 

This well-known method involves the following 
algorithm (according to [23,24], [3,12]): 

Step 1. The same as Step 1 presented for the MCRAT 
method (see subsection 3.1). 

Step 2. Calculation of the normalized decision matrix 
(𝐑) in the way analogous to that presented in Step 2 of 
the MCRAT method, but now calculating its elements as 
follows:  

 𝑟𝑖𝑗 = (𝑥𝑖𝑗 − max
𝑖

(𝑥𝑖𝑗)) (min
𝑖

(𝑥𝑖𝑗) − max
𝑖

(𝑥𝑖𝑗))⁄  (55) 

if the criterion 𝐶𝑗  is maximized, i.e. 

 𝑟𝑖𝑗 = (𝑥𝑖𝑗 − min
𝑖

(𝑥𝑖𝑗)) (max
𝑖

(𝑥𝑖𝑗) − min
𝑖

(𝑥𝑖𝑗))⁄  (56) 

if it is minimized, with (𝑖, 𝑗) ∈ {1,2, … , 𝑚} × {1,2, … , 𝑛}. 
Step 3. Calculation of the sum and extrication of the 

maximum of the weighted comparability sequence as 
follows:  

 𝑆𝑖 = ∑ 𝑤𝑗𝑟𝑖𝑗
𝑛
𝑗=1  (57) 

 𝑅𝑖 = max
𝑗

(𝑤𝑗𝑟𝑖𝑗) (58) 

with (𝑖, 𝑗) ∈ {1,2, … , 𝑚} × {1,2, … , 𝑛}, where criterion 
weights 𝑤𝑗  were already introduced in subsection 3.1 

(see Step 3, Equation (32)). 
When 𝑅𝑖 = max

𝑖
𝑅𝑖  for two or more 𝑖-indices, then, 

using Equation (57) and (58), the modified value is 
computed as: 

 𝑅𝑖,mod = 𝑅𝑖 + (𝑆𝑖 − max
𝑖

𝑅𝑖) 100⁄  (59) 

Step 4. Calculation of the majority index which is the 
VIKOR method ranking based on as follows: 

 𝑄𝑖 = 𝑣𝑄𝑆𝑖 + (1 − 𝑣)𝑄𝑅𝑖 (60) 
with 𝑖 ∈ {1,2, … , 𝑚}, whereby 𝑣 represents the weight of 
the strategy of fulfilling most of the criteria (the value of 
0.5 is assumed), and 

 𝑄𝑆𝑖 = (𝑆𝑖 − min
𝑖

𝑆𝑖) (max
𝑖

𝑆𝑖 − min
𝑖

𝑆𝑖)⁄  (61) 

 𝑄𝑅𝑖 = (𝑅𝑖 − min
𝑖

𝑅𝑖) (max
𝑖

𝑅𝑖 − min
𝑖

𝑅𝑖)⁄  (62) 

Step 5. Forming the following three ranking lists: 
 First ranking list, according to ascending order 

of 𝑄𝑆𝑖-values; 
 Second ranking list, according to ascending 

order of 𝑄𝑅𝑖-values; and 
 Third, compromise ranking list, according to 

ascending order of 𝑄𝑖-values. 
On all three ranking lists, the first-ranked alternative 

is the one having the least value of the measure which a 
particular list is based on. 

Step 6. Checking which of the following conditions are 
met: 

 Condition 1: The first-ranked alternative on the 
compromise ranking list, obtained for 𝑣 = 0.5 
(denoted by 𝑎(1)), must have a ’sufficient 
advantage’ over the second-ranked alternative 
(denoted by 𝑎(2)), which means that 

  𝑄𝑎(2) − 𝑄𝑎(1) ≥ min(0.25; 1 (𝑚 − 1)⁄ ) (63) 

 Condition 2: The first-ranked alternative on the 
compromise ranking list (for 𝑣 = 0.5), must have 
a ’sufficiently stable’ first position. Namely, at 
least one of the following requirements must be 
fulfilled: (1) alternative 𝑎(1) is first-ranked on 
the first ranking list; (2) alternative 𝑎(1) is first-
ranked on the second ranking list; (3) alternative 
𝑎(1) is first-ranked on the third ranking list, for 
𝑣 = 0.25 and 𝑣 = 0.75. 

Step 7. Decision making as follows: 
 If 𝑎(1) fulfills both Condition 1 and Condition 2, it 

is considered the only and best solution; 
 If 𝑎(1) does not fulfill only Condition 2, it is 

considered ’not sufficiently’ better than 𝑎(2), and 
then a set of compromise solutions consisting of 
these two alternatives is formed; 

 If 𝑎(1) does not fulfill only Condition 1 or both 
Condition 1 and Condition 2, it is considered ’not 
sufficiently’ better than 𝑎(2) and any other 
alternative (denoted by 𝑎(𝑘)) that fulfills the 
following inequality: 

  𝑄𝑎(𝑘) − 𝑄𝑎(1) < min(0.25; 1 (𝑚 − 1)⁄ ) (64) 

Then, a set of compromise solutions is formed. It 
now includes alternatives 𝑎(1), 𝑎(1) and each of 
the remaining alternatives for which Inequality 
(64) is valid. 

 

4. Results and discussion 
 

The results of the analysis conducted in the study are 
presented in two subsections. The first one is a 
presentation of the results obtained by applying the 
MCRAT, RAPS, RAMS and RATMI methods, and the 
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second one is a review of what was obtained after the 
input data had been subjected to the VIKOR method. 

Table 9 shows the results of the evaluation of the six 
alternatives according to each of the eight criteria. Based 

on those data, the ranking of the alternatives by each 
criterion is given in Table 10.  

 

Table 9. Values of the criterion functions for all alternatives 
Alternative Criterion 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

A1 1.56 1.332 0.25 1814.2 0.9933 0.1292 1.0934 8.9 

A2 1.92 1.328 0.20 1836.8 0.9906 0.1699 0.4524 10.9 

A3 1.53 1.319 0.18 1287.1 0.9894 0.2009 1.5808 8.7 

A4 1.33 1.313 0.16 994.0 0.9893 0.2285 1.1713 7.5 

A5 1.60 2.594 0.16 692.0 0.9790 0.2623 0.8533 9.4 

A6 1.50 1.513 0.15 761.7 0.9914 0.2534 0.4843 8.8 

 

Table 10. Ranking of the alternatives by each of the eight criteria  
Rank Criterion 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

1 A4 A4 A6 A5 A1 A1 A2 A4 

2 A6 A3 A5 A6 A6 A2 A6 A3 

3 A3 A2 A4 A4 A2 A3 A5 A6 

4 A1 A1 A3 A3 A3 A4 A1 A1 

5 A5 A6 A2 A1 A4 A6 A4 A5 

6 A2 A5 A1 A2 A5 A5 A3 A2 

 

After looking at Table 10, what can be spotted is that 
alternative A4 is the best for the criteria 𝑓1, 𝑓2 and 𝑓8, but 
it takes the penultimate place when it comes to the 
criteria 𝑓5 and 𝑓7. 

On the other hand, the worst alternative according to 
the criteria 𝑓1, 𝑓4 and 𝑓8 is A2, and also A5 when it is about 
the criteria 𝑓2, 𝑓5 and 𝑓6. However, the former is the best 
for the criterion 𝑓7, and the latter for the criterion 𝑓4. 

As for the criterion weights, four different 8-tuples 
are used in applying all five MCDM methods herein. So, 
the analysis is carried out in four preferential approaches 
(let’s label them as Approach I, II, III, IV, or abbreviated: 
A-I, A-II, A-III, A-IV), represented by the following 8-
tuples of points (weight coefficients):  

 For A-I: 
Points: (10, 8, 15, 4, 4, 4, 4, 12) 
Weight coefficients: (0.1639, 0.1311, 0.2459, 
0.0656, 0.0656, 0.0656, 0.0656, 0.1967); 

 For A-II: 
Points: (10, 6, 8, 4, 4, 4, 4, 15) 
Weight coefficients: (0.1818, 0.1091, 0.1455, 
0.0727, 0.0727, 0.0727 0.0727 0.2727); 

 For A-III: 
Points: (8, 6, 8, 6, 6, 6, 6, 10) 

Weight coefficients: (0.1429, 0.1071, 0.1429, 
0.1071, 0.1071, 0.1071, 0.1071, 0.1786); 

 For A-IV: 
Points: (10, 10, 10, 6, 8, 4, 6, 15) 
Weight coefficients: (0.1449, 0.1449, 0.1449, 
0.0870, 0.1159, 0.0580, 0.0870, 0.2174). 

Below, the author presents the main results of the 
analysis, separately for the methods being tested and the 
reference method. 

 

4.1. Results obtained by applying the MCRAT, RAPS, 
RAMS and RATMI methods 

 

The input data (given in Table 9) are the same for all 
five methods in the study, but the corresponding 
normalized data, shown in Table 11, are the same only 
for the MCRAT, RAPS, RAMS and RATMI methods, due to 
the use of the same normalization method that differes 
from the one used in the VIKOR method. 

Consequently, the weighted values of the data 
included in Table 11 are also the same for these methods 
in all four preferential approaches (A-I, A-II, A-III and A-
IV). Those values are shown in tables 12-15. 

 

Table 11. Normalized criterion function values for all alternatives (MCRAT, RAPS, RAMS, RATMI) 
Alternative Criterion 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

A1 0.8507 0.9858 0.5796 0.3815 1.0000 1.0000 0.4137 0.8427 

A2 0.6939 0.9890 0.7273 0.3768 0.9973 0.7608 1.0000 0.6883 

A3 0.8671 0.9954 0.8295 0.5377 0.9961 0.6431 0.2862 0.8615 

A4 1.0000 1.0000 0.8951 0.6962 0.9960 0.5656 0.3862 1.0000 

A5 0.8329 0.5063 0.8951 1.0000 0.9856 0.4926 0.5301 0.7974 

A6 0.8893 0.8679 1.0000 0.9086 0.9981 0.5100 0.9341 0.8575 
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Table 12. Weighted normalized criterion function values for all alternatives (MCRAT, RAPS, RAMS, RATMI; for A-I) 
Rank Criterion 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

A1 0.1395 0.1293 0.1425 0.0250 0.0656 0.0656 0.0271 0.1658 

A2 0.1138 0.1297 0.1788 0.0247 0.0654 0.0499 0.0656 0.1354 

A3 0.1421 0.1305 0.2040 0.0353 0.0653 0.0422 0.0188 0.1695 

A4 0.1639 0.1311 0.2201 0.0457 0.0653 0.0371 0.0253 0.1967 

A5 0.1365 0.0664 0.2201 0.0656 0.0646 0.0323 0.0348 0.1569 

A6 0.1458 0.1138 0.2459 0.0596 0.0655 0.0334 0.0613 0.1687 

 

Table 13. Weighted normalized criterion function values for all alternatives (MCRAT, RAPS, RAMS, RATMI; for A-II) 
Rank Criterion 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

A1 0.1547 0.1075 0.0843 0.0277 0.0727 0.0727 0.0301 0.2298 

A2 0.1262 0.1079 0.1058 0.0274 0.0725 0.0553 0.0727 0.1877 

A3 0.1577 0.1086 0.1207 0.0391 0.0724 0.0468 0.0208 0.2350 

A4 0.1818 0.1091 0.1302 0.0506 0.0724 0.0411 0.0281 0.2727 

A5 0.1514 0.0552 0.1302 0.0727 0.0717 0.0358 0.0386 0.2175 

A6 0.1617 0.0947 0.1455 0.0661 0.0726 0.0371 0.0679 0.2339 

 

Table 14. Weighted normalized criterion function values for all alternatives (MCRAT, RAPS, RAMS, RATMI; for A-III) 
Rank Criterion 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

A1 0.1215 0.1056 0.0828 0.0409 0.1071 0.1071 0.0443 0.1505 

A2 0.0991 0.1060 0.1039 0.0404 0.1069 0.0815 0.1071 0.1229 

A3 0.1239 0.1066 0.1185 0.0576 0.1067 0.0689 0.0307 0.1538 

A4 0.1429 0.1071 0.1279 0.0746 0.1067 0.0606 0.0414 0.1786 

A5 0.1190 0.0542 0.1279 0.1071 0.1056 0.0528 0.0568 0.1424 

A6 0.1270 0.0930 0.1429 0.0974 0.1069 0.0546 0.1001 0.1531 

 

Table 15. Weighted normalized criterion function values for all alternatives (MCRAT, RAPS, RAMS, RATMI; for A-IV) 
Rank Criterion 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

A1 0.1233 0.1429 0.0840 0.0332 0.1159 0.0580 0.0360 0.1832 

A2 0.1006 0.1433 0.1054 0.0328 0.1156 0.0441 0.0870 0.1496 

A3 0.1257 0.1443 0.1202 0.0468 0.1155 0.0373 0.0249 0.1873 

A4 0.1449 0.1449 0.1297 0.0605 0.1155 0.0328 0.0336 0.2174 

A5 0.1207 0.0734 0.1297 0.0870 0.1143 0.0286 0.0461 0.1733 

A6 0.1289 0.1258 0.1449 0.0790 0.1157 0.0296 0.0812 0.1864 

 

The main results obtained in application of the 
MCRAT, RAPS, RAMS and RATMI methods are presented 
in tables 16-19, respectively. 

The results are given for all preferential approaches. 
In doing so, the quantity denotations introduced in 
subsections 3.1, 3.2, 3.3 and 3.4 are used. 

 

Table 16. The MCRAT method application main results (for A-I, A-II, A-III, A-IV) 
Quantity A1 A2 A3 A4 A5 A6 

 A-I:   𝑄𝑘 = 0.06557;   𝑄ℎ = 0.39515 

𝑈𝑖𝑘  0.06557 0.06540 0.06532 0.06531 0.06463 0.06545 

𝑈𝑖ℎ 0.29937 0.29577 0.33309 0.36786 0.32040 0.36270 

𝑡𝑖 0.12260 0.12116 0.13590 0.14964 0.13084 0.14761 

 A-II:   𝑄𝑘 = 0.07273;   𝑄ℎ = 0.39543 

𝑈𝑖𝑘  0.07273 0.07253 0.07244 0.07243 0.07168 0.07259 

𝑈𝑖ℎ 0.31997 0.28825 0.33250 0.37595 0.31351 0.34830 

𝑡𝑖 0.13182 0.11926 0.13675 0.15393 0.12918 0.14301 

 A-III:   𝑄𝑘 = 0.10714;   𝑄ℎ = 0.34442 

𝑈𝑖𝑘  0.10714 0.10685 0.10672 0.10671 0.10560 0.10694 

𝑈𝑖ℎ 0.26560 0.25828 0.27099 0.30179 0.26687 0.30186 
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Quantity A1 A2 A3 A4 A5 A6 

𝑡𝑖 0.10296 0.10041 0.10477 0.11537 0.10323 0.11543 

 A-IV:   𝑄𝑘 = 0.11594;   𝑄ℎ = 0.35882 

𝑈𝑖𝑘  0.11594 0.11563 0.11549 0.11548 0.11428 0.11572 

𝑈𝑖ℎ 0.28633 0.27338 0.30054 0.33461 0.27809 0.31922 

𝑡𝑖 0.11619 0.11150 0.12123 0.13345 0.11304 0.12796 

 

Table 17. The RAPS method application main results (for A-I, A-II, A-III, A-IV) 
Quantity A1 A2 A3 A4 A5 A6 

 A-I:   𝑄𝑘 = 0.06557;   𝑄ℎ = 0.39515;   𝑃 = 0.86127 

𝑃𝑖 0.67141 0.66408 0.73785 0.80679 0.71189 0.79671 

𝑃𝑆𝑖 0.77956 0.77104 0.85670 0.93674 0.82656 0.92504 

 A-II:   𝑄𝑘 = 0.07273;   𝑄ℎ = 0.39543;   𝑃 =0.87022 

𝑃𝑖 0.72083 0.65802 0.74524 0.83124 0.70680 0.77668 

𝑃𝑆𝑖 0.82834 0.75616 0.85639 0.95521 0.81221 0.89251 

 A-III:   𝑄𝑘 = 0.10714;   𝑄ℎ = 0.34442;   𝑃 = 0.81226 

𝑃𝑖 0.65913 0.64465 0.66895 0.72860 0.65948 0.72905 

𝑃𝑆𝑖 0.81149 0.79365 0.82357 0.89700 0.81191 0.89757 

 A-IV:   𝑄𝑘 = 0.11594;   𝑄ℎ = 0.35882;   𝑃 = 0.85186 

𝑃𝑖 0.71119 0.68583 0.73799 0.80406 0.69303 0.77449 

𝑃𝑆𝑖 0.83487 0.80511 0.86633 0.94389 0.81355 0.90918 

 

Table 18. The RAMS method application main results (for A-I, A-II, A-III, A-IV) 
Quantity A1 A2 A3 A4 A5 A6 

 A-I:   𝑄𝑘 = 0.06557;   𝑄ℎ = 0.39515;   𝑀 = 0.20028 

𝑀𝑖 0.15323 0.15146 0.16972 0.18681 0.16343 0.18428 

𝑀𝑆𝑖 0.76512 0.75624 0.84743 0.93275 0.81602 0.92013 

 A-II:   𝑄𝑘 = 0.07273;   𝑄ℎ = 0.39543;   𝑀 = 0.20103 

𝑀𝑖 0.16407 0.14862 0.17015 0.19143 0.16080 0.17789 

𝑀𝑆𝑖 0.81613 0.73928 0.84639 0.95224 0.79988 0.88491 

 A-III:   𝑄𝑘 = 0.10714;   𝑄ℎ = 0.34442;   𝑀 = 0.18035 

𝑀𝑖 0.14320 0.13976 0.14562 0.16005 0.14350 0.16012 

𝑀𝑆𝑖 0.79400 0.77493 0.80745 0.88744 0.79570 0.88786 

 A-IV:   𝑄𝑘 = 0.11594;   𝑄ℎ = 0.35882;   𝑀 = 0.18855 

𝑀𝑖 0.15446 0.14841 0.16098 0.17699 0.15033 0.16977 

𝑀𝑆𝑖 0.81921 0.78715 0.85382 0.93870 0.79731 0.90044 

 

Table 19. The RATMI method application main results (for A-I, A-II, A-III, A-IV) 
Quantity A1 A2 A3 A4 A5 A6 

 A-I:   𝑡∗ = 0.12116;   𝑡− = 0.14964;   𝑀𝑆∗ = 0.75624;   𝑀𝑆− = 0.93275 

𝐸𝑖  0.05033 0.00000 0.51713 1.00000 0.33935 0.92863 

 A-II:   𝑡∗ = 0.11926;   𝑡− = 0.15393;   𝑀𝑆∗ = 0.73928;   𝑀𝑆− = 0.95224 

𝐸𝑖  0.36152 0.00000 0.50373 1.00000 0.28544 0.68444 

 A-III:   𝑡∗ = 0.10041;   𝑡− = 0.11543;   𝑀𝑆∗ = 0.77493;   𝑀𝑆− = 0.88786 

𝐸𝑖  0.16934 0.00000 0.28918 0.99645 0.18594 1.00000 

 A-IV:   𝑡∗ = 0.11150;   𝑡− = 0.13345;   𝑀𝑆∗ = 0.78715;   𝑀𝑆− = 0.93870 

𝐸𝑖  0.21245 0.00000 0.44154 1.00000 0.06845 0.74866 

 

According to the results from tables 16-19, i.e. the 
values obtained for 𝑡𝑖 , 𝑃𝑆𝑖 , 𝑀𝑆𝑖  and 𝐸𝑖 , with 𝑖 ∈
{1, 2, 3, 4, 5, 6}, final standings can be established for the 
four tested methods. Table 20 shows the ranking lists for 
all four preferential approaches considered. It is obvious 
that the rankings for each of the four MCDM methods 
differ slightly between the four preferential approaches, 

but when compared to each other, it can be observed that 
all these methods produce exactly the same results for 
each of the approaches. 

However, in some studies, not related to geodetic 
applications, e.g. [13] and [15], slightly different ranking 
lists emerged as outcomes.
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Table 20. Final ranking lists after application of the MCRAT, RAPS, RAMS and RATMI methods (for A-I, A-II, A-III, A-IV) 
Rank MCRAT RAPS RAMS RATMI 

 A-I A-II A-III A-IV A-I A-II A-III A-IV A-I A-II A-III A-IV A-I A-II A-III A-IV 

1 A4 A4 A6 A4 A4 A4 A6 A4 A4 A4 A6 A4 A4 A4 A6 A4 

2 A6 A6 A4 A6 A6 A6 A4 A6 A6 A6 A4 A6 A6 A6 A4 A6 

3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 

4 A5 A1 A5 A1 A5 A1 A5 A1 A5 A1 A5 A1 A5 A1 A5 A1 

5 A1 A5 A1 A5 A1 A5 A1 A5 A1 A5 A1 A5 A1 A5 A1 A5 

6 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 

 

Alternative A4 is declared the best, and is followed in 
the ranking list by A6, in A-I, A-II and A-IV. However, in A-
III the optimal one is A6, followed by the second-ranked 
A4. 

So, in general, the MCRAT, RAPS, RAMS and RATMI 
methods consider both alternative A4 and A6 suitable 
solutions for the geodetic network, but A4 should be 
preferred since it is the best solution in as many as three 
out of four approaches. 

4.2. Results obtained by applying the VIKOR 
method 

 

The normalized input data, obtained by using the 
corresponding normalization method are given in Table 
21 and the weighted values of that data for the four 
preferential approaches are shown in tables 22-25, 
respectively. At last, the main results obtained in 
application of the VIKOR method and the final standings 
are given in tables 26 and 27, respectively.

 

Table 21. Normalized criterion function values for all alternatives (VIKOR) 
Alternative Criterion 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

A1 0.3980 0.0147 1.0000 0.9803 0.0000 0.0000 0.5680 0.4122 

A2 1.0000 0.0114 0.5171 1.0000 0.1898 0.3053 0.0000 1.0000 

A3 0.3475 0.0048 0.2833 0.5198 0.2741 0.5388 1.0000 0.3550 

A4 0.0000 0.0000 0.1616 0.2638 0.2802 0.7458 0.6371 0.0000 

A5 0.4547 1.0000 0.1616 0.0000 1.0000 1.0000 0.3553 0.5611 

A6 0.2824 0.1560 0.0000 0.0608 0.1312 0.9327 0.0283 0.3669 

 

Table 22. Weighted normalized criterion function values for all alternatives (VIKOR; for A-I) 
Rank Criterion 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

A1 0.0653 0.0019 0.2459 0.0643 0.0000 0.0000 0.0372 0.0811 

A2 0.1639 0.0015 0.1271 0.0656 0.0124 0.0200 0.0000 0.1967 

A3 0.0570 0.0006 0.0697 0.0341 0.0180 0.0353 0.0656 0.0698 

A4 0.0000 0.0000 0.0397 0.0173 0.0184 0.0489 0.0418 0.0000 

A5 0.0745 0.1311 0.0397 0.0000 0.0656 0.0656 0.0233 0.1104 

A6 0.0463 0.0205 0.0000 0.0040 0.0086 0.0612 0.0019 0.0722 

 

Table 23. Weighted normalized criterion function values for all alternatives (VIKOR; for A-II) 
Rank Criterion 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

A1 0.0724 0.0016 0.1455 0.0713 0.0000 0.0000 0.0413 0.1124 

A2 0.1818 0.0012 0.0752 0.0727 0.0138 0.0222 0.0000 0.2727 

A3 0.0632 0.0005 0.0412 0.0378 0.0199 0.0392 0.0727 0.0968 

A4 0.0000 0.0000 0.0235 0.0192 0.0204 0.0542 0.0463 0.0000 

A5 0.0827 0.1091 0.0235 0.0000 0.0727 0.0727 0.0258 0.1530 

A6 0.0513 0.0170 0.0000 0.0044 0.0095 0.0678 0.0021 0.1001 

 

Table 24. Weighted normalized criterion function values for all alternatives (VIKOR; for A-III) 
Rank Criterion 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

A1 0.0569 0.0016 0.1429 0.1050 0.0000 0.0000 0.0609 0.0736 

A2 0.1429 0.0012 0.0739 0.1071 0.0203 0.0327 0.0000 0.1786 

A3 0.0496 0.0005 0.0405 0.0557 0.0294 0.0577 0.1071 0.0634 

A4 0.0000 0.0000 0.0231 0.0283 0.0300 0.0799 0.0683 0.0000 
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Rank Criterion 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

A5 0.0650 0.1071 0.0231 0.0000 0.1071 0.1071 0.0381 0.1002 

A6 0.0403 0.0167 0.0000 0.0065 0.0141 0.0999 0.0030 0.0655 

 

Table 25. Weighted normalized criterion function values for all alternatives (VIKOR; for A-IV) 
Rank Criterion 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

A1 0.0577 0.0021 0.1449 0.0852 0.0000 0.0000 0.0494 0.0896 

A2 0.1449 0.0017 0.0749 0.0870 0.0220 0.0177 0.0000 0.2174 

A3 0.0504 0.0007 0.0411 0.0452 0.0318 0.0312 0.0870 0.0772 

A4 0.0000 0.0000 0.0234 0.0229 0.0325 0.0432 0.0554 0.0000 

A5 0.0659 0.1449 0.0234 0.0000 0.1159 0.0580 0.0309 0.1220 

A6 0.0409 0.0226 0.0000 0.0053 0.0152 0.0541 0.0025 0.0798 

 

Table 26. The VIKOR method application main results (for A-I, A-II, A-III, A-IV) 
Quantity A1 A2 A3 A4 A5 A6 

 A-I:   𝑆∗ = 0.16609;   𝑆− = 0.58734;   𝑅∗ = 0.04891;   𝑅− = 0.24590 

𝑆𝑖 0.49569 0.58734 0.35007 0.16609 0.51025 0.21454 

𝑅𝑖 0.24590 0.19672 0.06984 0.04891 0.13115 0.07218 

𝑄𝑆𝑖 0.78245 1.00000 0.43676 0.00000 0.81701 0.11503 

𝑄𝑅𝑖 1.00000 0.75035 0.10626 0.00000 0.41747 0.11815 

𝑄𝑖(0.50) 0.89122 0.87517 0.27151 0.00000 0.61724 0.11659 

𝑄𝑖(0.25) 0.94561 0.81276 0.18888 0.00000 0.51736 0.11737 

𝑄𝑖(0.75) 0.83684 0.93759 0.35414 0.00000 0.71713 0.11581 

 A-II:   𝑆∗ = 0.16364;   𝑆− = 0.63973;   𝑅∗ = 0.05424;   𝑅− = 0.27273 

𝑆𝑖 0.44444 0.63973 0.37139 0.16364 0.53960 0.25229 

𝑅𝑖 0.14545 0.27273 0.09682 0.05424 0.15303 0.10007 

𝑄𝑆𝑖 0.58981 1.00000 0.43637 0.00000 0.78967 0.18620 

𝑄𝑅𝑖 0.41747 1.00000 0.19489 0.00000 0.45216 0.20975 

𝑄𝑖(0.50) 0.50364 1.00000 0.31563 0.00000 0.62091 0.19797 

𝑄𝑖(0.25) 0.46056 1.00000 0.25526 0.00000 0.53654 0.20386 

𝑄𝑖(0.75) 0.54673 1.00000 0.37600 0.00000 0.70529 0.19208 

 A-III:   𝑆∗ = 0.22954;   𝑆− = 0.55670;   𝑅∗ = 0.07991;   𝑅− = 0.17857 

𝑆𝑖 0.44079 0.55670 0.40396 0.22954 0.54774 0.24612 

𝑅𝑖 0.14286 0.17857 0.10714 0.07991 0.10714 0.09993 

𝑄𝑆𝑖 0.64571 1.00000 0.53314 0.00000 0.97260 0.05068 

𝑄𝑅𝑖 0.63801 1.00000 0.27601 0.00000 0.27601 0.20293 

𝑄𝑖(0.50) 0.64186 1.00000 0.40458 0.00000 0.62431 0.12680 

𝑄𝑖(0.25) 0.63993 1.00000 0.34030 0.00000 0.45016 0.16486 

𝑄𝑖(0.75) 0.64378 1.00000 0.46886 0.00000 0.79846 0.08874 

 A-IV:   𝑆∗ = 0.17748;   𝑆− = 0.56557;   𝑅∗ = 0.05540;   𝑅− = 0.21739 

𝑆𝑖 0.42898 0.56557 0.36447 0.17748 0.56104 0.22033 

𝑅𝑖 0.14493 0.21739 0.08696 0.05540 0.14493 0.07977 

𝑄𝑆𝑖 0.64807 1.00000 0.48183 0.00000 0.98832 0.11044 

𝑄𝑅𝑖 0.55266 1.00000 0.19479 0.00000 0.55266 0.15040 

𝑄𝑖(0.50) 0.60036 1.00000 0.33831 0.00000 0.77049 0.13042 

𝑄𝑖(0.25) 0.57651 1.00000 0.26655 0.00000 0.66158 0.14041 

𝑄𝑖(0.75) 0.62421 1.00000 0.41007 0.00000 0.87941 0.12043 

 

Based on the insight into the standings given in Table 
27, it can be noted that alternative A4 is ranked first in all 
the preferential approaches. However, having regard to 
the results shown in Table 26, one can conclude that A4 
is ’not sufficiently’ better than alternative A6 in any of the 
four approaches. Thus, the VIKOR method declares both 

A4 and A6 to be suitable solutions for the geodetic 
network, i.e. it is about existing the compromise solution 
represented by the set consisting of alternatives A4 and 
A6.  
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Table 27. Final ranking lists after application of the 
VIKOR methods (for A-I, A-II, A-III, A-IV) 

Rank VIKOR 

 A-I A-II A-III A-IV 

1 A4 A4 A4 A4 

2 A6 A6 A6 A6 

3 A3 A3 A3 A3 

4 A5 A1 A5 A1 

5 A2 A5 A1 A5 

6 A1 A2 A2 A2 

 

4.3. MCRAT, RAPS, RAMS and RATMI outcomes vs. 
VIKOR outcomes 

 

With the intention of evaluating the advantage of one 
alternative over another, especially A4 over A6 (for A-I, 
A-II and A-IV) and vice versa (for A-III), the author uses 
the following relative distances as appropriate measures: 

 𝛿𝑡𝑎(1),𝑎(𝑘) = ∆𝑡𝑎(1),𝑎(𝑘) 𝑊𝑡⁄  (64) 

 𝛿𝑃𝑆𝑎(1),𝑎(𝑘) = ∆𝑃𝑆𝑎(1),𝑎(𝑘) 𝑊𝑃𝑆⁄  (65) 

 𝛿𝑀𝑆𝑎(1),𝑎(𝑘) = ∆𝑀𝑆𝑎(1),𝑎(𝑘) 𝑊𝑀𝑆⁄  (66) 

 𝛿𝐸𝑎(1),𝑎(𝑘) = ∆𝐸𝑎(1),𝑎(𝑘) 𝑊𝐸⁄  (67) 

where 𝑎(1) and 𝑎(𝑘) denote the first-ranked and the 𝑘-
ranked alternative in the list, with 𝑘 ∈ {2, 3, 4, 5,6}, and 

 ∆𝑡𝑎(1),𝑎(𝑘) = 𝑡𝑎(1) − 𝑡𝑎(𝑘) (68) 

 ∆𝑃𝑆𝑎(1),𝑎(𝑘) = 𝑃𝑆𝑎(1) − 𝑃𝑆𝑎(𝑘) (69) 

 ∆𝑀𝑆𝑎(1),𝑎(𝑘) = 𝑀𝑆𝑎(1) − 𝑀𝑆𝑎(𝑘) (70) 

 ∆𝐸𝑎(1),𝑎(𝑘) = 𝐸𝑎(1) − 𝐸𝑎(𝑘) (71) 

whereby 
 𝑊𝑡 = 𝑡𝑎(1) − 𝑡𝑎(6) (72) 

 𝑊𝑃𝑆 = 𝑃𝑆𝑎(1) − 𝑃𝑆𝑎(6) (73) 

 𝑊𝑀𝑆 = 𝑀𝑆𝑎(1) − 𝑀𝑆𝑎(6) (74) 

 𝑊𝐸 = 𝐸𝑎(1) − 𝐸𝑎(6) (75) 

Using the values for 𝑡𝑖 , 𝑃𝑆𝑖 , 𝑀𝑆𝑖  and 𝐸𝑖 , given in tables 
16-19, the relative distances (64), (65), (66) and (67) are 
calculated and presented in tables 28-31. 

 

Table 28. Relative distances between first-ranked and 𝑘-
ranked alternatives in the MCRAT method (for A-I, A-II, 
A-III, A-IV) 

Relative 
distance 

MCRAT 

 A-I A-II A-III A-IV 

𝛿𝑡𝑎(1),𝑎(2)  7.1% 31.5% 0.3% 25.0% 

𝛿𝑡𝑎(1),𝑎(3)  48.2% 49.5% 71.0% 55.7% 

𝛿𝑡𝑎(1),𝑎(4)  66.0% 63.8% 81.2% 78.7% 

𝛿𝑡𝑎(1),𝑎(5)  95.0% 71.4% 83.0% 93.0% 

𝛿𝑡𝑎(1),𝑎(6)  100.0% 100.0% 100.0% 100.0% 

 

Table 29. Relative distances between first-ranked and 𝑘-
ranked alternatives in the RAPS method (for A-I, A-II, A-
III, A-IV) 

Relative 
distance 

RAPS 

 A-I A-II A-III A-IV 

𝛿𝑡𝑎(1),𝑎(2)  7.1% 31.5% 0.5% 25.0% 

𝛿𝑡𝑎(1),𝑎(3)  48.3% 49.6% 71.2% 55.9% 

𝛿𝑡𝑎(1),𝑎(4)  66.5% 63.7% 82.4% 78.6% 

𝛿𝑡𝑎(1),𝑎(5)  94.9% 71.8% 82.8% 93.9% 

Relative 
distance 

RAPS 

 A-I A-II A-III A-IV 

𝛿𝑡𝑎(1),𝑎(6)  100.0% 100.0% 100.0% 100.0% 

 

Table 30. Relative distances between first-ranked and 𝑘-
ranked alternatives in the RAMS method (for A-I, A-II, A-
III, A-IV) 

Relative 
distance 

RAMS 

 A-I A-II A-III A-IV 

𝛿𝑡𝑎(1),𝑎(2)  7.1% 31.6% 0.4% 25.2% 

𝛿𝑡𝑎(1),𝑎(3)  48.3% 49.7% 71.2% 56.0% 

𝛿𝑡𝑎(1),𝑎(4)  66.1% 63.9% 81.6% 78.8% 

𝛿𝑡𝑎(1),𝑎(5)  95.0% 71.5% 83.1% 93.3% 

𝛿𝑡𝑎(1),𝑎(6)  100.0% 100.0% 100.0% 100.0% 

𝛿𝑡𝑎(1),𝑎(6)  100.0% 100.0% 100.0% 100.0% 

 

Table 31. Relative distances between first-ranked and 𝑘-
ranked alternatives in the RATMI method (for A-I, A-II, A-
III, A-IV) 

Relative 
distance 

RATMI 

 A-I A-II A-III A-IV 

𝛿𝑡𝑎(1),𝑎(2)  7.1% 31.6% 0.4% 25.1% 

𝛿𝑡𝑎(1),𝑎(3)  48.3% 49.6% 71.1% 55.8% 

𝛿𝑡𝑎(1),𝑎(4)  66.1% 63.8% 81.4% 78.8% 

𝛿𝑡𝑎(1),𝑎(5)  95.0% 71.5% 83.1% 93.2% 

𝛿𝑡𝑎(1),𝑎(6)  100.0% 100.0% 100.0% 100.0% 

 

In the VIKOR method, when it comes to checking the 
advantage of the first-ranked alternative over the 𝑘-
ranked one, the limit value for six alternatives, obtained 
according to Inequality (64), is 0.20. If the same 
threshold is adopted for the comparison in the MCRAT, 
RAPS, RAMS and RATMI methods, then one concludes 
alternative A4 has not ’sufficient advantage’ over A6 for 
A-I, and vice versa for A-III. On the other hand, A4 has 
’sufficient advantage’ over A6 in A-II and A-IV. 

 

5. Conclusion  
 

According to the outcome of the research conducted 
in the study, a sensitivity of the MCRAT, RAPS, RAMS and 
RATMI algorithms to weight change was observed. This 
claim is supported by the fact that alternatives A4 and A6 
swapped their positions in one (A-III) out of four 
rankings. As a consequence, unlike the VIKOR outcome, 
not the same triplet of alternatives emerged on the top of 
the ranking list every time. In contrast to that, the VIKOR 
strategy produced the same triplet (A4, A6, A3) in each 
preferential approach.  

The advantage of the VIKOR procedure over the 
procedures based on the MCRAT, RAPS, RAMS and 
RATMI algorithms lies in the fact that VIKOR evaluates 
the significance of the advantages between alternatives 
as well as the stability on the first position in the ranking 
list, and extricates a set consisting of all alternatives that 
could smoothly assume the role of the optimal one. In this 
study, it was always the compromise solution set 
consisting of alternatives A4 and A6. 
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Anyway, the MCRAT, RAPS, RAMS and RATMI 
methods can also serve as an appropriate mathematical 
tool in finding the optimal solution in the tasks similar to 
the one being the subject of the analysis in this study. 
This claim is valid since it turned out that in each of the 
four preferential approaches all four methods produced 
the optimal solution that was part of the corresponding 
two-membered compromise solution set extricated in 
the application of the VIKOR method. 

In addition, since the four methods are open to 
changing preferences, as demonstrated by the possibility 
of assigning different weights to the introduced criteria, 
the practical applicability of these methods is obvious. 
Namely, depending of what the main goal is in a specific 
geodetic task, i.e. what is more desirable, higher 
precision or reliability or both, regardless of which of the 
MCRAT, RAPS, RAMS and RATMI methods is used, the 
best solution for a geodetic network can be provided in a 
short time. This is especially important in practice, as 
time also plays an important role. Otherwise, optimizing 
the geodetic network is a complex task, and this 
statement is particularly reflected in the fact that each 
individual civil engineering structure, due to its specific 
geometry, size, position and purpose, determines a 
specific shape and configuration of the accompanying 
geodetic control network. 

At the very end, the author suggests a direction for 
further research. Namely, it could, for instance, be based 
on a comparison of the performance of the MCRAT, RAPS, 
RAMS and RATMI methods with the performance of 
some other MCDM methods that all use the same 
normalization method for data as the one included in the 
algorithms of the first four. Such methods are e.g. Simple 
Additive Weighting (SAW) [25], Preference Selection 
Index (PSI) [26], Measurement Alternatives and Ranking 
According to Compromise Solution (MARCOS) [27], 
Combinative Distance-Based Assessment (CODAS) [28]. 
For instance, with the aim of assessing the effectiveness 
of the methods applied, it could be interesting to expand 
some analyses to multi-criteria decision-making. Such 
analyses are e.g. those that were already presented in 
[29], [30], [31] and [32]. 
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