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Abstract- Advanced technologies like Ram Air Turbines (RATs) are being investigated because of the aviation industry's need 

for fuel-efficient and alternative renewable energy sources. In situations where power generation is necessary in the event of an 

emergency involving unmanned aerial vehicles (UAVs), RATs are essential. Optimising the RATs' performance—including 

power output and operational stability—under variable and unexpected wind conditions is the main obstacle, though. 

Conventional control techniques frequently don't adjust to these changing conditions. In order to monitor the ideal turbine 

rotation speed, a sliding mode control rule is developed in the proposed controller. This article emphasises the need of using a 

recurrent neural network (RNN) to identify unpredictable wind turbine dynamics. Control over maximum power extraction is 

then made possible by the development of an online update mechanism that provides real-time weight changes for the RNN. 

Simulation findings show that, even in the presence of significant nonlinearities and system uncertainties, the proposed controller 

performs 13 times better than a conventional control strategy in monitoring the ideal turbine rotation speed and obtaining the 

maximum wind output from RATs. 

Keywords Wind Power, Maximum wind power extraction, UAVs, Sliding Mode Control, Recurrent Neural Network, Ram 

air unit air. 

1. Introduction 

A significant portion of global carbon dioxide emissions 

are attributed to the aviation industry, which has been 

identified as the primary emitter of greenhouse gases [1]. The 

aviation industry has been compelled to discover ways to 

minimise fuel consumption by the airline sector and 

alternative power sources to lower the demand for fuel 

(UAVs) due to severe rules and increased environmental 

consciousness. Using Ram Air Turbines (RATs) in these 

vehicles, which harness wind power while in flight, is one 

method that addresses the issues [2]. This approach is suitable, 

but it could be ineffective and need more power, which could 

be problematic for UAVs and other equipment. Therefore, 

these systems need to perform better so that the UAVs can 

generate the most power possible to fly for extended periods 

of time or for other uses where high energy is required rather 

than low. For instance, in the case of primary power failure, 

avionics systems, flight instruments, and auxiliary power units 

are all essential components that guarantee the UAVs can be 

manoeuvred, controlled, and securely landed [3].  

These methods for improving RAT's performance and 

boosting its power output have been covered in articles by 

several academics.  

The authors of [4] suggest a passivity-based sliding-mode 

control (PB-SMC) method for tracking the maximum power 

point in a Permanent Magnet Synchronous Generator 

(PMSG). The technique uses passivity theory to enhance 

system damping and incorporates a sliding-mode control to 

boost system resilience against uncertainty. Case studies and 

hardware-in-loop testing verify the study’s usefulness and 

excellence. However, the method ignores real-time flexibility 

to changing operational conditions in favour of improving 

damping and durability. Using a doubly fed induction 

generator (DFIG) for optimal power extraction and improved 
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fault ride through capability, the second paper [5] designs a 

robust sliding-mode control for wind energy conversion 

systems (WECS) using nonlinear perturbation observers. 

However, it does not specify whether it can be implemented 

to RATs. The proposed approach combines strong 

nonlinearities, generator parameter uncertainties, and wind 

speed unpredictability to generate a perturbation that is 

evaluated live by a sliding-mode state and perturbation 

observer (SMSPO). The method removes conventional 

current regulation loops, simplifying the system.  

Multi-variable (SMC) control for UAV engines is 

introduced in [6], which is an approach that has not yet been 

proven in this application. The boundary layer approach is 

used to solve the chattering issue in SMC, and NASA's 

Commercial Modular Aero-Propulsion System Simulation 

40k (C-MAPSS40k) is used to evaluate the control logic. 

Under various flight situations, the multi-variable SMC's 

resilience is investigated. The strategy concentrates on 

improving resilience and decreasing chattering, but it could 

not adequately handle the requirement for dynamic 

responsiveness to quickly shifting circumstances and real-

time flexibility. Centrifugal angle control, which works well 

for RATs, is used in another article [7]. The correctness of the 

model is tested against full-scale wind tunnel testing using 

computers and moment equilibrium analysis. Increasing 

spring stiffness and decreasing the blade component's inertia 

product can boost the rotor's stable rotation speed, according 

to a sensitivity analysis. However, changing the damping 

coefficient accelerates the achievement of stability without 

compromising the stability of the speed. 

By combining a PID-control strategy with an integral 

sliding mode control rule and a (RNN) for simulating the 

uncertain dynamics of (RATs), this research fills in the gaps 

found in all previous techniques. This is evidence of the work 

done by [8], albeit in a new context. Furthermore, MATLAB 

Simulink was utilised rather than hardware experiments. This 

combination increases flexibility, guarantees real-time 

updates, and stabilises the rotating speed. Under various 

nonlinearities, it maximises power production more 

effectively. An RNN can achieve the highest power output and 

maintain system stability in highly nonlinear and rapidly 

changing situations because to its continuous evaluation and 

updating capabilities. This can therefore address the issues 

mostly brought about by PB-SMC and SMSPO-based 

approaches. 

2. Wind Speed Forecasting 

2.1. Methodology 

The forecasting mechanism that this paper proposes provides 

real-time wind speed predictions, critical to optimising power 

generation in RATs on UAVs. By integrating LSTM 

techniques for predicting wind speed trends and uncertainties 

in the system, the control system allows turbine operation to 

adapt in real-time to obtain maximum energy in varying wind 

conditions. This prediction allows measures to be taken in 

proactive control and helps to limit power loss caused by 

sudden shifts in wind, ensuring an increased systematic 

efficiency and stability. The UAV benefits from continuous 

power supply, endurance, and operational reliability due to the 

forecasting system, making it more an indispensable part of 

the overall power maximisation design. 

The data set contains meteorological reanalysis data for 

Dhahran, Saudi Arabia. It was downloaded from the Wind 

Navigator Data Downloaded 3.0.0 on March 22, 2019. 

Source: NASA/GSFC, Giovanni, user-provided data from 

AWS True Power LLC Data Information page” MERRA2 

MNS”; (Scientist/Program manager) Chad Augustine; and 

RET Screen. It is situated at 26.5◦ Latitude and 50◦ Longitude. 

It contains hourly meteorological measurements from January 

1, 1980, to 2019, as shown in Fig. 1. The following 

measurements are averaged and recorded: 

• wind speed at 50 meters in meters per second 

• wind direction at 50 meters measured in degrees 

• temperature at 10 and 2 meters above the ground in Celsius 

degrees 

• atmospheric air pressure at ground level measured in 

kilopascals. 

The encoder-decoder LSTM architecture works on tasks like 

machine translation and text summarization by transforming 

one sequence into another. This approach deals with variable-

length sequences using an encoder to process the input 

sequence into a fixed-size context vector that captures 

essential information. Then, the decoder uses this vector to 

produce the output sequence. The encoder-decoder LSTM has 

two sets of LSTMs: one for encoding and another for 

decoding, controlling complicated sequential dependencies. 

Its keys are the input sequence X, context vector C, and output 

sequence Y. In Fig. 1, the model is structured architecturally 

with its data flow.  

 

Fig. 1. plot of wind speed distribution at 50 meters. 



INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION  
K. Alfuwail et al., Vol.9, No.1, March 2025 

3 
 

 

Fig. 2. EnDe-LSTM model architecture for univariate time 

series data. 

2.2. Results 

 

Fig. 3. Training and Validation loss curves over 200 

epochs. 

 

Fig. 4. The prediction of EnDe-LSTM. 

The EnDe-LSTM model’s comparative results in Fig. 8 

show a better fit at a height level of 50 meters, with lower 

MSE values indicating better fit. The model’s strength is 

evident in its decreasing and stable training error and 

remanding validation errors, proving its generalization 

well. The model’s R2 score of almost 0.8 also confirms 

its strength. 

As in Fig. The EnDe-LSTM model is a high-accuracy 

forecasting algorithm for wind speed series prediction, 

providing 48 predicted time steps and one future time step 

seven times in every group. Figure 10 shows a strong 

correlation between predicted and actual values, crucial 

for wind energy applications. It’s inaccurate since the 

focus is on combining it with the sliding mode controller. 

3. The Need for The Proposed Approach 

 

Fig. 5. The Hexacopter UAV. 

 

 

Fig. 6. Speed and Energy consumption vs. Time. 

 

A Hexacopter UAV was experimented with for 

autonomous flight for around 6 hours and a half, as in Figure 

1 and Fig. 2 shows that This experiment measures GPS speed 

and battery energy consumption over time, with the speed 

leaping between varied points and reaching its peak speed at 

4.13 units, while the energy consumption is seen to rise 

gradually to a maximum of 33.81 units. The data set that we 

have here determines the fact that whenever the system is 

subjected to various loads, power consumption is always 

increased, which, in turn, underpins the fact that efficient 

generation of power is highly recommended. Implementing a 

renewable power generator, like the Ram Air Turbine (RAT), 

could optimize energy usage, predominantly during peak 

times, guaranteeing better system performance and 

sustainability. 

2. Methodology 

3.1. Ram Air Turbine 

Small wind turbines known as ram air turbines (RAT) are 

employed as power sources in aeroplanes and are coupled to 

either a hydraulic pump or an electrical generator [9]. Because 

of the vehicle's speed, they employ ram pressure to create 

power from the air stream [10]. After a total power failure, the 

RAT can be manually or automatically deployed. It retracts 

within the fuselage. Between RAT deployment and power 

outages, batteries are used. Both the primary engine and the 
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auxiliary power unit are fuel-burning turbine engines used in 

modern automobiles. RAT usually operates on the basis of 

electrical generation, rotational dynamics, and aerodynamic 

principles. Some of the fundamental equations that can be 

utilised to explain the RAT are listed below: The wind power 

that is collected is determined by: 

𝑅 =
1

2
𝜌𝐴2𝜈3𝐶𝑝(𝜆, 𝛽) 

(1) 

Air density, turbine radius, wind speed, and the power 

capture coefficient—which changes with pitch angle and tip 

speed ratio—are all taken into account in this formula to 

calculate the power harvested from the wind. 

𝜆 =
𝜔𝑟𝑅

𝜈
 

(2) 

The wind speed, the turbine's radius, and its rotational 

speed are used to compute the tip speed ratio. The following 

provides the aerodynamic torque: 

𝑇𝑎 =
1

2
𝜌𝑅3𝐶𝑃(𝜆, 𝛽)

𝜈2

𝜆
 

(3) 

The force that propels the turbine is called aerodynamic 

torque, and it depends on the power capture coefficient, wind 

speed, turbine radius, and air density. The ideal rotational 

speed, which is determined by the ideal tip speed ratio and 

wind speed, guarantees that the RAT runs at its most efficient 

point: 

𝜔𝑟,𝑜𝑝𝑡 =
𝜆𝑜𝑝𝑡𝜈

𝑅
 

(4) 

The maximum electrical power output under optimal 

conditions is given by: 

𝑃𝑔,𝑜𝑝𝑡 = 𝐶𝑃𝑛𝜔𝑟
3 (5) 

The greatest electrical power production attained under 

ideal circumstances is known as the optimum generator 

power. Rotational speed, efficiency, and power control gain 

all play a role. The power control gain, which is described as 

follows, makes determining the ideal power output easier: 

The air density (ρ), turbine radius (R), and maximum 

power capture coefficient (Cp,max) are all included in this 

equation. By taking into account a number of factors, the 

computations maximise the RAT system's performance and 

efficiency in UAVs, guaranteeing excellent electrical system 

efficiency and maximum power extraction. 

3.2. Drive Train Dynamics 

The behaviour and operations of several components that 

transform and transmit power from movement to the generator 

are known as the drive train dynamics [11]. Two centralised 

masses make up this system, which is defined by a framework 

that incorporates torsion and damping. Therefore, when the 

turbine's rotational speed and the generators are impacted, the 

mechanical forces and torques are modelled. Examining the 

dynamics is essential to improving the performance and 

durability of wind energy conversion systems [12]. 

3.3. PMSG Dynamics 

In utility-scale wind energy production systems, the 

Permanent Magnet Synchronous Generator (PMSG) is a 

dynamically regulated drivetrain technology that streamlines 

the drive system and boosts efficiency. But according to some 

experts [13], it has disadvantages, particularly when the 

mechanical power transfer is eliminated. PMSG is a good 

option for wind turbine applications because of its increased 

efficiency, durability, and lack of rotor losses. In order to save 

costs and improve performance, for instance, a research 

compared conventional flexible drivetrain topologies to the 

optimal stiff 3-point mount arrangement [14]. The framework 

of applying PMSG to the UAV's RAT structure is depicted in 

Fig. 3, and Fig. 5 provides a detailed view of the controller. 

 

Fig. 7. Structure of a Ram Air Turbine with PMSG. 

 

The rotor speed (𝜔𝑟), stator resistance (𝑅𝑠), and stator 

inductance (𝐿𝑠) all have an impact on the stator d-axis and q-

axis currents (𝑖𝑑 and 𝑖𝑞) and voltages (𝑢𝑑 and 𝑢𝑞), which 

describe the dynamics. These are the main equations: 

𝑖̇̇𝑞 = −
𝑅𝑠

𝐿𝑠

𝑖𝑞 − 𝑛𝑝𝑛𝑔

𝜓𝑓

𝐿𝑠

𝜔𝑟 +
𝑢𝑞

𝐿𝑠

 
(7) 

𝑖̇̇𝑑 = −
𝑅𝑠

𝐿𝑠

𝑖𝑑 − 𝑛𝑝𝑛𝑔

𝑖𝑞

𝐿𝑠

𝜔𝑟 +
𝑢𝑑

𝐿𝑠

 
(8) 

The permanent magnet flux is denoted by 𝜓𝑓, whereas 
the number of pole pairs and gearbox ratio are denoted by 
𝑛𝑝 and 𝑛𝑔, respectively. The following provides the 
electromagnetic torque (𝑇𝑔): 

𝑇𝑔 =
3

2
𝑛𝑝𝜓𝑓𝑖𝑞 

(9) 

𝑘∞ =
1

2
𝜌𝑅5

𝐶𝑃,𝑚𝑎𝑥

𝜆𝑜𝑝𝑡
3  

(6) 
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A unity power factor is attained by regulating the d-axis 

current (𝑖𝑑) to zero. The equations that have been simplified 

are: 

𝑖𝑞 =
𝑅𝑠

𝐿𝑠

𝑖𝑞 − 𝑛𝑝𝑛𝑔

𝜓𝑓

𝐿𝑠

𝜔𝑟 +
𝑢𝑞

𝐿𝑠

 
(10) 

 

When these equations are entered into the drive train 

dynamics equation's time derivative, we get: 

 

The dynamic equation may be rewritten as follows, taking into 

account a number of variables like as mistakes, parameter 

fluctuations, and unmodeled dynamics: 

�̇�𝑟 = (𝑎 + 𝛥𝑎)�̇�𝑟 + (𝑏 + 𝛥𝑏)𝜔𝑟 +  (𝑐 + 𝛥𝑐)𝑢𝑞 + 
𝑇𝑎 + �̇�𝑎

𝐽
𝑑

 

Where a, b, and c are nominal parameters defined as: 

𝑎 =
𝐵𝑑

𝐽
𝑑

+
𝑅𝑠

𝐿𝑠

 
(13) 

𝑏 =
3(𝑛𝑝𝑛𝑔𝜓

𝑓
)2

2𝐽
𝑑

𝐿2
𝑠

+
𝐵𝑑𝑅𝑠

𝐿𝑠𝐽
𝑑

 
(14) 

𝑐 =
3𝑛𝑝𝑛𝑔𝜓

𝑓

2𝐽
𝑑

𝐿𝑠

 
(15) 

By identifying the nominal ranges of 𝑇𝑎, 𝜔𝑟, and 𝑢𝑞, the 

lumped uncertainty factor 𝑑 may be estimated offline. This 

uncertainty component is mostly produced by variations in 

unmodeled dynamics, system properties, and aerodynamic 

torque. 

3.4. Neural Network 

Wind energy generators' doubtful points (d) are precisely 

estimated using neural networks (RNNs). Their efficacy stems 

from their capacity to promptly comprehend intricate 

disturbances and torque variations, as well as to update 

weights online [15]. RNNs choose the right input signs to 

eliminate aggregated uncertainty. Fig. 4 shows the structure of 

the RNN. The following is a representation of the turbine 

aerodynamic torque in relation to generator power: 

These parameters can be used to calculate the lumped 

uncertainty (𝑑). The RNN's output is an estimate of 𝑑, and its 

inputs are selected as 𝑃𝑔 and 𝜔𝑟. 

The input layer’s two inputs and outputs are defined as 

follows: 

 

The measured turbine rotation speed (𝜔𝑟𝑚) and generator 

power (𝑃𝑔𝑚) are filtered to remove noise: 

The inputs and outputs in the hidden layer are shown as: 

 

where 𝑃𝑔𝑚 is the computed generator power and 𝜔𝑟𝑚 is the 

observed RAT rotation speed. To get the lumped uncertainty 

(𝑑), one neurone in the output layer adds the weighted total of 

all the output signals from the hidden layer. 

 

 

where 𝜔𝑗 denotes the weight between the hidden layer and the 

𝑂𝑗 is the output of the hidden layer. 

3.5. Adjustable Sliding Mode Control Drive Train Dynamics 

For instance, system uncertainties and outside disruptions 

pose a serious threat to power extraction systems' 

functionality. An adaptive and reliable control approach must 

be put in place in order to optimise power extraction and 

maintain the ideal turbine rotation speed. The system uses an 

integral sliding mode controller to provide a nonlinear robust 

control approach that accounts for the uncertainties in the 

system [16]. The suggested controller's structure is depicted in 

Figure 5. Through online parameter updating, the SMC is 

designed to monitor the ideal turbine rotation speed and adjust 

for outside wind disturbances. The sliding mode surface is 

defined as follows in order to preserve resistance to outside 

disturbances and accomplish desired closed-loop speed 

tracking performance: 

where k1 and k2 are constants, and 𝜏 is a dummy variable for 

integration. Setting 𝑥¤(𝑡)= 0, we obtain: 

The Laplace transformation of this equation results in: 

This transfer function demonstrates that the system can be 

stabilized by appropriately choosing the coefficients k1 and 

k2, enabling effective rejection of disturbances and 

uncertainties. Considering unmodeled dynamics and external  

𝑢𝑑 = −𝑛𝑝𝑛𝑔𝜔𝑟𝐿𝑠𝑖𝑞 (11) 

�̇�𝑟 =
𝑇𝑎

𝐽𝑑

+
𝑇𝑔𝑅𝑠

𝐿𝑠𝐽𝑑

+
𝐵𝑑

𝐽𝑑

𝜔𝑟 −
3𝑛𝑝𝑛𝑔𝜓𝑓

2𝐽𝑑𝐿𝑠

𝜔𝑟 −
3(𝑛𝑝𝑛𝑔𝜓𝑓)2

2𝐽𝑑𝐿2
𝑠

𝑢𝑞 (12) 

𝑃𝑔 =
𝑃𝑚

𝑛
 

(16) 

𝑥1 = 𝜔𝑟;     𝑥2 = 𝑃𝑔;  (17) 

𝑥1 =
𝜔𝑟

1 + 0.05𝑠
; 𝑥2 =

𝑃𝑔𝑚

1 + 0.05𝑠
 

(18) 

𝐼1 = 𝑢𝑖𝑂𝑗(𝑘 − 1) + ∑ 𝑥𝑖�̇�𝑂𝑖

6

𝑖=1
; 

(19) 

𝑂𝑗 = 𝑔(𝐼𝑗) =
exp(𝐼𝑗)

exp(𝐼𝑗) + exp(−𝐼𝑗)
𝑓𝑜𝑟 𝑗 = 1,2, … ,6 

(20) 

�̂� = ∑ 𝜔𝑇
𝑗𝑂𝑖

6

𝑗=1
 

(21) 

𝑧(𝑡) = �̇�𝑟 + 𝑘1𝜔𝑟 + 𝑘2 ∫ (
𝑡

0

𝜔𝑟 − 𝜔𝑟,𝑜𝑝𝑡)𝑑𝜏 
(22) 

𝜔�̇� + 𝑘1𝜔𝑟 + 𝑘2 ∫ (
𝑡

0

𝜔𝑟 − 𝜔𝑟,𝑜𝑝𝑡)𝑑𝜏 = 0 
(23) 

𝜔𝑟

𝜔𝑟,𝑜𝑝𝑡

=
𝑘2

𝑠2 + 𝑠𝑘2 + 𝑘2

 
(24) 



INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION  
K. Alfuwail et al., Vol.9, No.1, March 2025 

6 
 

disturbances, the sliding mode control law is formulated as: 

 

where k is a positive value for the continuous control 

gain. The time derivative of V(t) is as follows when the 

control rule is used in place of the sliding mode surface: 

 

To ensure stability, a Lyapunov function 𝑉(𝑡) is defined as: 

 

Where the adaptation matrix with positive definite constant Γ 

is used. The following gives the time derivative of 𝑉(𝑡): 

 

Since 𝑉(𝑡) is negative semi-definite, integrating 𝑉(𝑡) over 

time shows: 

demonstrating that 𝑧(𝑡) and 𝑥¤ (𝑡) converge to zero in a finite 

amount of time, ensuring stable system dynamics and efficient 

speed tracking performance. Through the gradient of the 

Lyapunov function, the RNN weights are adjusted online to 

minimise uncertainty and optimise power extraction and speed 

monitoring in real-time. 

The RAT system in UAVs operates at peak efficiency and 

dependability thanks to the integration of the system's 

Jacobian ℎ(𝑡) and hidden layer neurones' output 𝑂 𝑗 to assess 

lumped uncertainty. 

 

Fig. 8. Structure of the Controller. 

 

Fig. 9. Structure of the RNN. 

4. Results & Discussions  

MATLAB R2024a, an Intel Xeon CPU with two virtual 

CPUs (vCPUs), 13GB of RAM, and Windows 11 were used 

for the numerical tests. The rated speed was 12 m/s, and the 

input was the wind speed patterns. The wind speed pattern 

used in the modelling is shown in Figure 10. The rated wind 

speed of the turbine is 12 m/s. Over the first ten seconds, the 

wind speed dropped from 20 m/s to 11 m/s. The wind speed 

stayed steady at 5 m/s for the following 6 seconds, indicating 

less wind activity. The wind speed then increased from 12 m/s 

to 18 m/s at t=26 seconds, stabilising at that pace for the rest 

of the experiment, which is the normal speed they encounter 

[17].  

Fig. 10. Wind speed pattern. 

 

As shown in Figure 11(b), the system's rated power output 

is 0.5 MW. This power is produced with a rated wind speed of 

12 m/s. At this speed, the turbine produces less power while 

maintaining the rated power above it. This is achieved by 

modifying the blade pitch angle to shade the incoming wind 

force and maintaining the rotating speed at its optimal level. 

The ideal tip-speed ratio establishes the ideal rotating speed 

required to provide the highest power possible at a certain 

wind speed. The optimal tip-speed ratio for this specific 

turbine is 7.5, as shown in Fig. 11(a). 

𝑢𝑞 =  
1

𝑐
(−𝑘𝑧(𝑡) − (𝑎 + 𝑘1)�̇�𝑟 − (𝑏 + 𝑘2)𝜔𝑟

+ 𝑘2𝜔𝑟,𝑜𝑝𝑡 −  �̂�) 

(25) 

�̇�(𝑡) = −𝑘𝑧(𝑡) + �̂�𝑟 + �̂� (26) 

𝑉(𝑡) =  
1

2
𝑧(𝑡) +  

1

2
�̂�𝑇

𝑟𝛤−1�̂�𝑟 
(27) 

𝑉(𝑡) =  −𝑘𝑧2(𝑡) +  �̂�𝑇
𝑟𝛤−1�̇�𝑟 (28) 

∫ 𝑉(𝑡)
∞

0

𝑑𝑡 < ∞ 
(29) 

𝜔𝑖𝑗 =  𝛤 ℎ(𝑡)𝑂𝑗(−𝑟
𝜕𝑉(𝑡)

𝜕𝜔𝑗

)   
(30) 
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Fig. 11. (a) Turbine Speed (b) Turbine Power 

In order to retain the turbine's maximum output at the 

appropriate wind speed, the turbine speed is modified, as seen 

in Figure 11(a). The ideal q-axis voltage required to sustain 

this ideal turbine (generator) speed is determined by the 

integrated sliding mode controller (SMC) using the optimal 

and actual rotational rates. One may use the control law to 

calculate the voltage.. 

The system utilises the sliding surface, the RNN 

anticipated lumped uncertainty, and other pertinent data in 

addition to the natural and ideal turbine rotational rates. This 

integral sliding mode controller is based on the modelled 

dynamics of rotational speed. 

By linking the turbine's (and therefore the generator's) 

rotational speed to the turbine and generator torques, this 

creates the connection between the speed and generator q-axis 

current. Then, utilising this relationship between current and 

speed, the integral SMC controller rule is developed to control 

the speed. The d-axis voltage must be determined in order to 

maintain the d-axis current at zero. Based on the dq-axis 

voltage references, the PWM signals driving the three-phase 

rectifier were generated using Space Vector Pulse Width 

Modulation (SVPWM). Figure 11(a) makes it clear that the 

controller can continue to operate at the peak efficiency for 

any wind speed. As seen in Fig. 11(b), this enabled the system 

to continue running at its maximum power output for the 

designated wind speed. 

The turbine output increases proportionately to the cube 

of the wind speed when the wind speed surpasses the required 

12 m/s. However, there is a limit to how much electricity the 

generator can generate. When the wind speed surpasses the 

rated amount, power shedding uses the pitch angle control 

mechanism to keep the generated power at this regulated level. 

The theory states that the turbine's power capture coefficient 

typically decreases when the blade pitch angle rises while the 

other turbine parameters stay the same. The blade pitch angle 

in such cases is shown in Figure 12(a).  

To keep the generated power at the designated 400 kW, 

the blade pitch angle is changed when the wind speed above 

the rated value, as shown in Fig. 12(c). The pitch angle 

controller adjusts the blade pitch angle by measuring the 

power provided by the generated power, comparing it to the 

rated power, and making the necessary adjustments. There are 

more turbine variables shown as well. 

 

Fig. 12. (a)𝑐𝑝  (b)𝜆  (c)𝛽 

 

 

Fig. 13. (a) PMSG rotor speed  (b)Turbine and PMSG torque 

 

The PMSG rotor speed and electromagnetic torque are 

also examined in Figure 13. The rotor's speed closely 

resembles that of the turbine since it is directly connected to 

it. Under different wind speeds, a strong connection between 

electromagnetic and turbine torque is seen in Figure 13(b). 

The electromagnetic torque, which in turn affects the turbine 

torque and regulates the rotational dynamics, is directly 

controlled by the integral SMC. You can see this interaction 

in Fig. 13(b). The q-axis current is instantly altered by the 

SMC's control effort, which also varies the electromagnetic 

torque to preserve the intended rotating speed. 

 

Fig. 14. (a) d–axis current control   (b) q–axis current control 

The d-axis and q-axis current controller responses are 

seen in Fig. 14. In Fig. 14(a), the d-axis current is managed 

until it reaches the desired value of zero. The q-axis current is 

also investigated in Fig. 14(b), which shows both the reference 

generated by the speed controller loop based on the 
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electromagnetic torque requirement and the actual q-axis 

current from the integrated SMC-controlled system. It should 

be noted that while the rotational speed dynamics indirectly 

affect the q-axis current reference value shown in the picture, 

the SMC does not use it. Here, the difference between the PI-

controlled cascaded control approach and the integral SMC-

based control technique is illustrated. As a result, the 

variations between the reference and actual q-axis current 

shown in the figure are just meant to serve as examples. 

 

Fig. 15. (a) d–axis voltage            (b) q–axis voltage. 

 

By generating PWM switching signals based on those 

reference voltage values, the current controllers were able to 

regulate the rectifier by creating dq-axis voltages. 

Furthermore, the RNN-calculated lumped uncertainty in 

Fig. 16 is examined. The RNN is used to estimate this 

cumulative uncertainty. Since it is challenging to determine 

this quantity precisely in practice, RNN estimate is necessary. 

This quantity is based on the measured generator power and 

rotational speed. Changes in neural weights help the RNN 

estimate lumped uncertainty accurately. The figure clearly 

shows that the RNN estimation of the aggregated uncertainty 

gets close to the true value if enough time is allowed. 

 

Fig. 16. Lumped uncertainty. 

5. Conclusion 

In order to manage and optimise the installation of wind 

energy conversion systems in Ram Air Turbines (RATs), this 

study combines Sliding Mode Control (SMC) with uncertainty 

estimates based on Recurrent Neural Networks (RNNs). Even 

in the face of outside disruptions and system uncertainties, the 

SMC technique maximises output by stabilising the turbine's 

rotational speed. Furthermore, the RNN models and updates 

the uncertain dynamics continually, producing precise 

estimates that improve the resilience of the control system. 

The system produces 1500 kW, or about 13 times more than 

the typical RATs, which in some situations only generate 110 

kW, by optimising power production in reaction to wind 

conditions, which impact the turbine speed and torque [18]. 

The control system will eventually need to be 

implemented as hardware in order to be validated in real 

application areas. This action will improve the UAV's 

performance and dependability even further. Power 

generation will therefore be effective in a variety of 

operational situations, which are common with UAVs. 

Additionally, hardware implementation will enable 

assessment under various situations and the investigation of 

other environmental factors, providing thorough insights into 

its potential for wider usage in wind energy conversion 

systems. For instance, the RAT system may be simulated by a 

smaller wind turbine equipped with a Permanent Magnet 

Synchronous Generator (PMSG), which is managed by an 

STM32 microprocessor that uses the Sliding Mode Control 

(SMC) algorithm. Real-time uncertainty estimate is handled 

by an RNN model on a DSP or Nvidia Jetson, which 

maximises power production and stability under a range of 

wind conditions. 
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