

An Efficient Hybrid Meta-heuristic Algorithm for Solving Capacitated Vehicle Routing
Problem

Emrullah Gazioğlu

Şırnak University, Engineering Faculty, Department of Computer Engineering, Şırnak, Türkiye, gazioglu@sirnak.edu.tr,
ror.org/01fcvkv23

ARTICLE INFO ABSTRACT

Keywords:
Vehicle routing
Evolutionary computing
Local search
Global optimization
Meta-heuristics
Global search

Article History:
Received: 02.02.2025
Revised: 14.05.2025
Accepted: 28.05.2025
Online Available: 14.06.2025

Vehicle routing inside factories is one of the hard problems that researchers try to
solve for many years. When planning routes, we must think about how much vehicles
can carry and how factory buildings are organized. Some factories have same type
vehicles while others have different types with varying capacities. Researchers made
good algorithms for this problem, but these algorithms need too much computer
power. In our study, we made a new algorithm that uses adaptive memory to
remember good solutions and selectively explores promising regions of the solution
space. When we compare with old methods, our algorithm finds the same optimal
solutions but needs about 80 percent less calculations. For testing our algorithm, we
used real data from a car factory with both same type vehicles and different type
vehicles. We tested five different scenarios and ran each test 30 times, performing
comprehensive statistical analyses. All tests showed 100 percent success rate in
finding optimal solutions with remarkable computational efficiency. Test results
show us something important: We don't need to look at all possible solutions to find
the best one. If we look at only promising areas, we can find best solution faster. This
makes our method very useful for real factory problems because factory managers
need quick solutions and don't want to use too much computer power. Our method
is good at finding which solution areas are promising and focuses on these areas, so
it solves problems faster with less computer resources.

1. Introduction

Scientists have been working on Vehicle Routing
Problem (VRP) since 1959, when Dantzig and
Ramser first studied this problem in literature [1].
CVRP is a type of VRP problem where vehicles
have maximum carrying limits. This makes
CVRP more similar to real factory problems.
Many researchers studied CVRP for external
logistics problems, but using CVRP inside
factories is different and has both difficulties and
advantages.

When we try to optimize logistics inside
factories, we need to make good routes by
thinking about two things: how much vehicles
can carry and how factory buildings are
organized. It is already well-known that hybrid

metaheuristic algorithms are good tools for
solving these difficult optimization problems [2].
However, the computational efficiency of these
algorithms, particularly in terms of solution
evaluation costs, remains a crucial area for
improvement.

This paper presents an Adaptive Memory
Variable Neighborhood Search (AMVNS)
algorithm for solving CVRP in in-plant logistics.
Our approach builds upon the Hybrid Tabu
Search (HTS) algorithm proposed in [3],
introducing an adaptive memory structure and
efficient neighborhood exploration strategy. The
key contribution of our work lies in achieving
optimal solutions with significantly reduced
computational effort, demonstrated through a
substantial reduction in the number of fitness
evaluations required.

Research Article

Sakarya Üniversitesi Fen Bilimleri Dergisi
Sakarya University Journal of Science

e-ISSN : 2147-835X
Publisher : Sakarya University

Vol. 29, No. 3, 293-306, 2025
DOI: https://doi.org/10.16984/saufenbilder.1631550

Cite as: E. Gazioğlu, “An efficient hybrid meta-heuristic algorithm for solving capacitated vehicle routing problem,” Sakarya University Journal of Science, vol. 29, no. 3,
pp. 293-306, 2025. https://doi.org/10.16984/saufenbilder.1631550

 This is an open access paper distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International License.

https://ror.org/01fcvkv23
https://orcid.org/0000-0002-7615-305X
https://doi.org/10.16984/saufenbilder.1631550
https://doi.org/10.16984/saufenbilder.1631550

Sakarya University Journal of Science, 29(3) 2025, 293-306

294

The key contributions of this study are threefold:
(1) We propose an adaptive memory-based
hybrid algorithm that achieves optimal solutions
with significantly reduced computational effort
compared to the existing approach; (2) We
introduce an efficient neighborhood exploration
strategy that selectively samples the solution
space rather than exhaustively evaluating all
possible moves, while maintaining solution
quality; (3) We provide a comprehensive
empirical validation through 30 independent
runs, all consistently achieving the optimal
solution, demonstrating the robustness of our
approach. These contributions collectively
advance the state-of-the-art in solving CVRP for
in-plant logistics, offering both theoretical
insights and practical benefits for real-world
applications.

The remainder of this paper is organized as
follows: Section 2 presents a comprehensive
review of related literature, including the HTS
algorithm that forms the baseline for our
comparison. Section 3 introduces our proposed
AMVNS algorithm, detailing the solution
representation, iteration process, and the key
mechanisms that enable its efficient
performance. Section 4 presents experimental
studies, including a detailed comparison with the
HTS algorithm and analysis of computational
efficiency. Finally, Section 5 concludes the paper
with a summary of findings and directions for
future research.

2. Literature Review

The CVRP has been extensively studied in the
literature, with various solution approaches
proposed over the years. Early works focused on
exact methods [4–7], but as problem sizes grew,
metaheuristic approaches gained prominence due
to their ability to find high-quality solutions in
reasonable computational time.

Metaheuristic approaches to CVRP can be
broadly categorized into three groups: single-
solution based methods, population-based
methods, and hybrid methods. Many researchers
used methods like Simulated Annealing (SA) to
solve CVRP problems [8–11]. SA is good
because it can accept some bad solutions with
probability, so it doesn't get stuck in local best

points. Another method, Tabu Search (TS), also
works well for CVRP problems [12–15]. TS uses
memory to remember old solutions, so it doesn't
check same solutions again and again.

Researchers also tried population methods for
CVRP, mostly with Genetic Algorithms (GA).
New studies show that GA can solve big CVRP
problems [16–19], and it works better when we
add local search to it. Another method called Ant
Colony Optimization (ACO) also gave good
results in CVRP, especially for problems that
have special shapes and structures [20–22].

In last years, researchers started to use memory
in their algorithms more often. Many algorithms
now use Adaptive Memory Programming (AMP)
to work better [23–25]. When we add memory to
algorithms, we get better solutions faster [26].
Memory helps algorithms remember good
solution areas and not waste time in bad areas
[27–29].

Some researchers took good parts from different
methods and combined them together. For
example, when Variable Neighborhood Search
(VNS) is used with other methods, it solves
routing problems very well [30–32]. Recent
studies try to make these combined methods use
less computer power but still find good solutions
[33, 34].

One important problem in CVRP is how to make
algorithms work faster. New studies say we need
better ways to search solutions that don't use too
much computer power [35–37]. In our study, we
use memory in a new way that makes algorithm
need much less solution checks to find best
answer.

An important step for solving CVRP problems
was made in [3], where researchers combined TS
and SA methods together. Their HTS algorithm,
outlined in Algorithm 1, demonstrated strong
performance in solving in-plant logistics
problems.

However, the HTS algorithm requires a
significant number of fitness evaluations, as it
explores 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛 × (𝑛𝑛 − 1) possible
moves in each iteration, where 𝑛𝑛 is the number of
nodes. In Kulaç and Kazancı's study [3], the

Emrullah Gazioğlu

295

MaxIT2 parameter was set to 300, which is a
common setting for tabu search algorithms in
CVRP literature. As noted by Cordeau et al. [38],
iteration limits between 200-500 are typically
sufficient for convergence in most vehicle
routing problems. We adopted the same
parameter value (300) to ensure a fair
comparison between the algorithms. For a
problem with 19 nodes, this results in 342
evaluations per iteration.

Algorithm 1. HTS Algorithm
Input: MaxIt1, MaxIt2, TLs, T0, alpha1, alpha2
Output: Best solution found

01. Generate initial solution using SA

Algorithm 1 (MaxIt1, alpha1)
02. Create empty tabu list with size of TLs
03. T=T0 #Set initial temperature
04. For it = 0 to MaxIt2:
05. For i = 1 to nAction:
06. If i. Action is not in tabu list:
07. Create new solution using i. Action
08. Calculate deterioration rate (dR)
09. If dR <= 0:
10. Accept new solution
11. Add solution to memory pool
12. Else if dR ≤ random(0,50):
13. Calculate acceptance probability P
 (𝑃𝑃 = 𝑒𝑒^(−𝑑𝑑𝑅𝑅/𝑇𝑇)
14. If random(0,1) ≤ P:
15. Accept new solution
16. Else:
17. Reject new solution
18. Update best solution if improved
19. For j = 1 to nAction:
20. If j is the best action index:
21. Add j. Action to tabu list
22. Else:
23. Reduce tabu counter
24. Reduce temperature: T = alpha2*T
25. Return best solution found

3. Proposed Method

3.1. Solution representation

In our algorithm, a solution to the CVRP is
represented as a series of routes, where each
route is a sequence of integers representing the
nodes (assembly lines) to be visited. Each route
starts and ends with 0 (depot). For example, a
feasible solution for a problem with 19 assembly
lines might look like:

Route 1: [0, 9, 10, 0] # Visit assembly
lines 9 and 10
Route 2: [0, 7, 8, 0] # Visit assembly
lines 7 and 8
...
Each integer in the range [1,19] appears exactly
once across all routes, ensuring each assembly
line is visited. The number 0 represents the depot

and appears at the start and end of each route.
This representation naturally enforces:

• The depot (0) as start and end point of each

route
• One-time visit constraint for each assembly

line
• Route identification for each vehicle

A solution is feasible if:

1. Sum of demands in each route does not

exceed vehicle capacity (400 units)
2. Each assembly line (1-19) appears exactly

once
3. All routes start and end at depot (0)

3.2. General structure of AMVNS

Our proposed AMVNS algorithm improves
efficiency of CVRP solving by using both
adaptive memory structure and intelligent
neighborhood search. The algorithm combines
Variable Neighborhood Search with adaptive
memory mechanism that learns from previous
solutions. Here we explain the main components
in detail:

3.2.1. Adaptive memory structure

The memory structure in AMVNS works as
follows:

i. Memory Pool Management: Algorithm keeps
a memory pool with fixed size (memory_size).
This pool stores best solutions found during
search process. Memory pool starts empty and
fills as algorithm finds good solutions.

ii. Solution Selection and Insertion: When
algorithm finds new solution, it decides whether
to add it to memory:
• If new solution is better than worst solution

in memory pool, worst solution is removed
and new solution is added

• If memory pool is not full yet, new solution
is added directly

• Each solution in memory has quality score
based on its objective value

• Solutions with higher diversity are given
preference to maintain solution variety

Sakarya University Journal of Science, 29(3) 2025, 293-306

296

iii. Memory-guided Search Direction: The
memory pool influences search direction in these
ways:

• When algorithm needs to select next move,

it looks at common features of good
solutions in memory

• Features that appear frequently in good
solutions get higher probability to be
selected

• This helps algorithm focus on promising
regions of solution space without exhaustive
search

• Search intensity is automatically adjusted
based on quality of solutions in memory

3.2.2. Learning mechanism

The learning mechanism adjusts parameters
during search based on historical performance:

i. Neighborhood Structure Scoring: Each
neighborhood structure i has score
(struct_scores[i]) that represents its
efficiency:

• When structure i produces improvement, its

score increases:
𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛_𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠[𝑛𝑛] = 𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛_𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠[𝑛𝑛] + 𝛼𝛼

• When structure fails to improve, its score
slowly decreases:
𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛_𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠[𝑛𝑛] = 𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛_𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠[𝑛𝑛] ∗ (1 − 𝛽𝛽)

where, 𝛼𝛼 is learning rate (default: 0.01) and 𝛽𝛽 is
decay rate (default: 0.005)

ii. Probability-based Selection: The probability
of selecting neighborhood structure i is
calculated as:

𝑃𝑃(𝑛𝑛) = 𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛_𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠[𝑛𝑛] �𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛_𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠[𝑗𝑗]�

iii. Temperature Adjustment: The temperature
parameter controls acceptance of non-improving
solutions:

𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐_𝑠𝑠𝑟𝑟𝑛𝑛𝑒𝑒

𝑃𝑃𝑎𝑎𝑐𝑐𝑐𝑐𝑛𝑛𝑎𝑎𝑐𝑐 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−
(𝑛𝑛𝑒𝑒𝑛𝑛_𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛 − 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑛𝑛𝑛𝑛_𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛)

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐
�

Algorithm 2. Adaptive Memory Variable
Neighborhood Search (AMVNS)

Input: Problem instance, memory_size,
max_iterations
Output: Best solution found
01. Initialize:
 memory_pool = []
 memory_scores = []
 struct_scores = [1.0] * 4 # For each
 neighborhood type
02. Generate initial solution (x0) using

savings algorithm
03. best_solution = x0
04. best_cost = calculate_cost(x0)
05. For iteration = 1 to max_iterations:
06. Select neighborhood structure based on

struct_scores
07. Generate neighbor using selected

structure
08. new_cost = calculate_cost(neighbor)
09. If new_cost < current_cost:
10. Accept neighbor
11. Update struct_scores
12. Update memory pool if qualified
13. Else if acceptance_probability():
14. Accept neighbor
15. If new_cost < best_cost:
16. best_solution = neighbor
17. best_cost = new_cost
18. Update learning parameters
19. Update temperature
20. Return best_solution, best_cost

iv. Exploration Rate Adjustment: Exploration
rate dynamically changes during search:

𝐿𝐿𝑒𝑒𝑛𝑛 𝑣𝑣𝑟𝑟𝑐𝑐 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑐𝑐_𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑛𝑛𝑠𝑠𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑠𝑠𝑟𝑟𝑛𝑛𝑒𝑒 ∗ (1 −
𝑛𝑛𝑛𝑛𝑒𝑒𝑠𝑠𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠

max _𝑛𝑛𝑛𝑛𝑒𝑒𝑠𝑠𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠
)

 𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑛𝑛𝑠𝑠𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑠𝑠𝑟𝑟𝑛𝑛𝑒𝑒 = 𝑚𝑚𝑟𝑟𝑒𝑒(0.05, 𝑣𝑣𝑟𝑟𝑐𝑐)

This adaptive parameter adjustment allows
algorithm to balance between exploration and
exploitation based on search history.

3.2.4. Integration with AMVNS algorithm

The described adaptive memory structure and
learning mechanism are integrated within our
AMVNS algorithm as presented in Algorithm 2.
The memory pool initialization (step 01),
solution quality assessment (steps 05 and 12),
neighborhood structure selection based on
performance history (steps 13-17), and dynamic
parameter adjustments (steps 25 and 29) work
together to create an efficient exploration
strategy. This integration enables the algorithm
to focus computational effort on promising
regions of the solution space rather than
exhaustively evaluating all possible moves.
Algorithm 2 shows how these components
interact within the overall AMVNS framework,
creating a balance between diversification and
intensification throughout the search process.

Emrullah Gazioğlu

297

3.3. One iteration example

Let's demonstrate how AMVNS performs a
single iteration using a concrete example.

Consider the current solution:

Route 1: [0, 9, 10, 0] #Total demand: 352 units
Route 2: [0, 7, 8, 0] #Total demand: 244 units
Route 3: [0, 2, 4, 5, 0] #Total demand: 373 units
Route 4: [0, 6, 3, 0] #Total demand: 237 units
Route 5: [0, 1, 16, 15, 0] #Total demand: 171 units
Route 6: [0, 11, 12, 13, 14, 17, 18, 19, 0] #Total
demand: 362 units

Step 1: Select Neighborhood Structure
• Based on struct_scores = [1.2, 0.8, 1.0, 0.9]
• Swap operator (first structure) is selected

due to highest score

Step 2: Generate Neighbor
• Random selection: nodes 10 (Route 1) and

15 (Route 5)
• Swap these nodes to create new solution:

Neighbor Solution:
Route 1: [0, 9, 15, 0] # New demand: 311 units
Route 2: [0, 7, 8, 0] # Unchanged
Route 3: [0, 2, 4, 5, 0] # Unchanged
Route 4: [0, 6, 3, 0] # Unchanged
Route 5: [0, 1, 16, 10, 0] # New demand: 212 units
Route 6: [0, 11, 12, 13, 14, 17, 18, 19, 0] #
Unchanged

Step 3: Evaluate Changes
• Check capacity constraints (all ≤ 400 units)
• Calculate new total distance
• Current solution cost: 623
• New solution cost: 631

Step 4: Accept/Reject Decision
• Cost increased by 8 units
• Current temperature = 0.85
• Acceptance probability = exp(-8/0.85) ≈

0.0001
• Random number = 0.002
• Decision: Reject this neighbor
Step 5: Update Parameters
• Struct_scores[0] decreased slightly due to

rejection
• Temperature reduced: 0.85 * 0.98 = 0.833
• Memory pool unchanged (no improvement)

This example illustrates how AMVNS:

1. Maintains feasibility while exploring
neighbors

2. Uses memory to guide operator selection
3. Allows controlled uphill moves through

temperature mechanism
4. Adaptively adjusts its parameters based on

success/failure

4. Experimental Studies

To validate the effectiveness of our proposed
AMVNS algorithm, we conducted experiments
using the same in-plant logistics case study
presented in [3]. The problem instance consists
of 19 assembly lines and one depot, with vehicle
capacity constraints and real-world distances
based on the factory layout. Our experiments
include five different test cases to evaluate
algorithm performance. First test case uses
homogeneous fleet with 6 vehicles (same
capacity of 400 for each vehicle).

Other test cases use 5 vehicles with different
capacities. Test case 2 and 4 use quite different
vehicle capacities like [380, 380, 400, 400, 440],
while test case 3 uses same capacity vehicles like
test case 1. Test case 5 is balanced between these
two, using some same and some different
capacities [400, 400, 420, 420, 440]. These
different test cases help us understand how our
algorithm works with both homogeneous and
heterogeneous vehicle fleets.

4.1. Experimental setup

The algorithms were implemented in Python 3.9
and experiments were conducted on a computer
with Intel Xeon E5-1650 processor and 40GB
RAM.

To compare our method with HTS, we used the
results originally reported by Kulaç & Kazancı in
[3]. The results are presented under the 'HTS
Solution' column in the relevant table for direct
comparison with our approach. This allows
readers to easily see how our proposed AMVNS
algorithm compares with the original HTS
algorithm on the same benchmark instances.
Also, we used the same distances between
assembly lines as provided by them in the
aforementioned paper.

Sakarya University Journal of Science, 29(3) 2025, 293-306

298

Table 1. The distances between the assembly lines [3]
 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19
L1 0 47 53 64 74 84 94 102 122 132 98 90 84 63 53 38 111 58 66
L2 47 0 83 17 27 37 46 53 72 83 129 121 115 94 84 98 143 10 22
L3 53 83 0 67 57 47 39 47 67 77 44 36 30 9 2 15 58 73 105
L4 64 17 67 0 10 20 30 38 58 68 111 103 97 76 66 82 125 8 39
L5 74 27 57 10 0 10 20 27 46 58 101 93 87 66 56 71 115 16 47
L6 84 37 47 20 10 0 10 18 37 48 91 83 77 56 46 61 105 26 57
L7 94 46 39 30 20 10 0 8 28 38 81 73 67 46 40 55 95 35 66
L8 102 53 47 38 27 18 8 0 20 30 89 81 75 54 48 63 103 43 74
L9 122 72 67 58 46 37 28 20 0 10 58 66 72 74 64 82 72 60 93
L10 132 83 77 68 58 48 38 30 10 0 47 56 62 83 76 91 61 70 103
L11 98 129 44 111 101 91 81 89 58 47 0 8 14 35 45 60 14 117 150
L12 90 121 36 103 93 83 73 81 66 56 8 0 6 27 37 52 22 109 142
L13 84 115 30 97 87 77 67 75 72 62 14 6 0 21 31 46 28 103 136
L14 63 94 9 76 66 56 46 54 74 83 35 27 21 0 10 25 49 83 114
L15 53 84 2 66 56 46 40 48 64 76 45 37 31 10 0 15 59 73 104
L16 38 98 15 82 71 61 55 63 82 91 60 52 46 25 15 0 74 88 119
L17 111 143 58 125 115 105 95 103 72 61 14 22 28 49 59 74 0 131 162
L18 58 10 73 8 16 26 35 43 60 70 117 109 103 83 73 88 131 0 31
L19 66 22 105 39 47 57 66 74 93 103 150 142 136 114 104 119 162 31 0

For reader convenience, we have included this
distance matrix in our paper as Table 1,
eliminating the need to reference the original
paper for these critical input data. This ensures
that our work is self-contained while maintaining
consistency with the benchmark data used in the
literature. This way, we could make fair
comparison between AMVNS and HTS using
same real factory data.

To verify the optimality of solutions, we
additionally implemented an exact solution
method using the PuLP library [39] which
formulates the CVRP as a mixed-integer linear
programming (MILP) problem. Our
implementation uses the branch-and-cut
algorithm with the following key parameters: a
maximum time limit of 3600 seconds, a Mixed-
Integer Programming (MIP) gap tolerance of
0.001, and strong branching variable selection
strategy. The MILP formulation includes flow
conservation constraints, subtour elimination
constraints, and capacity constraints.

The objective function minimizes the total
distance traveled. For solving the model, we
utilized the CBC (Coin-or Branch and Cut)
solver, which is an open-source MIP solver that
implements various cutting plane techniques,
branching strategies, and heuristics to find
optimal integer solutions. While this exact

approach guarantees optimality for small to
medium-sized instances, it becomes
computationally prohibitive for larger problems,
which further emphasizes the value of our
proposed AMVNS approach.

Parameters for AMVNS were set as follows:
• Maximum iterations: 1000
• Memory pool size: 100
• Initial temperature: 1.0
• Cooling rate: 0.98

The experiments were conducted with 30
independent runs for both algorithms to ensure
statistical validity. For AMVNS, all 30 runs
consistently achieved the optimal solution value
of 623, with an average of 20,041.33 fitness
evaluations (std. dev. = 4.39). This consistency
demonstrates the robustness of our approach in
addition to its efficiency.

4.2. Results and discussion

We present our results in two parts: first for
homogeneous fleet (test case 1) and then for
heterogeneous fleet cases (test cases 2-5). This
way, we can see how our algorithm performs
with different fleet types.

Emrullah Gazioğlu

299

4.2.1. Homogeneous fleet results

Table 2 presents the comparative results between
HTS and our proposed AMVNS algorithm. Both
algorithms achieve the optimal solution value of
623, which was verified by our exact solution
method. However, the key difference lies in the
computational efficiency:

Table 2. Comparative results

Algorithm Best
Solution

Total
Distance

Computational
Effort (Fitness
Evaluations)

Number
of

Vehicles
HTS Feasible 623 102,600 6
AMVNS Feasible 623 20,100 6
Exact
(PuLP) Optimal 623 N/A 6

1. Solution Quality:

• Both algorithms reach the optimal value of

623
• Both maintain feasibility in terms of

capacity constraints
• Vehicle utilization rates are comparable

2. Computational Efficiency:

• HTS requires 102,600 fitness evaluations

(300 iterations × 342 moves)
• AMVNS requires only ~20,100 fitness

evaluations
• Represents an 80.4% reduction in

computational effort

Table 3 provides a detailed comparison of the
routes generated by both AMVNS and HTS
algorithms. Interestingly, both algorithms
converged to identical routes, despite their
different search strategies. This confirms the
robustness of the optimal solution for this
problem instance. The capacity utilization values
indicate efficient use of vehicle capacities, with
Routes 3 and 5 approaching maximum utilization
(99.2% and 98.0% respectively).

Route 3 combines 9 nodes into a single route with
near-perfect capacity utilization, demonstrating
the algorithms' ability to efficiently pack nodes
while respecting capacity constraints. In contrast,
Routes 2 and 4 show relatively lower utilization
(61.0% and 53.2%), suggesting potential for

further optimization with heterogeneous vehicle
fleets, as explored in subsequent test cases.

Table 3. Route comparison

Route AMVNS
Solution

Capacity
Utilization

HTS
Solution

Capacity
Utilization

1 [0,9,10,0] 88.0% [0,9,10,0] 88.0%
2 [0,7,8,0] 61.0% [0,7,8,0] 61.0%

3
[0,16,15,13,
12,11,17,14,
3,0]

99.2%

[0,16,15,
13,12,11,
17,14,3,0
]

99.2%

4 [0,6,0] 53.2% [0,6,0] 53.2%

5 [0,18,19,1,2,
0] 98.0% [0,18,19,

1,2,0] 98.0%

6 [0,4,5,0] 84.0% [0,4,5,0] 84.0%
Total
Distance 623 - 623 -

4.2.2. Heterogeneous fleet results

For test cases with heterogeneous fleet (2-5), our
algorithm also shows very good performance.
Table 4 shows comparison between HTS and
AMVNS for these cases.

These results show something very important:
Our AMVNS algorithm keeps its efficiency
advantage even when vehicle capacities are
different. All test cases reach same best solutions
as HTS, but AMVNS needs about 80% less
calculations. This is very useful for factory
managers because they can get same quality
solutions much faster, whether they use same
vehicles or different ones.

Table 4. Results for heterogeneous fleet cases
 Test

Case 2
Test

Case 3
Test

Case 4
Test

Case 5
Fleet Type Hetero. Homog. Hetero. Hetero.
HTS Cost 626 658 607 607
AMVNS Cost 626 658 607 607
HTS Evals 102,600 102,600 102,600 102,600
AMVNS
Evals 20,183 20,042 20,156 20,124

Reduction(%) 80.3 80.4 80.3 80.4

4.3. Comprehensive statistical analysis

To provide more robust evidence of our AMVNS
algorithm's performance, we conducted
extensive statistical analysis across all test cases.
Each scenario was run 30 independent times with

Sakarya University Journal of Science, 29(3) 2025, 293-306

300

different random seeds to ensure statistical
validity.

4.3.1. Solution quality and consistency

Table 5 presents the detailed statistics on solution
quality for all test cases. For AMVNS, all 30 runs
consistently achieved the optimal solution values
across all test scenarios, demonstrating the
robustness of our approach.

Table 5. Statistical analysis of solution quality

Test
Case

Fleet
Type

Min
Cost

Max
Cost

Mean
Cost

Median
Cost

Std.
Dev.

Success
Rate
(%)

1 Homog. 623 623 623.00 623 0.00 100.0
2 Hetero. 626 626 626.00 626 0.00 100.0
3 Homog. 658 658 658.00 658 0.00 100.0
4 Hetero. 607 607 607.00 607 0.00 100.0
5 Hetero. 607 607 607.00 607 0.00 100.0

The standard deviation of 0.00 across all test
cases demonstrates the exceptional stability of
our algorithm. The success rate of 100%
indicates that AMVNS consistently finds the
optimal solution in every run, regardless of the
initial random seed.

4.3.2. Computational efficiency

Table 6 shows the computational efficiency
metrics of AMVNS across all test cases. These
metrics highlight the significant reduction in
computational effort compared to the HTS
algorithm.

Table 6. Computational efficiency statistics
Test
Case

Fleet
Type

Min
Evals

Max
Evals

Mean
Evals

Median
Evals

Std.
Dev.

1 Homog. 20,036 20,048 20,041.33 20,040 4.39
2 Hetero. 20,176 20,192 20,183.47 20,183 5.27
3 Homog. 20,035 20,049 20,042.23 20,042 4.73
4 Hetero. 20,152 20,162 20,156.40 20,156 3.81
5 Hetero. 20,118 20,129 20,124.13 20,125 3.56

For comparison, the HTS algorithm requires
102,600 fitness evaluations for all test cases,
regardless of the fleet type. This represents
approximately an 80% reduction in
computational effort by AMVNS while
maintaining the same solution quality.

4.3.3. Convergence analysis

Table 7 provides statistics on convergence speed,
showing how quickly AMVNS reaches the
optimal solution.

Table 7. Convergence speed statistics

Test
Case

Mean
Iterations
to Best

Mean
Time
to Best (sec)

Mean
Neighborhood
Efficiency (%)

1 285.7 0.87 78.4
2 312.3 0.95 75.2
3 293.5 0.89 76.8
4 267.8 0.82 80.1
5 274.2 0.84 79.3

The mean iterations to best solution shows that
AMVNS typically finds the optimal solution
within the first 30% of iterations, indicating
efficient exploration of the solution space. The
neighborhood efficiency metric represents the
percentage of applied neighborhood moves that
result in solution improvements.

4.3.4. Convergence profiles

Figure 1 illustrates the convergence profiles of
AMVNS for all five test cases, showing the
average objective function value over iterations.
These convergence curves demonstrate that
AMVNS consistently achieves rapid initial
improvement and then fine-tunes the solution
until reaching optimality. The convergence
behavior is similar across all test cases, with
heterogeneous fleet scenarios (cases 2, 4, and 5)
showing slightly faster convergence rates.

Figure 1. Convergence profiles of AMVNS

4.3.5. Neighborhood structure analysis

The effectiveness of each neighborhood structure
varies across different test cases. Table 8

Emrullah Gazioğlu

301

summarizes the usage frequency and success rate
of each neighborhood operator.

Table 8. Neighborhood structure analysis

Neighborhood Usage (%) Success
Rate (%)

Contribution
to Best

Swap Nodes 32.4 15.3 36.2
Two-Opt Move 22.7 18.7 25.8
Relocate Sequence 24.5 21.2 22.4
Cross Exchange 20.4 12.5 15.6

This analysis reveals that while Swap Nodes is
the most frequently used operator, the Relocate
Sequence has the highest success rate. The
"Contribution to Best" column shows the
percentage of times each operator was
responsible for finding the overall best solution
during the search process.

4.3.6. Vehicle utilization analysis

For heterogeneous fleet scenarios, the
distribution of demand across vehicles is
particularly important. Table 9 shows the vehicle
utilization statistics for test case 4, which
achieved the best overall performance.

Table 9. Vehicle utilization for test case 4
(heterogeneous fleet)

Vehicle Capacity Load Utilization (%) Route Length
1 380 352 92.6 80
2 400 394 98.5 112
3 420 406 96.7 144
4 420 398 94.8 169
5 440 389 88.4 102
Average 412 387.8 94.2 121.4

The high utilization rates across all vehicles
(average 94.2%) demonstrate the algorithm's
ability to efficiently distribute demand according
to vehicle capacities, which explains the superior
performance of heterogeneous fleets in test cases
4 and 5.

These comprehensive statistical analyses
validate the robustness, efficiency, and
consistency of our proposed AMVNS algorithm
across different fleet configurations and problem
scenarios. The data clearly supports our claim
that AMVNS achieves significant computational
efficiency gains without sacrificing solution
quality.

4.3.7. Scaling analysis for large-scale
problems

To address the scalability of our AMVNS
algorithm for large-scale industrial applications,
we conducted a theoretical analysis and verified
it with a limited test on a 200-node CVRP
instance (cvrp-S-G-200-1)[40]. The computa-
tional complexity of both algorithms can be
analyzed in terms of the number of fitness
evaluations required as the problem size (n)
increases.

For the HTS algorithm, the number of fitness
evaluations per iteration is directly proportional
to 𝑛𝑛², specifically 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛 × (𝑛𝑛 − 1).
This quadratic growth means that for a 200-node
problem, each iteration would require
approximately 39,800 evaluations. Assuming
300 iterations are needed (as in our original test
cases), this would result in nearly 12 million
fitness evaluations.

In contrast, AMVNS's selective neighborhood
exploration strategy maintains a relatively
constant number of evaluations per iteration
(approximately 20), largely independent of
problem size. For a 200-node problem with 1000
iterations, this results in only about 20,000 fitness
evaluations. This represents a theoretical
efficiency ratio of 600:1 for problems of this
scale.

Table 10 presents a comparison of the theoretical
scaling behavior of both algorithms across
different problem sizes. As shown in the table,
the computational advantage of AMVNS
becomes increasingly significant as the problem
size grows.

Table 10. Theoretical scaling analysis for different

problem sizes
Problem size

(Nodes)
HTS

Evaluations
AMVNS

Evaluations
Efficiency

Ratio
19 (original) 102,600 20,100 5.1

50 735,000 20,100 36.6
100 2,970,000 20,100 147.8
200 11,940,000 20,100 594.0

Our experimental verification on the 200-node
instance confirmed that while HTS becomes
computationally prohibitive at this scale,

Sakarya University Journal of Science, 29(3) 2025, 293-306

302

AMVNS was able to find high-quality solutions
in reasonable time. This demonstrates that the
computational advantage of AMVNS becomes
even more significant as problem size increases,
making it particularly valuable for large-scale
industrial applications where quick decision-
making is essential.

The primary reason for this exceptional scaling
characteristic is that AMVNS focuses
computational effort on promising regions of the
solution space rather than exhaustively
evaluating all possible moves. This advantage
becomes increasingly important as problem size
grows, as the solution space expands
exponentially while the proportion of high-
quality solutions remains small.

4.4. Concluding analysis

The experimental results demonstrate that while
both algorithms achieve the optimal solution,
AMVNS does so with significantly less
computational effort. Our results from
heterogeneous fleet cases (test cases 2-5) further
support this finding. Even with different vehicle
capacities, AMVNS maintains its computational
advantage. It achieves same solution quality as
HTS using only about 20,000 fitness evaluations,
compared to HTS's 102,600 evaluations. This
shows our algorithm's efficiency is robust across
different fleet configurations. The reduction in
fitness evaluations can be attributed to our
algorithm's intelligent search strategy and
adaptive memory mechanism.

To put this efficiency gain in perspective, we can
examine the convergence rates. While HTS
performs 342 evaluations in each iteration to
achieve convergence in 300 iterations, AMVNS
performs approximately 20 evaluations per
iteration (calculated as the total fitness
evaluations divided by the number of iterations:
20,100/1000) and achieves the same result in
1000 iterations This translates to:

𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝐸𝐸 𝑅𝑅𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛 = # 𝑜𝑜𝑜𝑜 𝐻𝐻𝐻𝐻𝐻𝐻 𝑛𝑛𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒

#𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐻𝐻 𝑛𝑛𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒
 (3)

 = 102,600 / 20,100
 ≈ 5.1

This means AMVNS requires only about one-
fifth of the computational effort compared to

HTS, while maintaining solution quality. The
exact solution method using PuLP confirmed that
both algorithms reach the optimal value of 623,
validating the effectiveness of our approach.

Additionally, our results suggest that exhaustive
neighborhood exploration, as employed in HTS,
may not be necessary for achieving optimal
solutions in CVRP. The adaptive memory
structure and selective neighborhood sampling in
AMVNS provide a more efficient path to
optimality.

5. Conclusion and Future Work

This study presents an efficient hybrid
metaheuristic algorithm for solving CVRP in in-
plant logistics. The proposed AMVNS algorithm
achieves the same optimal solution as the
existing HTS algorithm while requiring 80.4%
fewer fitness evaluations. This significant
reduction in computational effort is achieved
through:

1. Intelligent neighborhood exploration
2. Adaptive memory-based learning
3. Selective solution evaluation strategy

The results demonstrate that optimal solutions
can be obtained more efficiently by focusing on
promising regions of the solution space rather
than exhaustive exploration. This finding has
important implications for solving larger
instances of CVRP and other combinatorial
optimization problems.

Our comprehensive statistical analysis further
validates these findings, demonstrating the
robustness and consistency of the AMVNS
approach. With a 100% success rate across all 30
independent runs for each test case and negligible
standard deviation in solution quality, the
algorithm exhibits exceptional reliability. The
detailed analysis of neighborhood structure
effectiveness revealed that while the Swap Nodes
operator was most frequently used, the Relocate
Sequence achieved the highest success rate,
highlighting the importance of maintaining
diverse neighborhood structures within the
algorithm.
The theoretical scaling analysis demonstrates
that AMVNS's computational advantage

Emrullah Gazioğlu

303

becomes increasingly significant as problem size
grows. While traditional approaches like HTS
experience quadratic growth in computational
requirements with increasing problem
dimensions, AMVNS maintains relatively
constant evaluation needs per iteration. This
makes it particularly well-suited for large-scale
CVRP instances where exhaustive neighborhood
exploration becomes prohibitively expensive,
with efficiency ratios potentially reaching 600:1
for problems with 200 nodes.

The proposed AMVNS algorithm shows
significant potential for application in large-scale
industrial systems. By reducing computational
effort by approximately 80% while maintaining
solution quality, our approach addresses a critical
challenge in real-world manufacturing
environments where quick decisions are
essential. For large manufacturing facilities with
hundreds of assembly lines and dozens of
vehicles, the selective neighborhood exploration
strategy would provide even greater benefits as
the problem size increases. The memory-based
learning mechanism adapts to the specific
characteristics of the factory layout and demand
patterns, making the algorithm suitable for
diverse industrial settings including automotive,
electronics, and heavy machinery manufacturing.

Furthermore, the algorithm's ability to handle
heterogeneous vehicle fleets makes it particularly
valuable for facilities that have gradually
expanded their operations with different types of
material handling equipment. The reduced
computational requirements also make it feasible
to implement this solution on standard
computing infrastructure available in most
factories, without requiring specialized high-
performance computing resources.

The proposed AMVNS algorithm shows
significant potential for practical application in
real-world manufacturing environments where
rapid decision-making is critical. By
dramatically reducing computational
requirements without sacrificing solution
quality, it enables factory managers to quickly
respond to changing production schedules and
logistical needs.
The algorithm's ability to handle heterogeneous
fleets makes it particularly valuable for facilities

that have gradually expanded their material
handling capabilities with different types of
vehicles. Furthermore, its modest computational
requirements mean it can be implemented on
standard computing infrastructure available in
most factories, eliminating the need for
specialized high-performance computing
resources.

Future research directions could include:
• Extending the algorithm to handle dynamic

in-plant logistics scenarios
• Incorporating real-time constraints and

uncertainties
• Applying the efficient evaluation strategy to

other variants of VRP

Article Information Form

Acknowledgments
The authors would like to thank Seçil Kulaç and
Nevra Kazancı for promptly sharing their raw
data, which enabled a direct and fair comparison
of the algorithms.

The Declaration of Conflict of Interest/
Common Interest
No conflict of interest or common interest has
been declared by the author.

Artificial Intelligence Statement
No artificial intelligence tools were used while
writing this article.

Copyright Statement
The author owns the copyright of their work
published in the journal and their work is
published under the CC BY-NC 4.0 license.

References

[1] G. B. Dantzig, J. H. Ramser, “The truck

dispatching problem,” Management
Science, INFORMS, pp. 80–91, 1959.

[2] T. O. Ting, X.-S. Yang, S. Cheng, K.

Huang, “Hybrid metaheuristic algorithms:
Past, present, and future,” Recent
Advances in Swarm Intelligence and
Evolutionary Computation, Springer
International Publishing, pp. 71–83, 2015.

Sakarya University Journal of Science, 29(3) 2025, 293-306

304

[3] S. Kulaç, N. Kazancı, “Optimization of ın-
plant logistics through a new hybrid
algorithm for the capacitated vehicle
routing problem with heterogeneous fleet,”
Sakarya University Journal of Science,
Sakarya University, pp. 1242–1260, 2024.

[4] P. Toth, D. Vigo, “Exact solution of the

vehicle routing problem,” Fleet
Management and Logistics, Springer US,
pp. 1–31, 1998.

[5] G. Laporte, Y. Nobert, “Exact Algorithms

for the vehicle routing problem*,” North-
Holland Mathematics Studies, North-
Holland, pp. 147–184, 1987.

[6] A. Mingozzi, R. Roberti, P. Toth, “An

exact algorithm for the multitrip vehicle
routing problem,” INFORMS Journal on
Computing, INFORMS, pp. 193–207,
2013.

[7] M. Battarra, G. Erdoğan, D. Vigo, “Exact

algorithms for the clustered vehicle routing
problem,” Operations Research,
INFORMS, pp. 58–71, 2014.

[8] V. F. Yu, H. Susanto, P. Jodiawan, T.-W.

Ho, S.-W. Lin, Y.-T. Huang, “A simulated
annealing algorithm for the vehicle routing
problem with parcel lockers,” IEEE
Access, pp. 20764–20782, 2022.

[9] İ. İlhan, “An improved simulated annealing

algorithm with crossover operator for
capacitated vehicle routing problem,”
Swarm and Evolutionary Computation, p.
100911, 2021.

[10] E. Rodríguez-Esparza, A. D. Masegosa, D.

Oliva, E. Onieva, “A new Hyper-heuristic
based on adaptive simulated annealing and
reinforcement learning for the capacitated
electric vehicle routing problem,” Expert
Systems with Applications, p. 124197,
2024.

[11] M. Sajid, J. Singh, R. Rajak, “Capacitated

vehicle routing problem using algebraic
particle swarm optimization with
simulated annealing algorithm,” Artificial
Intelligence in Cyber-Physical Systems,
CRC Press, 2023.

[12] Z. Hussain Ahmed, M.
Yousefikhoshbakht, “An improved tabu
search algorithm for solving heterogeneous
fixed fleet open vehicle routing problem
with time windows,” Alexandria
Engineering Journal, pp. 349–363, 2023.

[13] A. Mexicano, J. C. Carmona, D. Y.

Alvarez, P. N. Montes, S. Cervantes, “A
tool for solving the CVRP problem by
applying the tabu search algorithm,”
Advances on P2P, Parallel, Grid, Cloud
and Internet Computing, Springer Nature
Switzerland, pp. 294–304, 2024.

[14] J. Holliday, B. Morgan, H. Churchill, K.

Luu, “Hybrid quantum tabu search for
solving the vehicle routing problem,”
arXiv, 2024.

[15] N. I. Saragih, P. Turnip, “Solving vehicle

routing problem with considering traffic
congestion using tabu search algorithm,”
2024 International Conference on
Electrical Engineering and Informatics
(ICELTICs), pp. 102–107, 2024.

[16] A. N. Jasim, L. Chaari Fourati, “Guided

genetic algorithm for solving capacitated
vehicle routing problem with unmanned-
aerial-vehicles,” IEEE Access, pp.
106333–106358, 2024.

[17] J. Zhu, “Solving capacitated vehicle

routing problem by an ımproved genetic
algorithm with fuzzy c-means clustering,”
Scientific Programming, p. 8514660, 2022.

[18] N. Mageswari, “Vehicle Routing Problem

(VRP) using genetic algorithm,” Vehicle
Routing Problem.

[19] M. Poonpanit, N. Punkong, C.

Ratanavilisagul, S. Kosolsombat, “An
improving genetic algorithm with local
search for solving capacitated vehicle
routing problem,” 2024 IEEE 9th
International Conference on
Computational Intelligence and
Applications (ICCIA), pp. 59–63, 2024.

Emrullah Gazioğlu

305

[20] J. Cai, P. Wang, S. Sun, H. Dong, “A
dynamic space reduction ant colony
optimization for capacitated vehicle
routing problem,” Soft Computing, pp.
8745–8756, 2022.

[21] Z. H. Ahmed, A. S. Hameed, M. L. Mutar,

H. Haron, “An enhanced ant colony system
algorithm based on subpaths for solving the
capacitated vehicle routing problem,”
Symmetry, Multidisciplinary Digital
Publishing Institute, p. 2020, 2023.

[22] M. Suppan, T. Hanne, R. Dornberger, “Ant

colony optimization to solve the rescue
problem as a vehicle routing problem with
hard time windows,” Proceedings of
International Joint Conference on
Advances in Computational Intelligence,
Springer Nature, pp. 53–65, 2022.

[23] P.-Y. Yin, F. Glover, M. Laguna, J.-X.

Zhu, “Cyber Swarm Algorithms –
Improving particle swarm optimization
using adaptive memory strategies,”
European Journal of Operational Research,
pp. 377–389, 2010.

[24] É. D. Taillard, L. M. Gambardella, M.

Gendreau, J.-Y. Potvin, “Adaptive
memory programming: A unified view of
metaheuristics,” European Journal of
Operational Research, pp. 1–16, 2001.

[25] L. Lasdon, A. Duarte, F. Glover, M.

Laguna, R. Martí, “Adaptive memory
programming for constrained global
optimization,” Computers & Operations
Research, pp. 1500–1509, 2010.

[26] N. Peric, S. Begovic, V. Lesic, “Adaptive

memory procedure for solving real-world
vehicle routing problem,” arXiv, 2024.

[27] S. Farahmand-Tabar, “Memory-driven

metaheuristics: Improving optimization
performance,” Handbook of Formal
Optimization, Springer Nature, pp. 1–26,
2023.

[28] A.-R. Hedar, A. E. Abdel-Hakim, W.
Deabes, Y. Alotaibi, K. E. Bouazza, “Deep
memory search: A metaheuristic approach
for optimizing heuristic search,” arXiv,
2024.

[29] Y. Alotaibi, “A new meta-heuristics data

clustering algorithm based on tabu search
and adaptive search memory,” Symmetry,
Multidisciplinary Digital Publishing
Institute, p. 623, 2022.

[30] M. E. H. Sadati, B. Çatay, “A hybrid

variable neighborhood search approach for
the multi-depot green vehicle routing
problem,” Transportation Research Part E:
Logistics and Transportation Review, p.
102293, 2021.

[31] M. E. Hesam Sadati, B. Çatay, D. Aksen,

“An efficient variable neighborhood search
with tabu shaking for a class of multi-depot
vehicle routing problems,” Computers &
Operations Research, p. 105269, 2021.

[32] C. Chen, E. Demir, Y. Huang, “An

adaptive large neighborhood search
heuristic for the vehicle routing problem
with time windows and delivery robots,”
European Journal of Operational Research,
pp. 1164–1180, 2021.

[33] X. Dong, H. Zhang, M. Xu, F. Shen,

“Hybrid genetic algorithm with variable
neighborhood search for multi-scale
multiple bottleneck traveling salesmen
problem,” Future Generation Computer
Systems, pp. 229–242, 2021.

[34] K. Sun, D. Zheng, H. Song, Z. Cheng, X.

Lang, W. Yuan, J. Wang, “Hybrid genetic
algorithm with variable neighborhood
search for flexible job shop scheduling
problem in a machining system,” Expert
Systems with Applications, p. 119359,
2023.

[35] J. Feng, Y. He, Y. Pan, Z. Zhou, S. Chen,

W. Gong, “Enhancing fitness evaluation in
genetic algorithm-based architecture
search for AI-Aided financial regulation,”
IEEE Transactions on Evolutionary
Computation, pp. 623–637, 2024.

Sakarya University Journal of Science, 29(3) 2025, 293-306

306

[36] O. J. Mengshoel, E. L. Flogard, T. Yu, J.
Riege, “Understanding the cost of fitness
evaluation for subset selection: Markov
chain analysis of stochastic local search,”
Proceedings of the Genetic and
Evolutionary Computation Conference,
Association for Computing Machinery, pp.
251–259, 2022.

[37] S.-H. Wu, Z.-H. Zhan, J. Zhang, “SAFE:

Scale-adaptive fitness evaluation method
for expensive optimization problems,”
IEEE Transactions on Evolutionary
Computation, pp. 478–491, 2021.

[38] J.-F. Cordeau, M. Gendreau, G. Laporte,

“A tabu search heuristic for periodic and
multi-depot vehicle routing problems,”
Networks, pp. 105–119, 1997.

[39] S. Mitchell, M. O’Sullivan, I. Dunning,

“PuLP: A linear programming toolkit for
python,” The University of Auckland,
Auckland, New Zealand, pp. 25–37, 2011.

[40] A. N. Letchford, J.-J. Salazar-González,

“The capacitated vehicle routing problem:
Stronger bounds in pseudo-polynomial
time,” European Journal of Operational
Research, pp. 24–31, 2019.

