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ABSTRACT
Wheat, a major contributor to global food security, is highly vulnerable to early heat stress, particularly as climate 
change intensifies. Early sowing practiced to optimize moisture and avoid terminal heat stress, exposes crops to elevated 
temperatures during critical stages like germination, tillering, and grain filling. As a C3 plant, wheat thrives at 15-20°C, 
but early heat disrupts photosynthesis, reduce chlorophyll content, impair carbon partitioning, and negatively affect grain 
quality and yield. To combat these challenges, wheat exhibits various adaptive mechanisms, including improved membrane 
stability, enhanced photosynthesis, and activation of heat shock proteins (HSPs) that protect cellular components from 
heat damage. Breeding strategies should be adopted to mitigate early heat stress to sustain wheat production. Traditional 
breeding focuses on selecting resilient genotypes, while advanced techniques like genome-wide association studies 
(GWAS), marker-assisted selection, and CRISPR-Cas9 offer precise genetic improvements. Speed breeding further 
accelerates development of heat-tolerant varieties. Screening tools like Canopy Temperature Depression (CTD), Heat 
Susceptibility Index (HSI), and SPAD meter readings for chlorophyll content help identify tolerant genotypes. Integrating 
genomics, transcriptomics and metabolomics technologies enhances the understanding of heat tolerance mechanisms. 
Collaborative efforts among breeders, biotechnologists and agronomists are crucial for developing heat-resilient wheat, 
ensuring global food security amidst climate change.
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 Introduction
Out of total world food grain production, wheat 

shares about 30% contribution. Wheat accounts for 
about fifty percent contribution in global grain market.  
Wheat demand is projected to be 840 million tonnes 
to feed around 10 billion people by 2050 (Sharma 
et al., 2015). The well-known constraint behind low 
production in wheat is global warming. Wheat being 
C3 plant requires a range of 15-20OC temperature 
conditions as compared to C4 crop (Ruan et al., 2012).

With global climate change, heat stress is becoming 
a more serious limitation on wheat production (Ni 
et al., 2018). Majorly, abiotic stresses like heat causes 

more yield loss, compared to biotic factors (Coast 
et al., 2022). As global temperatures rise, heat stress, 
a regular risk to wheat in the subtropics, becomes more 
dangerous in regions that produce wheat (Ding et al., 
2021).

Farmers tend to sow wheat in early October to 
utilize most of the moisture after harvesting of rice. It 
saves at least one irrigation of the season. Also, along 
with adoption of good agronomic practices, early 
sowing keeps terminal heat stress escaped. Wheat due 
to early sowing, is harvested till end of March to early 
April. Moreover, most of the present cultivars are not 
bred for early sowing conditions. That is the main 
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reason why present cultivars in wheat mature early and 
are poor yielding. Cultivars for farmer’s field are not 
well adapted to early sowing environments. The role 
of genes behind breeding cultivars of wheat suitable 
for early as well as mid-season planting conditions is 
unknown till date (Bhanja et al., 2021).

Characteristics of wheat environment:
Climate factors such as temperature, moisture, CO2 

levels, weather changes, and soil moisture deficiency 
would have an impact on agricultural productivity, 
either positively or negatively (Joshi and Kar, 2009). 
Deryng et al. (2014) elaborated effects of high CO2 
concentration and impact of ever-changing climate on 
wheat production. The threatening significant effects of 
climate change on dropping yield potential of wheat was 
reported by Tripathi et al. (2016). Wheat production is 
expected to decrease by 6% for every degree increase 
in temperature. Around 100 million hectares of global 
area of wheat is heat prone. This area lies in low lying 
latitude of earth (Braun et al., 2010). Heat stress is 
also becoming a serious problem in colder northern 
wheat-growing regions due to rising severity throughout 
heading to maturity (Liu et al., 2014). Eastern Gangetic 
plains, peninsular region and central regions are most 
susceptible heat prone areas in India (Singh et al., 2007, 
Joshi et al., 2007). Heat stress occurs typically due to 
rising canopy temperature, which is dependent on air 
and soil temperature, soil and canopy properties, and soil 
moisture loss. Joshi et al. (2007) found that reducing the 
‘cold time’ in wheat also reduced yield.

Genetic variability for adaptation and survival  
        under heat stress:

Previous studies have found that high temperatures 
generate a variety of morphological, physiological, 
molecular, biochemical and cellular changes in plants 
(Barnabás et al., 2008; Almeselmani et al., 2012). 
There is growing evidence that heat stress has a major 
detrimental influence on yield during the reproductive 
phases (Farooq et al., 2011; Balla et al., 2012; Semenov 
and Shewry 2011). Major impacts of elevated 
temperatures include pollen sterility and abortion, drop 
in dough quality, hampered grain filling, reduction in 
seed weight etc. (Hays et al., 2007; Altenbach et al., 
2012). In nutshell, yield is compensated on account of 
reduction in grain number, advanced grain maturity, 
reduction in tiller number, plant height, etc. (Rahman 
et al., 2009; Zhang et al., 2010).

Great negative impacts of heat are observed 
during flowering and reproductive stage, of wheat 
(Djanaguiraman et al., 2020). It is reported that after 
anthesis, if temperature rises from normal range 
(15°C-20°C) to high temperatures (40°C-45°C) yield 
of wheat gets by reduced to about 23% of normal 

production (Fleitas et al., 2020). However, reactions are 
also affected by the duration of heat stress, as well as the 
pace at which temperature rises. Because of a process 
known as basal thermotolerance, plants may still grow 
at temperatures over the ideal range. Pretreatment of 
wheat genotypes to mild heat develop tolerance in 
wheat genotypes to high lethal temperatures. Usual 
practice of exposure to gradual increase in temperatures 
develops heat tolerance in wheat genotypes (Qin et al., 
2008; Mittler et al., 2012).

Most sensitive stages in wheat affected by heat 
stress includes stages from flowering to grain filling 
(Farooq et al., 2011). Elevated temperatures degenerate 
tapetum, interfere meiosis (Sakata et al., 2000, Zinn et 
al., 2010), and biomass accumulation, which ultimately 
reduces the grain yield in wheat (Reynolds et al., 2007).

Anatomical/ growth stages and phenophases:
1- Seed germination coupled with Tillering stage:
Various factors influencing seed germination and 

tillering in wheat are triggered by elevated temperatures 
during germination stage in wheat. Seed germination 
and seed vigour are the most significant features for 
obtaining a better crop stand and greater yield, and seed 
germination is primarily dependent on temperature, 
with the temperature range for optimum germination 
varying depending on the crop species. The normal 
temperature range favourable for seed germination in 
wheat is 1-4°C. The percentage of germination goes 
on decreasing above the optimal range of temperature. 
Germination percentage increases as the temperature 
rises from the base to the ideal range, and declines 
as temperature rises over the optimum range. High 
temperatures (45°C) induced cell death and embryo 
damage in Triticum aestivum during the early stages 
of germination. High temperatures are unsuitable 
for wheat development and the establishment of new 
seedlings (Akter and Rafiqul, 2017). Essemine et 
al., (2010) studied that the temperature rise in night 
conditions drops germination percentage at higher rate 
as compared to diurnal temperatures.

2- Grain filling duration:
Heat stress, among other abiotic stresses, has a 

negative impact on plant chlorophyll and grain filling 
stage. During the mid anthesis phases, excessive 
temperatures influence fertilisation and seed set, 
reducing wheat yield (Ferris et al., 1998). High 
temperatures also causes ultra-structure changes in 
the aleurone layer, increasing stomatal density, closing 
stomata, shrinking cell size and a decrease in wheat 
flour quality (Zahra et al., 2021). High temperatures 
limit uptake of sucrose which reduces starch synthesis 
in endosperm. It leads to improper carbon partitioning 
in the wheat plant (Harris et al., 2023).
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3- Flowering and panicle development:
High temperatures have a detrimental effect on 

wheat, reducing productivity and production. High 
temperatures reduce the number of grains and reduce 
the maximum production potential during the floral 
initiation and spikelet development stages (Janjua et al., 
2010). Challenged seedling growth and photosynthesis 
as a result of decreased activity of photosystem II was 
observed in elevated temperature conditions by Tewari 
and Tripathy (1998).

4- Photosynthesis, respiration, and developmental  
           stages:

High temperature affects leaf appearance and 
elongation and shortens the length of leaf elongation. 
It also retards root development during the reproductive 
stage due to reduced carbon partitioning to roots (Batts et 
al., 1998). High temperatures above 40°C have a negative 
impact on photosynthesis and reduce the solubility of 
O2 and CO2. As a result, the rate of photosynthesis is 
reduced, the rate of respiration is increased, and the 
level of CO2 is higher than the level of O2 (Wingler et 
al., 2000). High temperatures directly affects the activity 
of ribulose-1, 5-bisphosphate carboxylase/oxygenase, 
Rubisco binding protein and Rubisco activase in wheat 
leaves (Prasad et al., 2008). Mitochondrial respiration is 
extremely temperature sensitive. When the temperature 
rises beyond 50°C, the rate of respiration drops, resulting 
in the damage of the respiratory mechanism. Short-term 
drought conditions also reduce root and leaf respiration. 
Increased inflow of assimilates ensures higher respiration 
rate of seed, and ultimately reduces yield due to improper 
assimilate partitioning in elevated temperature conditions 
(Wardlaw et al., 1980). According to Rehman et al. 
(2009), productivity in wheat gets reduced per degree 
rise in temperature in tropical, subtropical, desert and arid 
regions. Viable leaf area is reduced which in turn affects 
photosynthetic rate as well as water use efficiency of 
wheat under high temperature stress conditions (Castro 
et al., 2007). Schuster et al. (1990) discovered that the 
source and sink relationship is disturbed in this regard. 
Figure 1 shows the effect of temperature on various 
physiological processes and growth rate of plants (Fitter 
and Hay 2012).

5- Final yield:
High temperatures have an impact on both the 

supply and sink of assimilates, reducing  crop output. 
Under high temperatures, leaf area and photosynthesis, 
as well as shoot and grain biomass, rapidly reduced 
(Shah and Paulsen, 2003). While, temperature elevating 
from 27-32°C at night, grain production decreases by 
90% (Jalil et al., 2020). As cultivated under high night 
temperatures, wheat plants lose 20% of their grain 
weight as compared to normal temperatures, while, 

decreasing trend in seed setting of wheat was observed 
in high temperature conditions during anthesis in wheat 
(Sun et al., 2018). The reduction in grain yield up to 
39%, fifty percent reduction in number of grains per 
spike, twenty four percent reduction in harvest index 
was observed in one report by Pradhan et al. (2015). A 
typical trend of reduction in number of days to booting, 
flowering, maturity and harvesting is main effect of 
heat on wheat. Due to late sown conditions grain filling 
duration window in wheat gets significantly decreased 
and affects yield greatly.

Wheat plants often face heat and drought stress 
simultaneously, especially in regions with arid or 
semi-arid climates. The combined effect can be more 
detrimental than either stress alone, as both impact 
water-use efficiency, photosynthesis, and grain 
development. Breeding and management practices 
focus on developing wheat varieties with combined 
heat and drought tolerance for sustainable productivity. 
Table 1 summarizes the key differences between heat 
stress and drought stress.

Germplasm screening for heat tolerance
Evaluation of indigenous and foreign germplasm 

for heat tolerance is crucial since genetic heterogeneity 
for heat tolerance may exist within wheat genotypes.

Various screening methods at seedling stage are 
found effective while selecting germplasm for heat 
tolerance viz. carbon discrimination method, screening 
by dry weight, screening through canopy temperature 
depression method, screening by observing chlorophyll 
content of leaf, chlorophyll fluorescence of wheat etc.

Leaf senescence, CTD, CT, MTS, grain filling 
duration are some important screening methodologies 
for tolerant germplasm in wheat at later stages 
(Driedonks et al., 2016; Narayanan 2018).

Relation between physiological parameters and  
        heat stress

1- SPAD:
The chlorophyll meter, commonly referred to as a 

SPAD meter, is a compact and portable tool designed 
for measuring leaf greenness, which corresponds to 
the relative chlorophyll concentration in leaves. Unlike 
traditional destructive methods, this diagnostic tool offers 
significant savings in terms of time, space, and resources.

The SPAD meter operates by measuring the 
light transmittance through leaves at two distinct 
wavelengths: 650 nm and 940 nm. These wavelengths 
are selectively absorbed by chlorophyll, allowing the 
device to estimate the chlorophyll content in the leaf. 
Additionally, the SPAD meter provides insights into 
leaf nitrogen content, as chlorophyll concentration 
is closely related to the nitrogen status of plants. 
This nondestructive approach has become a valuable 
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resource in agricultural and environmental studies 
(Netto et al., 2005).

2- Canopy temperature:
Canopy and organs temperature (flag leaf, peduncle 

and spike) can be recorded instantaneously with a hand-
held infrared thermometer. A study was conducted 
which showed high CTD (Canopy Temperature 
Depression) values in Stay Green genotypes under heat 
stress conditions which concluded that Stay Green is 
highly associated with   CTD (Dolferus et al., 2011). A 
positive correlation of canopy temperature depression 
was found with stomatal conductance and grain yield 
(Bonari et al., 2020).

3- NDVI:
It is a type of optical sensor unit. It is measured 

generally in two stages. Firstly, after one month of 
sowing and secondly, one fortnight after anthesis. 
Figure 2 shows NDVI values at different stages in 
wheat crop (Aranguren et al. 2020).

4- Heat susceptibility index (HSI):
HSI of individual genotypes can be calculated by 

the method suggested by Fischer and Maurer (1978). 
The genotypes that have high positive HSI values are 
susceptible to higher temperature and vice versa. If 
HSI value is < 0.5, then the genotype is highly stress 
tolerant, if HSI > 0.5 < l.0, it is moderately stress 
tolerant, and if HSI > 1.0, it is susceptible to heat stress.

5- Heat response index (HRI):
It is a formula/index based on the genotypic 

response to heat. This formula was first used by 
Bidinger et al. (1987). Based on genotypic response the 
germplasm under screening is categorized under groups 
comprising of genotypes which escape heat, genotypes 
which resist heat and genotypes having mechanism of 
tolerance to heat (Munjal and Dhanda, 2016).

6- Stress tolerance (TOL):
TOL was computed using the formula given by 

Hossain et al. (1990). The genotypes having high values 
of TOL show higher yield reduction.

According to study conducted by Shehrawat et al. 
(2020), for a heat tolerant genotype, heat susceptibility 
index and stress tolerance parameters should be on 
the lower side, as these parameters are negatively 
correlated with grain yield. While, the parameters 
like heat response index, heat tolerance index etc. are 
positively correlated with grain yield. Therefore, the 
values of HTI, HRI should be on higher side.

Breeding methods adopted in heat stress
Basically, three types of strategy are adapted by 

plants to combat heat stress
1- Escape mechanism: Plants undergo 

physiological, morphological, biochemical and 

biological modifications in their genotypes and escape 
heat stress duration. Plant completes its life cycle before 
detrimental effects of heat and escape.

2- Defense mechanism: Various heat shock 
proteins, reactive oxygen species gets activated and 
increase in their levels in plant to combat heat stress. 
Plants produce ROS in response to heat stress. Also, 
the heat shock proteins respond rapidly to heat stress.

3- Tolerance: It refers to morphological, biological, 
phenological, biochemical as well as physiological 
modifications in plant to tolerate detrimental effects 
of heat and to maintain cell turgor so as to maintain 
its production levels (Soni et al., 2023)

To prevent denaturation of proteins due to heat 
stress, protein folding is favoured through chaperones. 
Plant start producing more heat shock proteins and 
activity based on HSP’s gets enhanced. All the above-
mentioned activities are significantly enhanced with seed 
priming in nutrient rich media (Chakraborty and Dwivedi 
2021). The mechanism of photosystem II is prevented 
from damage due to special types of heat shock protein 
i.e sHSP’s. It prevents protein damage and ensure high 
photosynthetic rate of the plants by regularizing electron 
transport chain. It also ensures proper ATP synthesis and 
plants grow normally (Haslbeck and Vierling, 2015).

Morphological adaptations
• good seed potential
• proper vegetative growth
• leaf rolling
• inhibited early leaf senescence
• better biomass accumulation
Physiological alteration
• better tillering habit
• increase membrane thermostability
• better photo assimilate translocation
• active photosynthetic metabolism
Biochemical alteration
• sustaining high chlorophyll content
• enhanced activity of soluble starch synthase 

enzyme
• ROS scavenging and detoxication
Molecular alteration
• activation of stress responsive proteins
• protein folding and regeneration, denaturation 

of abnormal protein
• inhibition of apoptosis
• protection of cytoskeleton
Conventional breeding:
Breeding programmes are typically carried out in 

an area that is comparable to the crop’s growing region. 
Accordingly, breeding lines should be chosen for heat 
tolerance while the weather is hot (Mickelbart et al., 2015). 
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To select superior genetic stock against heat stress, 
stable performance of plant in terms of yield in heat 
stress conditions is a conventional approach to focus 
upon (Mishra et al., 2014). Masthigowda et al. (2022) 
proposed that pollen viability is a crucial characteristic 
for screening wheat genotypes’ tolerance to withstand 
heat stress. According to another study conducted by Ul 
Hassan et al. (2021), high potential grain weight under 
heat stress may potentially be a more important criterion 
in selecting cultivars for heat tolerance and resilience 
to changing future climate conditions. It is necessary 
to identify donor genotypes for heat tolerance through 
genetic resource screening. Establishing heat stress 
tolerant genotypes by examining regional genotypes 
of wheat that are highly adapted to heat stress is the 
first stage in developing a wheat breeding programme 
for heat stress (Bita and Gerats 2013).

Advanced breeding:
To create heat-stress-tolerant cultivars, advanced 

breeding techniques includes GWAS and marker-
assisted backcrossing. Genome diversity among 
species yielded in genes/QTL’s responsible for heat 
tolerance in wheat (Wahid et al., 2007). SSR and 
AFLP markers were used in various studies to map 
these QTL’s (Lu et al., 2020). Advance markers such 
as, DArT (Diversity Arrays Technology markers), 
SNP’s (Single Nucleotide Polymorphism), NGS (Next 
Generation Sequencing), etc. are found promising in 
breeding heat tolerant genotypes in recent years in 
wheat crop (Cabral et al., 2018; Sonah et al., 2012). 
Genomic selection may be coupled with GWAS 
or QTL studies to better incorporate trait of heat 
tolerance in novel genotypes. These methods can be 
found effective for pyramiding genes from diverse 
genome size (Bassi et al., 2016).

With the complexity of the underlying heat 
tolerance mechanisms, genome wide analysis has 
proven to be a valuable method for identifying heat 
stress responsive genes (Wang et et al., 2015). Research 
is also oriented towards functional analysis of genes for 
heat tolerance in background of transgenics (Clavijo 
et al., 2017). Study of overexpression of gene related 
to heat tolerance and genes contributing sense and 
response to heat are also revolutionary and trending 
areas of research now a days (Zang et al., 2017).

Deep insights to understand mechanism of heat 
tolerance at transcriptomic, metabolomic and genomic 
levels is need of the hour. It will better respond to 
ongoing efforts to combat heat (Bhardwaj et al., 2021). 
All chemical strategies linked to heat stress tolerance in 
wheat plants start at a few heat stress tolerance genes 
that contain genomic DNA (Deshmukh et al., 2014). 
Genes contributing heat tolerance in wheat has been 

determined through studies of genome expression 
and genomic screen (Yeh et al., 2012). Heat tolerance 
genes’ mRNAs (transcript products) are translated into 
functional proteins, which in turn produce proteomes 
(proteomics), which are responsible for the tolerance  to 
heat stress. Plants use small non-protein coding RNAs, 
or microRNAs, to show some post transcriptional gene 
expression. Understanding the mechanisms underlying 
wheat’s heat tolerance is improved by research on 
microRNAs and micromics (Chinnusamy et al.,  2007). 
According to Abdulrahman et al. (2020), metabolomics 
is an additional omics technique that can be applied to 
the phenotyping the traits contributing to heat tolerance 
in genetically modified plants. To elucidate the response 
pattern of plants against abiotic as well as biotic stress and 
to determine the function of genes contributing to trait 
of concern, metabolomics is the better possible way out.

Traditional breeding procedures, which might 
take more than ten years to generate high- performing 
cultivars with targeted features, are proving to be 
ineffective and become a barrier in developing heat-
tolerant wheat varieties. However, a new breeding 
method known as ‘speed breeding’ has been 
developed to shorten the generation time, accelerate 
the development, marketing, and commercialization 
of improved plant varieties (Imam et al., 2024). It 
manipulates temperature, light duration, and intensity 
to accelerate the crop development. Every year, 
this speed breeding method can produce up to six 
generations of bread wheat (Triticum aestivum) and 
durum wheat (Triticum durum) (Watson et al., 2018). 
Recently, genome editing tools and resources such as 
CRISPR-Cas9, TILLING, and others have been used to 
improve wheat heat tolerance (Liang et al., 2017). As 
a result, the combination of these   advanced tools and 
speed breeding may provide scientists with an effective 
inducement to conduct heat tolerance research in wheat.

Transgenic Approach:
In comparison to traditional breeding and marker-

assisted selection programmes, genetic engineering’s 
direct introduction of a limited number of genes looks 
to be a more desirable and quick way to improve stress 
tolerance. Current engineering procedures rely on the 
transfer of one or more genes encoding biochemical 
pathways or signaling pathway endpoints that are 
regulated by a constitutively active promoter. These 
gene products offer protection against environmental 
challenges, either directly or indirectly. Transgenic 
technology has developed as an effective technique for 
enhancing crop genetics in order to enhance survival, 
growth, and yield (Sun et al., 2022). However, little 
progress has been made towards developing heat-
tolerant transgenic wheat plants.

11(1):1-10, 2025
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Conclusions
Breeding for heat stress in field crops is a major 

challenge at global level. The heat stress effect are 
usually confounded with water stress. Heat stress 
impairers photosynthesis, carbohydrates, proteins, 
lipid metabolism and cell membrane functions that 
lead to decline in plant growth and consequently grain 
yield. To maintain high yields with better response to 
heat stress in crops is best possible through various 
metabolic, metabolomic, transcriptomic, biochemical 
and molecular responsive mechanisms. In order to 

infuse tolerance against heat stress in wheat genotype, 
assembly of gene constellations determining heat shock 
responses, membrane thermal stability and vernalization 
responses should be accommodated in agronomic elite 
wheat genotypes. Different agronomic options, as well 
as biochemical and molecular approaches, must be 
combined to investigate the realistic response of plants 
against heat stress at the field level. Collaborative 
team efforts from plant breeders, biotechnologists, 
molecular biologists and physiologists would aid in the 
developing novel thermo-tolerant genotypes in wheat 
to combat heat stress globally.

Figure 2. NDVI values at different stages in wheat crop (Aranguren et al., 2020).

1 SPAD: 

The chlorophyll meter, commonly referred to as a SPAD meter, is a compact and portable 
tool designed for measuring leaf greenness, which corresponds to the relative chlorophyll 
concentration in leaves. Unlike traditional destructive methods, this diagnostic tool offers 
significant savings in terms of time, space, and resources. 

The SPAD meter operates by measuring the light transmittance through leaves at two distinct 
wavelengths: 650 nm and 940 nm. These wavelengths are selectively absorbed by chlorophyll, 
allowing the device to estimate the chlorophyll content in the leaf. Additionally, the SPAD meter 
provides insights into leaf nitrogen content, as chlorophyll concentration is closely related to the 
nitrogen status of plants. This nondestructive approach has become a valuable resource in 
agricultural and environmental studies (Netto et al. 2005). 
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high CTD (Canopy Temperature Depression) values in Stay Green genotypes under heat stress 
conditions which concluded that Stay Green is highly associated with  CTD (Dolferus et al. 2011). 
A positive correlation of canopy temperature depression was found with stomatal conductance 
and grain yield (Bonari et al. 2020). 
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