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Abstract 
Renewable energy sources are those that naturally replenish 

over time and provide an endless supply of energy without the risk 
of resource exhaustion. Examples include solar power, wind energy, 
hydropower, geothermal energy, and biomass. These energy sources 
are crucial due to their sustainable nature, enabling continuous 
energy production while minimizing environmental harm and 
preserving natural resources. Unlike conventional fossil fuels, 
which are limited and heavily pollute the environment, renewable 
energy significantly reduces carbon emissions, improves air quality, 
and helps address climate change challenges. Embracing renewable 
energy is vital for building a sustainable future. This study 
evaluates renewable energy sources using a hybrid fuzzy multi-
criteria decision-making approach. The proposed method integrates 
two techniques: the fuzzy analytic hierarchy process and the fuzzy-
based COPRAS method. The fuzzy analytic hierarchy process is 
first applied to determine the relative importance of criteria and 
create a fuzzy decision matrix. Then, the COPRAS method 
processes this matrix, incorporating the calculated weights, to 
systematically assess and rank renewable energy options. 

 

Özet 
Yenilenebilir enerji kaynakları, doğal olarak zamanla kendini yenileyen ve tükenme riski olmadan sınırsız enerji 

sağlayan kaynaklardır. Örnekler arasında güneş enerjisi, rüzgar enerjisi, hidroelektrik enerji, jeotermal enerji ve biyokütle 
bulunur. Bu enerji kaynakları, sürdürülebilir yapıları sayesinde sürekli enerji üretimini mümkün kılar ve çevresel 
zararları en aza indirirken doğal kaynakların korunmasına yardımcı olur. Geleneksel fosil yakıtların aksine, yenilenebilir 
enerji karbon emisyonlarını önemli ölçüde azaltır, hava kalitesini iyileştirir ve iklim değişikliğiyle ilgili zorlukların 
üstesinden gelinmesine yardımcı olur. Yenilenebilir enerjiye yönelmek, sürdürülebilir bir gelecek inşa etmek için hayati 
önem taşımaktadır. Bu çalışma, yenilenebilir enerji kaynaklarını hibrit bir bulanık çok kriterli karar verme yaklaşımı 
kullanarak değerlendirmektedir. Önerilen yöntem, iki tekniği birleştirmektedir: bulanık analitik hiyerarşi süreci ve 
bulanık temelli COPRAS yöntemi. İlk olarak, bulanık analitik hiyerarşi süreci, kriterlerin göreceli önemini belirlemek ve 
bulanık bir karar matrisi oluşturmak için uygulanmıştır. Ardından COPRAS yöntemi, hesaplanan ağırlıkları içeren bu 
matrisi işleyerek yenilenebilir enerji seçeneklerini sistematik bir şekilde değerlendirmiş ve sıralamıştır. 

 
Introduction 
The increasing demand for energy, driven by population growth, industrialization, and 

urbanization, has led to a pressing need for sustainable and environmentally friendly energy 
solutions. Traditional energy sources, such as fossil fuels, are finite and contribute significantly to 
environmental challenges, including global warming, air pollution, and resource depletion. These 
challenges are exacerbated by the rapid pace of development and consumption, which place 
immense pressure on natural resources and ecosystems. The environmental consequences of relying 
on fossil fuels are severe, leading to rising sea levels, more frequent and intense weather events, and 
a loss of biodiversity. Such impacts pose a direct threat to global ecosystems, economies, and human 
well-being, underscoring the urgent need for alternative energy strategies. 
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The harmful effects of conventional energy sources have spurred a global transition toward 
renewable energy, which offers a sustainable, clean, and virtually inexhaustible alternative. Unlike 
fossil fuels, renewable energy sources such as solar, wind, and hydropower produce minimal 
greenhouse gas emissions, making them a crucial component of climate change mitigation efforts. 
Beyond their environmental benefits, renewable energy sources also contribute to economic growth 
by fostering innovation, generating new industries, and creating employment opportunities. 
Moreover, they enhance energy security by reducing dependence on imported fuels and providing 
decentralized energy solutions that can be tailored to local needs. Addressing these energy 
challenges is essential to ensure long-term environmental health and energy security, paving the 
way for a future where the growing energy demands of society are met sustainably without 
jeopardizing the planet’s ecological integrity. 

 
1. Renewable Energy Sources 
Renewable Energy Sources (RES) are derived from natural processes that are replenished 

continuously, making them a critical element in the transition toward a sustainable energy future. 
Among the various renewable energy options, five prominent sources stand out: Solar Energy, Wind 
Energy, Hydroelectric Energy, Geothermal Energy, and Biomass Energy. Each of these sources has 
unique characteristics, advantages, and challenges that influence their applicability and feasibility 
in different regions and scenarios. 

Solar Energy, often regarded as one of the most abundant and accessible renewable resources, 
is harnessed using technologies such as photovoltaic panels and concentrated solar power systems. 
These systems work by converting sunlight into usable electricity, with photovoltaic cells capturing 
sunlight and turning it directly into electricity, while concentrated solar power systems use mirrors 
or lenses to focus sunlight onto a small area, generating heat to drive turbines (Kolamroudi et al., 
2022). Solar energy is versatile, applicable in both large-scale power plants and decentralized 
residential installations. It offers a clean, emission-free way to generate electricity and heat, making 
it a cornerstone of global renewable energy strategies. Additionally, solar power systems have been 
steadily improving in efficiency and affordability, contributing to their growing adoption 
worldwide.  

Wind Energy, a rapidly growing and highly promising renewable resource, harnesses the power 
of moving air to generate electricity. Modern wind turbines are designed to capture the kinetic 
energy of the wind, converting it into mechanical energy through rotating blades, which is then 
transformed into electrical power (Sharma et al., 2022). This technology has evolved significantly 
over the years, with innovations in turbine design, efficiency, and energy storage systems, allowing 
for more consistent and reliable power generation. Wind farms, both onshore and offshore, are being 
developed across the globe in regions with strong and predictable wind patterns, such as coastal 
areas, mountain ridges, and open plains. Offshore wind farms, in particular, are gaining traction 
due to the higher and more consistent wind speeds found at sea, making them ideal for large-scale 
energy production. Wind energy offers a clean, renewable alternative to fossil fuels, significantly 
reducing greenhouse gas emissions and helping combat climate change.  

Hydroelectric Energy, one of the oldest and most widely used forms of renewable energy, 
harnesses the power of flowing water to generate electricity. This energy is typically captured by 
building dams on rivers, where water stored at a higher elevation is released to flow through 
turbines, converting its kinetic energy into mechanical energy, which is then transformed into 
electrical power (Yaseen et al., 2020). Hydroelectric power plants can vary in size, from large-scale 
dams capable of generating significant amounts of electricity to small-scale systems designed for 
localized use. This resource offers several advantages, including the ability to provide a constant, 
reliable power supply, as water flows are generally predictable and can be managed to meet 
demand. Additionally, hydroelectric energy systems have a relatively low environmental impact 
compared to fossil fuels, producing no direct emissions. However, large-scale dams can have 
ecological consequences, such as disrupting local ecosystems and affecting water quality and fish 
migration patterns. Hydroelectric energy is a crucial component of the global energy mix, 
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particularly in regions with abundant water resources, contributing to energy security and helping 
reduce reliance on fossil fuels. With ongoing advancements in technology and efficiency, 
hydroelectric power remains a cornerstone of sustainable energy solutions, supporting the transition 
towards a greener, low-carbon future. 

Geothermal Energy, a powerful and sustainable renewable resource, harnesses the heat stored 
beneath the Earth's surface to generate electricity and provide direct heating. This heat originates 
from the natural radioactive decay of elements in the Earth's core, as well as residual heat from the 
planet's formation. Geothermal power plants use wells to tap into this thermal energy, bringing hot 
water or steam to the surface to drive turbines connected to electricity generators (Kabeyi and 
Olanrewaju, 2022). Geothermal systems can also be used for direct heating in residential and 
commercial applications, providing a reliable and energy-efficient alternative to conventional 
heating methods. One of the key advantages of geothermal energy is its ability to provide a 
consistent and stable power source, as the Earth's internal heat is available year-round, regardless 
of weather conditions. This makes it an ideal resource for base-load power generation, 
complementing other renewable sources like wind and solar, which can be intermittent. Geothermal 
energy has a relatively low environmental impact, with minimal greenhouse gas emissions 
compared to fossil fuel-based energy production. However, geothermal power plants are most 
effective in regions with high geothermal activity, such as tectonic plate boundaries or volcanic 
areas. Advances in drilling technology and enhanced geothermal systems are expanding the 
potential for geothermal energy, making it feasible in a broader range of locations.  

Biomass Energy, a versatile and renewable resource, derives from organic materials such as 
plant matter, wood, agricultural residues, and even certain types of waste. These materials are 
converted into usable energy through processes such as combustion, anaerobic digestion, or 
gasification. Biomass can be used to produce electricity, heat, and biofuels, making it a flexible 
component of the renewable energy mix (Lenz and Ortwein, 2017). The combustion of biomass in 
power plants or industrial facilities generates heat, which is used to produce steam to drive turbines, 
thereby generating electricity. Alternatively, biomass can be processed into biofuels like ethanol or 
biodiesel, which serve as cleaner alternatives to gasoline and diesel for transportation. One of the 
significant advantages of biomass energy is its ability to utilize organic waste, reducing landfill 
waste and providing an environmentally friendly way to recycle material. Additionally, as plants 
grow, they absorb carbon dioxide from the atmosphere, which is released when the biomass is 
burned, creating a closed carbon cycle that is considered more sustainable than fossil fuel 
combustion. Biomass energy is particularly valuable in rural areas, where agricultural waste or 
forestry byproducts can be used locally for energy production. However, the sustainability of 
biomass depends on factors such as land use practices and the sourcing of materials, as 
overharvesting of resources or using land for biofuel crops instead of food production can lead to 
environmental challenges.  

While renewable energy offers undeniable advantages, there are still obstacles to its 
development and integration. Issues such as fluctuations in resource availability, substantial upfront 
costs, technological limitations, and environmental concerns require careful consideration and 
resolution. Additionally, the successful implementation of renewable energy depends on well-
informed decisions that account for various factors, including economic feasibility, environmental 
sustainability, technical practicality, and societal acceptance. 

To address these challenges, systematic methods are essential for evaluating and ranking RES. 
Multi-criteria decision-making (MCDM) techniques are particularly effective in this regard, as they 
enable the analysis of diverse and sometimes conflicting factors. In this research, a hybrid fuzzy-
based MCDM approach is utilized to analyze and prioritize Solar Energy, Wind Energy, 
Hydroelectric Energy, Geothermal Energy, and Biomass Energy. This methodology combines the 
fuzzy analytic hierarchy process (FAHP) and the fuzzy-based COPRAS (Complex Proportional 
Assessment) method, ensuring a thorough evaluation that incorporates uncertainties and subjective 
preferences. 
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The process begins with the FAHP, which is used to determine the relative importance of criteria 
set and to create a weighted fuzzy decision matrix. Next, the fuzzy based COPRAS method evaluates 
and ranks RES by comparing their performance against these weighted criteria. By integrating these 
two methods, the approach ensures a comprehensive and transparent evaluation process capable of 
addressing the complexities involved in renewable energy assessments. 

The results of this study aim to provide actionable insights for the strategic prioritization of RES. 
By identifying the most suitable energy options for specific scenarios, the research seeks to guide 
policymakers, industry leaders, and stakeholders in developing effective energy strategies. 
Ultimately, widespread adoption of renewable energy will not only reduce greenhouse gas 
emissions and combat climate change but also foster a more sustainable and equitable global energy 
future. 

In summary, RES hold significant potential to play a pivotal role in the shift toward more 
sustainable and environmentally friendly energy systems. Their adoption can help reduce 
dependence on fossil fuels, mitigate greenhouse gas emissions, and promote a cleaner and more 
equitable energy landscape for future generations. Recognizing their importance, this study 
evaluates five distinct RES options under a comprehensive framework consisting of 11 carefully 
selected criteria. The criteria set used in the evaluation, presented in Table 1, was obtained through 
an in-depth process involving expert consultations and a thorough review of the relevant literature. 
References such as Wang et al. (2009), Kahraman et al. (2009), Doukas et al. (2010), Kaya and 
Kahraman (2010), Barry et al. (2011), Tasri and Susilawati (2014), and Şengül et al. (2015) were 
instrumental in identifying and refining the criteria set. These criteria encompass a broad range of 
factors, including economic, environmental, technical, and social dimensions, ensuring a holistic 
analysis of renewable energy alternatives. By integrating expert knowledge with established 
research, this study aims to provide valuable insights into the prioritization of RES, ultimately 
supporting the development of sustainable energy strategies. For the detailed usage and review of 
MCDM methods in power and energy systems, the article of Bohra and Anvari‐Moghaddam (2022) 
can be checked. Both the MCDM methods and literature on energy systems are reviewed in detail 
in their study.  
 

Table 1. Evaluation Criteria Set for RES 
Symbol Criterion Reference Explanation 

C1 Sustainability Lu et al., 2020 Sustainability of RES. 

C2 Effectiveness Bundschuh et al., 2021 Efficiency of RES. 

C3 
The variety of the usage 
areas 

Kebede et al., 2022 
Wide utilization and applicability of RES 
in various sectors and systems. 

C4 Storability Ilbahar et al., 2020 
Effective storage and preservation of 
energy obtained. 

C5 Efficiency of conveyance Sharma et al., 2022 
Minimal energy loss during the 
transportation process. 

C6 Initial investment cost Steffen, 2020 
Low initial investment costs associated 
with RES. 

C7 Simplicity of the facility Karatop et al., 2021 
Simple and straightforward facility 
design for RES. 

C8 Technology requirement Lu et al., 2023 
Minimal technological infrastructure 
requirements for RES. 

C9 Maintenance Requirements Si et al., 2023 
Infrequent maintenance needs after the 
construction of RES facilities. 

C10 
Accident risk and their 
effects 

Kim et al., 2021 
Low accident risk and minimal 
operational damage potential of RES 
facilities. 

C11 
Detriment to nature and 
human 

Moldan et al., 2021 
Negligible environmental and human 
impact from operations. 
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2. The Proposed Fuzzy AHP Based COPRAS Approach 
In this section, the proposed FAHP based COPRAS approach is presented in detail for the 

evaluation of RES. The proposed method consists two main parts. The first part is calculation of the 
weights and priorities by applying FAHP method. And hen in the second part, fuzzy-based 
COPRAS is applied for the ranking and evaluation of RES alternatives. In the following figure, the 
calculation steps of the proposed approach are given step by step in detail. Afterwards, both 
methods are given in two different subsections in detail for the calculations of them.  

Because FAHP based COPRAS effectively handle the uncertainty and vagueness inherent in 
decision-making processes, the proposed method is more suitable for evaluating RES. Renewable 
energy evaluation involves multiple conflicting criteria, such as cost, efficiency, environmental 
impact, etc, which often include subjective judgments. FAHP allows for a more flexible and accurate 
pairwise comparison by incorporating linguistic variables, reducing the impact of human bias. 
Meanwhile, Fuzzy based COPRAS enhances the ranking process by considering both the 
significance and utility of alternatives under uncertain conditions. This combination ensures a more 
reliable and robust decision-making framework for selecting the most appropriate RES. 

 

 
 

Figure 1. The Step-by-Step calculation Process of the proposed FAHP based COPRAS 
 
2.1. The proposed fuzzy analytic hierarchy process 
The Fuzzy Analytic Hierarchy Process (FAHP) (Çelikbilek et al., 2016), which is fundamentally 

an extension of the traditional Analytic Hierarchy Process (AHP), was first introduced by Saaty in 
1979 (1979). While the classic AHP utilizes crisp sets and precise numerical values for decision-
making processes, FAHP incorporates the principles of fuzzy logic by employing fuzzy sets and 
fuzzy numbers. This modification enhances the method’s ability to handle uncertainties and 
vagueness often present in real-world decision-making scenarios. Instead of relying solely on exact 
numerical values, pairwise comparisons in FAHP are conducted using linguistic scales, which are 
then represented by fuzzy numbers to better capture the ambiguity of subjective judgments. Liu et 
al. (2020) published a review article on fuzzy AHP methods and their effectiveness and weaknesses. 
In the study, different FAHP approaches for the decision-making problems with subjective 
judgements are evaluated and interpreted in detail. In this study, triangular fuzzy numbers, a 
commonly used type of fuzzy number due to their simplicity and effectiveness, will be employed 
for pairwise comparisons and subsequent calculations. The linguistic scale and the corresponding 
triangular fuzzy numbers used in this methodology are given in Table 2, offering a clear framework 
for how subjective assessments are transformed into quantifiable data. This approach ensures a more 
flexible and realistic evaluation process, particularly in complex decision-making environments. 

 

Fuzzy Analytic Hierarchy Process

Step 1: Definition of the Problem

Step 2: Construction of the Hierarchical Structure

Step 3: Collection of the Pairwise Comparisons

Step 4: Aggregation of the PC Matrices

Step 5: Normalization of the Columns

Step 6: Calculation of the Fuzzy Weights

Step 7: Calculation of the Priority Weights

Step 8: Defuzzification of the Results

Fuzzy-based COPRAS

Step 1: Construction of the Decision Matrix

Step 2: Calculation of the Weighted Norm. DM

Step 3: Calculation of 𝑷𝒊 Values

Step 4: Calculation of 𝑹𝒊 Values

Step 5: Determination of min 𝑹𝒊

Step 6: Calculation of the Relative Weights

Step 7: Determination of the Optimality Criterion

Step 8: Calculation of the Utility Degree
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Table 2. The Linguistic Scale for the Pairwise Comparisons and their Fuzzy Representations 

Crisp Number Evaluation Linguistic Scale Representation Fuzzy Number Representation 

1 Equally Important (EI) (1, 1, 2) 

3 Weakly Important (WI) (2, 3, 4) 

5 Important (I) (4, 5, 6) 

7 Strongly Important (SI) (6, 7, 8) 

9 Absolutely Important (AI) (8, 9, 9) 

Step 1: Definition of the Problem: Initially, the problem and the associated variables within the 
problem set are clearly identified and defined. This step involves outlining the scope of the problem, 
specifying the key elements that influence it, and determining the relevant factors and parameters 
that need to be considered for analysis. By establishing a comprehensive understanding of the 
problem and its variables, a solid foundation is created for the subsequent steps in the decision-
making or problem-solving process. 

Step 2: Construction of the Hierarchical Structure: Once the problem, alternatives, and criteria have 
been clearly defined, the next step involves constructing the hierarchical structure. This structure 
organizes the decision-making process by breaking it down into multiple levels, typically starting 
with the main goal at the top, followed by the criteria and sub-criteria in the middle, and the 
alternatives at the bottom. The hierarchical framework provides a systematic and logical 
arrangement, allowing for a clear visualization of how each criterion and alternative contributes to 
achieving the overall objective.  

Step 3: Collection of the Pairwise Comparisons (PC): Depending on the nature of the problem, 
decision-makers or experts perform pairwise comparisons both among the criteria and among the 
alternatives. This process involves evaluating each pair of elements to determine their relative 
importance or preference with respect to the overall goal. These comparisons are crucial for 
quantifying the relationships between criteria and alternatives, ensuring that the decision-making 
process reflects expert knowledge and aligns with the priorities of the problem at hand. 

Step 4: Aggregation of the PC Matrices: The pairwise comparison matrices, generated through the 
evaluations of decision-makers or experts, are aggregated using the geometric mean method given 
in Eq. (1), similar to the classic AHP. However, in FAHP, these calculations incorporate fuzzy 
numbers instead of crisp values. This approach allows for the inclusion of uncertainty and 
vagueness in the decision-makers' judgments. By employing fuzzy numbers, the aggregated 
comparisons reflect a more realistic representation of subjective opinions, enhancing the reliability 
of the final weightings. This process ensures that the collective assessments of all experts are 
synthesized into a consistent framework, enabling more robust decision-making. 

�̃�𝑖𝑗 = √∏ �̃�𝑖𝑗
𝑑𝐷

              (1) 

, where �̃�𝑖𝑗
𝑑  is the evaluation of the decision maker d between criteria/alternative i and 

criteria/alternative j, D is the number of the decision makers, and �̃�𝑖𝑗 is the aggregated matrix of the 

PC matrices of the decision makers.  
Step 5: Normalization of the Columns: In this step, the normalization process for fuzzy numbers, 

as CFCS (Converting Fuzzy data into Crisp Scores) proposed by Wu and Lee (2017), will be applied. 
This method ensures that the fuzzy numbers are scaled appropriately, bringing them into a 
comparable range while preserving their relative significance. Normalization is a critical step in the 
FAHP as it allows the fuzzy triangular numbers to be standardized, ensuring consistency and 
accuracy in the subsequent computations. By utilizing the approach introduced by Wu and Lee 
(2017) given in Eq. (2-4), the method effectively handles the fuzzy data and ensures that the derived 
weights are both meaningful and interpretable within the context of the problem. 

𝑛𝑥𝑙𝑖𝑗 =
(𝑥𝑙𝑖𝑗−min

 
(𝑥𝑙𝑖𝑗))

(max
 

(𝑥𝑟𝑖𝑗)−min
 

(𝑥𝑙𝑖𝑗))
            (2) 

𝑛𝑥𝑚𝑖𝑗 =
(𝑥𝑚𝑖𝑗−min

 
(𝑥𝑙𝑖𝑗))

(max
 

(𝑥𝑟𝑖𝑗)−min
 

(𝑥𝑙𝑖𝑗))
            (3) 
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𝑛𝑥𝑟𝑖𝑗 =
(𝑥𝑟𝑖𝑗−min

 
(𝑥𝑙𝑖𝑗))

(max
 

(𝑥𝑟𝑖𝑗)−min
 

(𝑥𝑙𝑖𝑗))
            (4) 

, where �̃�𝑖𝑗 = (𝑥𝑙𝑖𝑗, 𝑥𝑚𝑖𝑗 , 𝑥𝑟𝑖𝑗), and 𝑛�̃�𝑖𝑗 = (𝑛𝑥𝑙𝑖𝑗, 𝑛𝑥𝑚𝑖𝑗 , 𝑛𝑥𝑟𝑖𝑗) as the normalized value of �̃�𝑖𝑗. 

Step 6: Calculation of the Fuzzy Weights: Fuzzy weights are determined by calculating the mean of 
the rows in the fuzzy PC matrix. This process aggregates the relative importance values for each 
criterion while accounting for the inherent fuzziness in the data. The calculation of the weights will 
follow the methodology in Eq. (5), where W is the number of weights. This approach ensures that 
the derived fuzzy weights are consistent and reflective of the decision-makers' evaluations, 
providing a solid basis for ranking and prioritization in the decision-making process. 

∑ �̃�𝑖𝑗
𝑊
𝑗=1

𝑊
              (5) 

Step 7: Calculation of the Priority Weights: After determining the fuzzy weights of the criteria and 
calculating the fuzzy weight vectors of the alternatives for each criterion, the priority weights for the 
alternatives are derived using the formula given in Eq. (6). This step involves synthesizing the 
individual weight vectors of the alternatives with the corresponding criteria weights to obtain an 
overall ranking. By combining these values, the priority weights reflect the relative importance of 
each alternative in achieving the main objective, ensuring a comprehensive and balanced evaluation 
that integrates both criteria and alternatives into the decision-making process. 

�̃�𝑖 = ∑ 𝑤𝑗�̃�𝑖𝑗
𝑊
𝑗=1              (6) 

Step 8: Defuzzification of the Results: The results of the fuzzy priority weights are defuzzified using 
the CFCS method proposed by Wu and Lee (2017). This method converts the fuzzy priority weights 
into crisp values, making them easier to interpret and utilize for decision-making. By applying the 
CFCS method, the inherent uncertainty in the fuzzy data is effectively reduced, while the core 
information and relative rankings are preserved. This defuzzification process ensures that the final 
crisp scores provide a clear and actionable representation of the alternatives' priorities within the 
decision-making framework. 

𝑥𝑙𝑖 =
𝑥𝑚𝑖

1+𝑥𝑚𝑖−𝑥𝑙𝑖
              (7) 

𝑥𝑟𝑖 =
𝑥𝑟𝑖

1+𝑥𝑟𝑖−𝑥𝑚𝑖
              (8) 

𝑦𝑖 =
𝑥𝑙𝑖(1−𝑥𝑙𝑖)+𝑥𝑟𝑖𝑥𝑟𝑖

1−𝑥𝑙𝑖+𝑥𝑟𝑖
             (9) 

𝑧𝑖 = min
 

(𝑥𝑙𝑖) + 𝑦𝑖 (max
 

(𝑥𝑟𝑖) − min
 

(𝑥𝑙𝑖))       (10) 

2.2. The fuzzy-based COPRAS 
The COPRAS (Complex Proportional Assessment) method was first introduced by Zavadskas 

and Kaklauskas in 1996 (1996). The method is a widely used multi-criteria decision-making (MCDM) 
approach, designed to evaluate and rank alternatives based on multiple conflicting criteria. It 
provides a systematic framework to assess the relative importance of each alternative by considering 
both beneficial and non-beneficial criteria. By using proportional assessments, COPRAS facilitates 
decision-making processes in various fields, such as project management, resource allocation, 
engineering, etc. However, the classical COPRAS method, while effective in evaluating alternatives 
based on multiple criteria, has limitations in addressing uncertainties and subjective judgments 
during the decision-making process as a group decision-making process with a group of experts. 
This shortcoming arises from its reliance on precise numerical data, which may not fully capture the 
complexities of real-world scenarios. In practice, decision-making often involves ambiguity and the 
need to incorporate expert opinions, preferences, or incomplete information. To overcome these 
challenges, extended versions of COPRAS have been developed, integrating tools like fuzzy logic or 
probabilistic approaches to enhance its flexibility and robustness. The study of Sampathkumar et al. 
(2023) can be checked for a brief review on COPRAS method.  

This section aims to provide a step-by-step explanation of the fuzzy-based COPRAS (F-
COPRAS) methodology, offering a detailed walkthrough of its computational process derived from 
the study of Yazdani et al. (2011). A fuzzy-based COPRAS method calculations are easier and more 
effective for decision maker in the process of complex MCDM problems such as energy systems or 
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sophisticated engineering problems, while considering the subjective judgements and uncertainties 
if we compare with a totally fuzzy COPRAS system.  The stepwise approach ensures that readers 
gain a thorough understanding of how the method quantitatively evaluates alternatives and 
identifies the optimal solution. 

Step 1: Construction of the Decision Matrix: In this step, the fuzzy decision matrix, or the 
defuzzified decision matrix (D), which is initially derived through the application of FAHP or any 
other suitable method, is constructed. This matrix serves as a foundational element in the main 
calculations of the F-COPRAS method. The process involves systematically organizing and 
transforming the data into a structure that can be used for the subsequent evaluation and decision-
making phases. This matrix, which encapsulates the decision-makers' preferences and expert 
evaluations, is crucial for ensuring the accuracy and reliability of the F-COPRAS model's outputs. 

𝐷 = [𝑥𝑖𝑗]
𝑚𝑥𝑛

           (11) 

Step 2: Calculation of the Weighted Normalized Decision Matrix: In this step, the decision matrix is 
normalized by dividing each element by the sum of the corresponding criterion’s column as given 
in Eq. (12). Then, the normalized values are multiplied by their respective weights to obtain the 
weighted normalized decision matrix as given in Eq. (12), reflecting the relative importance of each 

criterion in the decision-making process. Let 𝐷 = [𝑦𝑖𝑗]
𝑚𝑥𝑛

 be the weighted normalized decision 

matrix.  

𝑦𝑖𝑗 = 𝑤𝑗 ∙
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑛
𝑗=1

           (12) 

Step 3: Calculation of 𝑃𝑖 Values: Sums 𝑃𝑖 values of attributes, where higher values are considered 
more preferable (for benefit criteria), are calculated for each alternative represented in a row of the 
decision-making matrix. This calculation involves summing the values of each criterion for an 
alternative, ensuring that the preferences align with the goal of maximizing the chosen criteria. By 
performing this operation for each alternative, we generate a set of aggregated values that reflect the 
overall performance of each option based on the selected criterion.  

𝑃𝑖 = ∑ 𝑦𝑖𝑗
𝑘
𝑗=1             (13) 

Step 4: Calculation of 𝑅𝑖 Values: Sums 𝑅𝑖 values of attributes, where lower values are considered 
more preferable (for cost criteria), are calculated for each alternative represented in a row of the 
decision-making matrix. This calculation involves summing the values of the cost-related criteria for 
each alternative in the decision-making matrix. In a cost-focused approach, lower costs are 
considered more advantageous, so the alternatives with the lowest total cost are prioritized. This 
step enables the comparison and evaluation of alternatives based on their cost efficiency, helping to 
identify the most cost-effective solution. 

𝑅𝑖 = ∑ 𝑦𝑖𝑗
𝑛
𝑗=𝑘+1             (14) 

Step 5: Determination of 𝑚𝑖𝑛
 

(𝑅𝑖): The determination of the minimum 𝑅𝑖 value involves 

identifying the alternative with the lowest performance score for each criterion. This minimum value 
is critical for evaluating the relative effectiveness of each alternative in comparison to others, 
particularly when dealing with cost-oriented criteria.  

𝑅𝑚𝑖𝑛 = 𝑚𝑖𝑛
 

(𝑅𝑖)            (15) 

Step 6: Calculation of the Relative Weights: The calculation of the relative weight (𝑄𝑖) of each 
alternative involves evaluating the performance of each alternative. This step aims to determine the 
importance of each alternative relative to the others by considering how well they satisfy the given 
criteria. The relative weight is calculated by applying Eq. (16). The result is a set of relative weights 
that reflect the overall performance of each alternative, which can then be used to rank and make 
decisions based on the comparative effectiveness of each criterion. 

𝑄𝑖 = 𝑃𝑖 +
𝑅𝑚𝑖𝑛 ∑ 𝑅𝑖

𝑛
𝑖=1

𝑅𝑖 ∑
𝑅𝑚𝑖𝑛

𝑅𝑖

𝑛
𝑖=1

           (16) 

𝑄𝑖 = 𝑃𝑖 +
∑ 𝑅𝑖

𝑛
𝑖=1

𝑅𝑖 ∑
1

𝑅𝑖

𝑛
𝑖=1

            (17) 
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Step 7: Determination of the Optimality Criterion: The determination of the optimality criterion 
involves identifying the maximum 𝑄𝑖 value for the calculation of utility degree.  This criterion guides 
the final ranking and selection of the most optimal alternative. 

𝑄𝑚𝑎𝑥 = max
𝑖

(𝑄𝑖)            (18) 

Step 8: Calculation of the Utility Degree: The calculation of the utility degree of each alternative 
involves assessing how well each alternative meets the predefined criteria based on its relative 
weight and performance score. The utility degree is calculated by using the optimality criterion and 
relative weight of each alternative in Eq. (19). The result, utility degree, reflects the overall 
desirability or effectiveness of the related alternative in comparison to others. The result is a utility 
score that provides a clear measure of the alternative’s overall performance, allowing for a 
straightforward ranking of alternatives according to their utility degrees. 

𝑁𝑖 =
𝑄𝑖

𝑄𝑚𝑎𝑥
             (19) 

 
3. The Evaluation of Renewable Energy Sources 
The fuzzy MCDM approach proposed in this study is specifically designed for evaluating RES 

alternatives from a subjective perspective, utilizing linguistic scales to capture the preferences and 
judgments of experts. The alternatives to be evaluated were carefully selected after extensive 
discussions with professionals in the field, ensuring that the choices were well-informed and 
relevant. The evaluation process involved 11 experts from Türkiye, each with notable experience 
and a background in renewable energy systems. To maximize the objectivity and reliability of the 
results, the experts were chosen from a diverse range of departments within the Faculty of 
Engineering, representing various fields of expertise. This multidisciplinary approach helped 
mitigate bias and ensured a more comprehensive analysis of the alternatives. 

The criteria set used to assess RES alternatives were gathered from both literature and expert 
insights, providing a balanced and up-to-date perspective on the factors influencing RES evaluation. 
In this study, five major RES alternatives —Solar Energy, Wind Energy, Hydroelectric Energy, 
Geothermal Energy, and Biomass Energy—were evaluated under 11 criteria, which are introduced 
in the first section. The selection of these specific RES reflects the current relevance and importance 
of each within the context of sustainable energy development. The evaluation process is presented 
in a structured, step-by-step manner in the following subsections, with each step elaborating on the 
methodology and providing the corresponding results of the analysis. This detailed approach 
ensures clarity and transparency in the evaluation process, allowing for a comprehensive 
understanding of how the proposed method was applied to each alternative. 

3.1. Calculating the weights and constructing the decision matrix 
In this sub-section, the weights of the evaluation criteria for RES alternatives are calculated, and 

the fuzzy decision matrix and defuzzified decision matrix of the problem are constructed. After 
applying FAHP given in Section 2.1 to the fuzzy pairwise comparisons of the experts for each 
criterion and alternatives one by one, the fuzzy decision matrix and the weights given in Table 3 are 
obtained. Each column and the weight vector in Table 3 is a separate FAHP calculation process, 
which means that FAHP given in Section 2.1 is applied 11 times in total to construct Table 3. 
Therefore, not all pairwise comparisons and tables with their calculations could be listed here step 
by step in detail.  
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Table 3. The Aggregated Fuzzy Decision Matrix for the Evaluation of RES 
 C1 C2 C3 C4 C5 C6 

Wj 0.033 0.101 0.029 0.119 0.094 0.068 

Solar E. (0.131, 0.181, 0.252) (0.132, 0.194, 0.276) (0.221, 0.323, 0.445) (0.091, 0.137, 0.190) (0.076, 0.115, 0.156) (0.206, 0.303, 0.428) 

Wind E. (0.072, 0.098, 0.142) (0.078, 0.110, 0.164) (0.106, 0.157, 0.228) (0.058, 0.084, 0.121) (0.053, 0.074, 0.110) (0.235, 0.337, 0.472) 

Hydroelectric E. (0.194, 0.271, 0.371) (0.263, 0.370, 0.516) (0.170, 0.238, 0.344) (0.325, 0.453, 0.623) (0.385, 0.527, 0.706) (0.132, 0.187, 0.269) 

Geothermal E. (0.188, 0.265, 0.364) (0.137, 0.197, 0.280) (0.059, 0.086, 0.125) (0.073, 0.098, 0.153) (0.064, 0.086, 0.134) (0.054, 0.076, 0.110) 

Biomass E. (0.135, 0.185, 0.261) (0.091, 0.128, 0.192) (0.141, 0.196, 0.292) (0.163, 0.228, 0.322) (0.142, 0.198, 0.282) (0.074, 0.097, 0.146) 

 C7 C8 C9 C10 C11  

Wj 0.088 0.259 0.030 0.120 0.059  

Solar E. (0.099, 0.148, 0.212) (0.176, 0.270, 0.403) (0.137, 0.218, 0.318) (0.206, 0.317, 0.453) (0.119, 0.193, 0.256)  

Wind E. (0.242, 0.355, 0.521) (0.179, 0.276, 0.412) (0.153, 0.239, 0.361) (0.146, 0.218, 0.330) (0.093, 0.142, 0.200)  

Hydroelectric E. (0.177, 0.260, 0.379) (0.087, 0.132, 0.191) (0.092, 0.135, 0.213) (0.104, 0.156, 0.234) (0.122, 0.176, 0.255)  

Geothermal E. (0.067, 0.099, 0.149) (0.074, 0.111, 0.173) (0.086, 0.129, 0.196) (0.078, 0.119, 0.185) (0.168, 0.240, 0.368)  

Biomass E. (0.095, 0.139, 0.210) (0.144, 0.212, 0.337) (0.187, 0.279, 0.436) (0.130, 0.189, 0.304) (0.182, 0.249, 0.382)  

The aggregated fuzzy decision matrix given in Table 3 undergoes a defuzzification process, as 
outlined in Step 8 of Section 2.1, to transform the fuzzy values into crisp values. This crucial step 
helps in eliminating the inherent uncertainty and vagueness of the initial fuzzy data, providing a 
more precise set of values that can be further analyzed by F-COPRAS. Specifically, the defuzzified 
matrix, as given in Table 4, becomes the input decision matrix used in the F-COPRAS. F-COPRAS 
method application with Table 4 ensure that the decision-making process is both systematic and 
accurate, allowing for a reliable comparison of the alternatives under consideration.  

 
Table 4. The Defuzzified Decision Matrix for the Evaluation of RES 

 C1 C2 C3 C4 C5 C6 

Wj 0.033 0.101 0.029 0.119 0.094 0.068 

Solar E. 0.1749 0.1935 0.3578 0.1132 0.0855 0.3361 

Wind E. 0.0466 0.0584 0.1433 0.0388 0.0308 0.3783 

Hydroelectric E. 0.3023 0.4597 0.2560 0.5409 0.6299 0.1884 

Geothermal E. 0.2938 0.1990 0.0413 0.0619 0.0490 0.0327 

Biomass E. 0.1823 0.0894 0.2017 0.2452 0.2048 0.0645 

 C7 C8 C9 C10 C11  

Wj 0.088 0.259 0.030 0.120 0.059  

Solar E. 0.1244 0.3013 0.2266 0.3670 0.1774  

Wind E. 0.4189 0.3091 0.2639 0.2318 0.0958  

Hydroelectric E. 0.2899 0.0960 0.0964 0.1333 0.1602  

Geothermal E. 0.0523 0.0666 0.0829 0.0746 0.2748  

Biomass E. 0.1144 0.2270 0.3302 0.1933 0.2919  

3.2. Evaluating and prioritizing the renewable energy sources 
After obtaining and constructing the decision matrix as given in the first part of Figure 1 and 

Section 2.1, RES can be evaluated by applying fuzzy based COPRAS method to this decision matrix 
given in Table 4. In other words, the first step of F-COPRAS method is completed with the first part 
of this section by applying FAHP. The fuzzy decision matrix can also be constructed using other 
techniques from the literature, such as expert judgment, survey results, historical data, the Delphi 
method, direct rating, etc., to determine criteria weights and evaluate the performance of 
alternatives instead of FAHP. These methods provide flexibility in capturing uncertainty and 
subjective preferences, making them suitable for complex decision-making environments. 
Additionally, integrating multiple techniques can enhance the robustness of the evaluation process 
by mitigating the biases associated with any single approach. However, FAHP is often preferred 
due to its systematic pairwise comparison approach, which effectively incorporates expert 
knowledge while reducing inconsistencies and enhancing the reliability of the final decision. The 
second step of F-COPRAS is calculation of the weighted normalized decision matrix by applying Eq. 
(12) to the decision matrix. The weighted normalized decision matrix of the problem is given in 
Table 5 after the calculations.  
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Table 5. The Weighted Normalized Decision Matrix for the Evaluation of RES 
 C1 C2 C3 C4 C5 C6 

Solar E. 0.0058 0.0195 0.0104 0.0135 0.0080 0.0229 

Wind E. 0.0015 0.0059 0.0042 0.0046 0.0029 0.0257 

Hydroelectric E. 0.0100 0.0464 0.0074 0.0644 0.0592 0.0128 

Geothermal E. 0.0097 0.0201 0.0012 0.0074 0.0046 0.0022 

Biomass E. 0.0060 0.0090 0.0058 0.0292 0.0193 0.0044 

 C7 C8 C9 C10 C11  

Solar E. 0.0109 0.0780 0.0068 0.0440 0.0105  

Wind E. 0.0369 0.0801 0.0079 0.0278 0.0057  

Hydroelectric E. 0.0255 0.0249 0.0029 0.0160 0.0095  

Geothermal E. 0.0046 0.0172 0.0025 0.0090 0.0162  

Biomass E. 0.0101 0.0588 0.0099 0.0232 0.0172  

The relative weights of RES alternatives are calculated in step 6 by applying Eq. (17) after 
obtaining 𝑃𝑖 values, 𝑅𝑖 values and min

 
(𝑅𝑖) in step 3, step 4 and step 5 of F-COPRAS. 𝑄𝑖 values of RES 

alternatives are given in the second column of Table 6 and 𝑁𝑖 values, which are utility degrees as 
relative performance scores, are given in the third column of Table 6. The final ranking of RES 
alternatives is given in the fourth column of Table 6. According to the F-COPRAS results, the best 
RES alternative is Hydroelectric energy with 0.2519 𝑄𝑖 value and 100 performance score. Following 
it, the second-best alternative is Solar Energy with 0.2021 𝑄𝑖 value and 80 performance score. Wind 
Energy is the third RES alternative with 0.1771 𝑄𝑖 value and 70 performance score. Biomass energy 
is the fourth RES alternative with 0.1700 𝑄𝑖 value and 67 performance score. The fifth and the last 
RES alternative is Geothermal Energy with 0.0853 𝑄𝑖 value and 34 performance score. 

 
Table 6. The Weighted Normalized Decision Matrix for the Evaluation of RES 

 𝑸𝒊 𝑵𝒊 Ranking FAHP Ranking FMOORA Ranking 

Solar E. 0.2303 83 2 0.018 2 0.116 2 

Wind E. 0.2031 73 3 0.016 3 0.135 3 

Hydroelectric E. 0.2789 100 1 0.023 1 0.115 1 

Geothermal E. 0.0947 34 5 0.008 5 0.200 5 

Biomass E. 0.1929 69 4 0.015 4 0.136 4 

3.3. Sensitivity Analysis 
In this section, the results of the sensitivity analysis, conducted by modifying the weights of the 

criteria set, are presented in detail. The sensitivity analysis table provides a structured representation 
of these results. The first row of the table displays the results of the main case of this study, where 
the initial weight assignments remain unchanged. The subsequent rows contain results from two 
distinct sets of alternative weighting scenarios, designed to examine how variations in criterion 
importance affect the ranking of RES. 

The first set of 11 cases involves scenarios where each criterion is individually assigned a weight 
of 0.7, while the remaining 10 criteria are each assigned a weight of 0.03. This allows an evaluation 
of the dominant influence of a single criterion in determining the overall ranking. In contrast, the 
last 11 cases follow a different approach: each criterion is assigned a weight of 0.35, while the 
remaining 10 criteria receive a weight of 0.065. This alternative scenario provides insight into how 
moderate changes in weighting affect the ranking dynamics. 

For example, in Case 1, Criterion C1 is given a weight of 0.7, while the other 10 criteria are each 
assigned a weight of 0.03. Similarly, in Case 13, Criterion C2 is assigned a weight of 0.35, with the 
remaining criteria receiving a weight of 0.065. By analyzing the results of each case, the strengths 
and weaknesses of various RES become apparent. If, for instance, a particular energy source moves 
from the lower ranks to the top position when a criterion is weighted at 0.7, it signifies that this 
energy source exhibits a strong performance concerning that specific criterion. 

A practical example of this phenomenon can be observed in Biomass Energy. In the baseline 
scenario, Biomass Energy is ranked fourth. However, when the weighting is adjusted, as in Case 9 
and Case 11, it rises to the first position. A closer examination of Table 4 and Table 5, which present 
detailed criterion-based analyses, further confirms that Biomass Energy demonstrates superior 
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performance for the two criteria emphasized in these cases. Similar assessments can be performed 
for each RES and criterion individually to better understand their relative advantages. 

To facilitate a holistic evaluation, column-wise averages have been calculated and presented at 
the bottom of the table. These average values provide an overall ranking of RES when all scenarios 
are taken into account. Based on these averaged rankings, Hydroelectric Energy emerges as the most 
preferred option, followed by Solar Energy in second place, Biomass Energy in third, Wind Energy 
in fourth, and Geothermal Energy in the last position. 

Comparing these results to the baseline scenario reveals an interesting shift: Biomass Energy 
and Wind Energy have switched places in the ranking, with Biomass Energy moving ahead of Wind 
Energy. This change is believed to stem from the fact that Wind Energy performs significantly better 
than other sources in certain scenarios where it has a competitive advantage, resulting in substantial 
score differences. This observation underscores the importance of sensitivity analysis in 
understanding the impact of weight variations on energy source rankings and highlights how 
different weighting approaches can lead to shifts in prioritization. 

 
Table 7. Sensitivity Analysis Results 

 Solar E. Wind E. Hydroelectric E. Geothermal E. Biomass E. 

 𝑸𝒊 𝑵𝒊 R. 𝑸𝒊 𝑵𝒊 R. 𝑸𝒊 𝑵𝒊 R. 𝑸𝒊 𝑵𝒊 R. 𝑸𝒊 𝑵𝒊 R. 

This Case 0.230 83 2 0.203 73 3 0.279 100 1 0.095 34 5 0.193 69 4 

Case 1 0.191 64 3 0.092 31 5 0.297 100 1 0.234 79 2 0.186 63 4 

Case 2 0.203 51 2 0.100 25 5 0.403 100 1 0.170 42 3 0.124 31 4 

Case 3 0.313 100 1 0.156 50 4 0.266 85 2 0.065 21 5 0.199 64 3 

Case 4 0.150 33 3 0.086 19 4 0.457 100 1 0.078 17 5 0.229 50 2 

Case 5 0.131 25 3 0.081 16 4 0.517 100 1 0.070 13 5 0.202 39 2 

Case 6 0.299 95 2 0.314 100 1 0.221 70 3 0.059 19 5 0.108 34 4 

Case 7 0.157 46 3 0.341 100 1 0.289 85 2 0.072 21 5 0.141 41 4 

Case 8 0.276 100 1 0.268 97 2 0.159 58 4 0.081 30 5 0.216 79 3 

Case 9  0.226 79 3 0.237 83 2 0.159 56 4 0.092 32 5 0.286 100 1 

Case 10 0.320 100 1 0.216 68 2 0.184 58 4 0.087 27 5 0.194 61 3 

Case 11 0.193 74 4 0.125 48 5 0.202 78 3 0.221 85 2 0.260 100 1 

Case 12 0.210 72 2 0.144 50 5 0.291 100 1 0.164 56 4 0.191 66 3 

Case 13 0.215 64 2 0.148 44 4 0.336 100 1 0.137 41 5 0.165 49 3 

Case 14 0.262 94 2 0.172 62 4 0.278 100 1 0.092 33 5 0.197 71 3 

Case 15 0.192 53 3 0.142 40 4 0.359 100 1 0.098 27 5 0.209 58 2 

Case 16 0.184 48 3 0.140 36 4 0.384 100 1 0.094 24 5 0.198 51 2 

Case 17 0.256 99 2 0.239 92 3 0.259 100 1 0.089 34 5 0.158 61 4 

Case 18 0.195 68 3 0.250 87 2 0.288 100 1 0.095 33 5 0.172 60 4 

Case 19 0.246 100 1 0.219 89 3 0.232 95 2 0.099 40 5 0.204 83 4 

Case 20 0.224 96 3 0.206 88 4 0.232 100 2 0.104 44 5 0.234 100 1 

Case 21 0.264 100 1 0.197 75 3 0.243 92 2 0.101 38 5 0.194 74 4 

Case 22 0.210 84 3 0.158 63 4 0.251 100 1 0.158 63 5 0.223 89 2 

Mean 0.223 74.8 2.318 0.183 61.9 3.409 0.287 89.8 1.818 0.112 37.3 4.591 0.195 64.7 2.864 

Ranking 2 2 2 4 4 4 1 1 1 5 5 5 3 3 3 

The findings of the sensitivity analysis highlight the significant impact of criterion weighting on 
the ranking of RES. By systematically varying the importance assigned to each criterion, the analysis 
has demonstrated how different renewable energy alternatives respond to changes in evaluation 
priorities. The observed shifts in rankings, particularly the interchange between Biomass Energy and 
Wind Energy, emphasize the necessity of considering multiple scenarios in decision-making 
processes. Additionally, the results reinforce the importance of Hydroelectric and Solar Energy, 
which consistently occupy the top positions, suggesting their overall robustness across different 
weighting schemes. 

These insights underscore the critical role of sensitivity analysis in energy planning and policy 
formulation. Decision-makers must recognize that the ranking of RES is not static but rather highly 
dependent on the prioritization of specific criteria, such as cost efficiency, environmental impact, or 
reliability. Therefore, integrating a dynamic, criterion-sensitive evaluation approach will enable 
more informed and adaptable energy investment strategies. Future studies may further enhance this 
analysis by incorporating additional criteria, real-world constraints, or expert-driven weight 
assignments to refine the decision-making framework for sustainable energy development. 
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4. Interpreting the Results 
The results of the study indicate that among the evaluated RES, Hydroelectric Energy ranks first, 

followed by Solar Energy, Wind Energy, Biomass Energy, and finally, Geothermal Energy. This 
ranking provides valuable insights into the relative performance and investment potential of each 
energy source, highlighting Hydroelectric Energy as the most favorable alternative within the given 
criteria. The use of FAHP and FMOORA methodologies has further validated these findings, as both 
techniques yielded identical rankings. The comparison among this study, FAHP and FMOORA is 
particularly insightful, as these methods share similar foundational steps in MCDM process. This 
consistency across different decision-making tools strengthens the reliability and robustness of the 
results. 

The first-place ranking of Hydroelectric Energy can be attributed to its established 
infrastructure, high energy efficiency, and consistent performance in generating electricity. Despite 
its dependency on geographical and climatic conditions, Hydroelectric Energy has demonstrated 
significant economic and operational benefits, making it a top choice for investment and 
performance optimization. 

Solar Energy, ranking second, reflects its growing importance due to technological 
advancements, cost reductions in photovoltaic systems, and its global availability. However, 
limitations such as dependency on sunlight intensity and the need for efficient energy storage 
solutions slightly reduce its overall score compared to hydropower. 

Wind Energy, placed third, showcases its potential as a clean and sustainable source of power. 
Nevertheless, factors such as variability in wind patterns, high initial investment costs, and 
challenges related to land use and noise pollution may have contributed to its relatively lower 
ranking. 

Biomass Energy, ranked fourth, demonstrates moderate potential but is often limited by high 
operating costs, challenges in sourcing raw materials sustainably, and concerns about emissions 
when compared to other RES. 

Finally, Geothermal Energy's placement at the bottom of the ranking may be influenced by its 
site-specific nature, high exploration and development costs, and long payback periods. Although 
it is a reliable and stable energy source, these factors likely hinder its competitiveness against the 
other RES alternatives. 

In conclusion, the alignment of the results obtained through FAHP and FMOORA underscores 
the robustness of the analysis and provides confidence in the prioritization of RES. This study not 
only offers valuable insights for policymakers and investors but also emphasizes the importance of 
integrating advanced decision-making methodologies in evaluating sustainable energy projects.  

 
Conclusion and Evaluation 
This study highlights, evaluates and prioritizes the critical importance of renewable energy 

sources under 11 important criteria as sustainable alternatives to traditional fossil fuels. By utilizing 
a hybrid fuzzy multi-criteria decision-making approach, five most important and used RES were 
evaluated based, ensuring a comprehensive and systematic assessment. The integration of FAHP 
and F-COPRAS method proved to be an effective approach in determining the relative importance 
of criteria and in ranking the energy alternatives. FAHP method allowed for an accurate 
representation of the inherent uncertainties in decision-making, particularly when dealing with 
subjective judgments about the importance of different criteria. This helped create a robust fuzzy 
decision matrix that reflects the complexity of renewable energy decision-making. Following this, F-
COPRAS method efficiently processed the fuzzy matrix and provided a clear ranking of RES, 
offering valuable insights into which alternatives are most beneficial based on the defined criteria. 

The results of this study underscore the significant advantages of RES both together and 
individually in promoting sustainability. By reducing carbon emissions, improving air quality, and 
offering a virtually inexhaustible supply of energy, RES are pivotal in addressing climate change 
and ensuring a cleaner, greener future. The hybrid approach adopted in this study provides 
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decision-makers with a powerful tool for evaluating and selecting the most appropriate RES 
alternative in line with both environmental and economic goals. 

One of the distinguishing features of this study is the application of a hybrid fuzzy multi-criteria 
decision-making method, which combines the strengths of both FAHP and F-COPRAS methods. 
This approach not only accommodates the inherent uncertainty in the decision-making process but 
also ensures a more objective, well-rounded evaluation of energy alternatives. By incorporating 
fuzzy logic, the methods provide a more realistic analysis compared to traditional crisp-based 
methods, which may not fully capture the nuances of subjective judgments. The advantages of this 
methodology are evident, particularly in its ability to handle complex, multi-criteria problems in 
uncertain environments. The hybrid approach allows for a detailed, adaptable analysis that can be 
applied to various renewable energy alternatives across different regions and contexts. Additionally, 
the integration of fuzzy logic ensures that decision-makers can consider a range of potential 
outcomes, enhancing the robustness and reliability of the results. 

In conclusion, the adoption of renewable energy is crucial for a sustainable future. This study's 
findings emphasize the necessity of integrating advanced decision-making techniques, such as the 
fuzzy-based hybrid methods, to evaluate energy alternatives. By incorporating these techniques, 
decision-makers can make more informed choices that account for the complex, uncertain nature of 
renewable energy assessments. The results highlight the potential of such methods to guide policy 
development and investment in the renewable energy sector, ensuring optimal energy solutions for 
both environmental and economic sustainability. 

Future studies could further explore the inclusion of additional criteria such as social, political, 
or technological factors to enrich the decision-making process. Additionally, a comparative analysis 
with other decision-making methods could be conducted to evaluate the relative effectiveness and 
robustness of the proposed hybrid approach. It would also be beneficial to apply this methodology 
to specific geographic regions, accounting for local renewable energy resources, infrastructure, and 
policy considerations. Furthermore, future research could examine the long-term sustainability and 
financial viability of selected energy sources to provide a more comprehensive framework for 
decision-makers in the renewable energy sector. 
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