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ABSTRACT

This study presents the free vibration and buckling behavior of two directional (2D) functionally graded beams (FGBs) under
arbitrary boundary conditions (BCs) for the first time. A four-known shear and normal deformation (Quasi-3D) theory where the
axial and transverse displacements are assumed to be cubic and parabolic variation through the beam depth is employed based on
the framework of the Ritz formulation. The equations of motion are derived from Lagrange’s equations. The developed
formulation is validated by solving a homogeneous beam problem and considering different aspect ratios and boundary
conditions. The obtained numerical results in terms of dimensionless fundamental frequencies and dimensionless first critical
buckling loads are compared with the results from previous studies for convergence studies. The material properties of the
studied problems are assumed to vary along both longitudinal and thickness directions according to the power-law distribution.
The axial, bending, shear and normal displacements are expressed in polynomial forms with the auxiliary functions which are
necessary to satisfy the boundary conditions. The effects of shear deformation, thickness stretching, material distribution, aspect
ratios and boundary conditions on the free vibration frequencies and critical buckling loads of the 2D-FGBs are investigated.

Keywords: 2D Functionally Graded Beam, Ritz Method, Quasi-3D Theory, Vibration, Buckling

1. INTRODUCTION

Functionally Graded Materials (FGMs) are a class of advanced composite materials whose material
properties vary continuously in the desired directions. Since the use of this kind of materials avoids the
stress concentration, cracking and interface problems through the layer interfaces in conventional
composites, they have been using in many modern engineering applications such as military,
aerospace, nuclear energy, biomedical, automotive, marine and civil engineering. Moreover, FGMs
have lower transverse shear stresses and high resistance to temperature shocks. Due to their striking
features, researchers have been developed the advanced theories and analysis methods to predict and
to understand more precisely the behaviors of FGMs.

Since the significant shear deformation effects occur especially in thick/moderately thick conventional
functionally graded beams (FGBs), three main theories that are first-order shear deformable beam
theory (FSBT), higher-order shear deformable beam theory (HSBT) and shear and normal deformable
beam theory (SNDBT) namely Quasi 3-D theory are popular among the researchers. The simplest
model is the FSBT which does not satisfy the zero traction boundary conditions at the top and the
bottom surfaces of the beam; however a shear correction factor is required [1-6]. This leads to the
proposition of the HSBT theories which refined the distribution of the transverse shear stress;
ultimately no shear correction factor is needed [7-19]. On the other hand, HSBT theories do not
consider the normal strain effect which becomes very important and should be considered for thick
conventional FGBs. Hence, quasi 3-D theories in which the shear and normal deformations taking into
account are developed based on a higher order variation of both axial and transverse displacements
[20-30].
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The conventional FGBs (or 1D-FGBs) formed by changing material properties only in one direction
may not satisfy required specifications such as the temperature and stress distributions in two or three
direction for aerospace craft and shuttles [31]. In recent years, researchers have been devoted some
studies about a new type FGB whose material properties varying in two or three directions to
overcome this deficiency of the conventional FGBs. A methodology is presented for the simulation
and optimization of the vibration response of bidirectional functionally graded beams based on the
Element Free Galerkin method in [32]. The bending and thermal deformations of FGBs with various
end conditions are investigated by using the state-space based differential quadrature method to obtain
the semi-analytical elasticity solutions in [33]. The static and free vibration analysis two-directional
FGBs are studied by presenting a symplectic elasticity solution in [34]. Free and forced vibration of
Timoshenko two directional functionally graded beams under a moving load is investigated in [35] for
the case that the material properties of the 2D-FGB vary exponentially through the length and height
directions. Based on the power-law distribution of the material properties, the buckling of Timoshenko
beams composed of two directional FGM is studied in [36]. The static behavior of the two directional
FGBs by using various beam theories is presented in [37]. The fully coupled thermo-mechanical
behavior of bi-directional functionally graded material (FGM) beam structures is studied via finite
element method in [38]. An analytical solution for the static deformations of the bi-directional
functionally graded thick circular beams is developed based on a new shear deformation theory with a
logarithmic function in the postulated expression for the circumferential displacement in [39] The
flexure behavior of the two directional FG sandwich beams by using a quasi-3D theory and a meshless
method is studied in [40]. Elasticity solutions of 2D-FG rotating annular and solid disks with variable
thickness are presented in [41]. The vibration responses of 2D-FG Timoshenko beams excited by a
moving concentrated load are investigated in [42]. In a very recent work by Haciyev et al., the bending
vibration of bi-directionally exponentially orthotropic plates resting on the Pasternak elastic
foundation is studied based on the classical plate theory via Galerkin method [43].

It is clear from above discussions that the publications related to free vibration and buckling behavior
of the two-directional FGBs are very limited according to the best of author knowledge. Moreover,
there is no reported work on the dynamic and static analysis of the two directional FBGs based on a
shear and normal deformation theory employing power-law material distribution in the problem
domain. Since, thickness-stretching effect becomes very important especially for the thick two
directional FGBs, a shear and normal deformation theory should be considered for this complicated
problem with various end conditions, aspect ratios and gradation exponents. The main novelty of this
paper is that the analytical solutions are presented for the free vibration and buckling behavior of the
two directional FGBs based on a quasi-3D theory for the first time. The effects of shear deformation,
thickness stretching, material distribution, aspect ratios and boundary conditions on the free vibration
frequencies and critical buckling loads of the two directional functionally graded beams are discussed.

2. THEORY AND FORMULATION
2.1. Two Directional Functionally Graded Beams

Consider a two-directional functionally graded beam with its dimensions and coordinate as shown in
Figure 1. The material properties vary both longitudinal and thickness directions. The origin of the
coordinate system is at the midpoint of the beam. In this study, the rule of mixture is used to find the
effective material properties at a point. The effective material properties of the beam, Young’s
modulus E and shear modulus G can be given by

E(x,z) = E;Vi(x,2) + E;V,(x,2)
G(x,z) =G Vi(x,2) + G,V,(x, 2)
p(x,2) = p1Vi(x,2) + p;Va(x, 2) M
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Figure 1. Geometry and coordinate of a two-directional FGB

According to the power law form, the volume fraction of the constitute 1 can be given by

Dz

nen=(3+7) (+7)

3)

where p, and p, are the gradation exponents (power-law index) which determine the material
properties through the thickness (h) and length of the beam (L), respectively. When the p, and p, are
set to zero then the beam becomes homogeneous. The effective material properties can be found by

using the Egs. (1), (2) and (3) as follows,

E(x,2) = (B, — Ey) (% + %)p (% + %)p +E,
Gx2) = (G — Gy) (% + %)p (; + %)p 46,
1 x\Px /1 P
p(x,z) = (p1 — p2) (§+z> <§+E) + P2 €©))

2.2. Constitutive Equations

The axial and transverse displacements of a beam by using the present shear and normal deformation
theory including both shear deformation and thickness stretching effects are given by

U(x,z,t) = u(x,t)

owp(x,t)  4z3 dwg(x,t)

ox 3h?2  Ox
=u(x,t) — zwy (x, t) — f(2)ws(x,t) (5a)
2
W(x,z,t) = wp(x,t) + ws(x, t) + <1 — %) w,(x, t)
=wp(x, t) + ws(x, ) + g(2)w,(x, 1) (5b)

where u, wy,, wg and w,, are four variables to be determined.

The only nonzero strains associated with the displacement field given in Eg. (5) can be written by:

ou

& = Fl u' —zwy — f(2)wg (6a)
ow

&=7-=4 (2)w, (6b)
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Yezr = 3+ o = g(@)(ws +wy) (6¢)

The following linear elastic constitutive equation can be written by using the related stresses and
strains based on the assumption of constant Poisson’s ratio for the sake of simplicity:

O-X
7)-
O-X Z

The strain energy of the beam including the energy associated with the shearing strain can be written
as,

1—v2

_E(x, z) b1 [ ] -
YXZ

2.3. Variational Formulation

1
U= Ef (Ox€x + 0,8, + OxzVxz)AV €)

14
where V is the volume of the beam. Substituting Egs. (6) and (7) into Eq. (8), the strain energy can be
obtained as the form of:

E(x,z) 1—-v
U= > f T2 |Exéx + 2veye, + £,6, + Tyxzyxz] dv 9

<

Where

_(au)2+ L (97w, \ 2 92w\’ , (au) 92w, , <6u) 92w,
28 = \Gx 7\ ox2 f 0x2 “\ox)\ ox? f ox/) \ 0x?

. e :<dg) (au) (d_g)z 92w, " —(d—g>f 92w, w
xwz dz) \ox) " " \4z ox2 )% \dz ox2 | %
_(49\*
£,€, = Iy w,
w2 ow,\2 owg\ /0w
_ 2 s 2 z 2 s z
VxzVaz = 9 <6x) t9 <6x) +2g (6x>(6x) (10)

It is useful to introduce the stiffness coefficients as follows:

_ +h/2(E1_E2) 1 z\™ 2 2 2
(A,B,BS,D,DS,H,Z)—b ﬁ §+E (l,Z,f,Z ,fZ,f g )dZ (1161)
—h/2
+h/2
(42,31, B D1, Der o, Z) = b [ / 2 f2,£%, ") dz (11b)
h/2
+h/2 (El _ EZ) Pz
A.=b —(—+—) 2g 11
s Jh/z 2(1+v)2 n 9% (119
h/2
bf+ / g2dz (11d)
h/2 2(1+V)
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X,V,Y. bfh/z(El EZ)V(1+Z)pZ ',z f)d 11

wrw=b| S (Gey) g tana (11e)
*hi2 gy

Cuht) =b | g (L f)ds (a1f)
—h/2

Using Egs. 9 to 12, the strain energy can be written in the form of:
L/2
u=1 f
2

{A(1+f)”"+A}(0_“)2+{D(1+f)‘° ) (Gom) s
2L H\ox 2L ax
L/2
G o)) +2{o ) ol (52)(52)-
! S\2 L S\ ax2 J\ ox?
o) )l )
2 L S\2 L dx?
z{xl fpx }a 2)%1+SW+Y}C%%»~—
2 0x 2 L H\oaxz )77
1 x Dx 5
}( >W {Z(E-l'z) +Zl}WZ +
{A (1 f) +A }{(GWS) +(6W2) +2(6W5)(6W2)}]dx (12)
S\2 'L s1 0x 0x dox / \ dx
The potential energy of the axial N, and distributed q(x) loads is given by
V——EJUZN f9—W£2+26WbaWS+aWS)zd —fL +w)d 13
2, 0{(0)6) dx Ox (c’)x } x Oq(wb Ws)dx (13)

The kinetic energy of present four-unknown shear and normal deformable beam theory can be
obtained by using similar procedure as follows

ot e G

Z{YS —+ +Y,

2 (5)(5)

o (1 +x>p" p ou (’)Zwb p (1 x)”" o 92w, )\’
2L (ot axar 112211 22|\ 9xat
) (1 N x)p" N ou 9w,
izt At 0xot
1 x\P~ owy\ /0w ow.\ /0w
*e {]2 (E * Z) +]22}{( atb>< atz) * ( ats)< atz)}

(’)Zwb 9%w; Ak (1 N x)px LK AN
0xdt dxot 2L 11\ oxat

+1k (1 +x)px +K (aWZ) d 14

2\5 7] 22 (\"5¢ x (14)

Here t is the time, and the inertial coefficients can be presented as
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+E 1 VA pz
o, 11,12, J1,J2,J3, K1, K3) = b f h (p1—p2) (E + E) (1,Z,Zz’f’ g,fz,fz,gz)dz (15a)
2

+h/2

oo 111, 122, J11: )22, J33, K11, K1) = bf p P2 (1,z,zz,f,g,fz,f2,g2)dz (15b)
—h/2

The total potential energy (IT) can be obtained by using Egs. (12), (13) and (14),

=) [ [foe )G ol o) ()
e e (52 2 {Dsc ) (52)

{

s D) " ) (2) () - 2{3(;+;2x"+351}g3—;‘
w2{r(z+ ) }() 27 (5+7) +:3}("’alib)w
i) oG );v#{ 2(3+7) +afw
oG +As1}{ +gaWZ) +22(a$)(aaﬁz)}
oG f>”+foo}{<at> () (2

ol SR )55
w2{n(5+7) fn}‘%i‘ixﬁi 2{2(22 ) +fzz}{(ja‘?)("’5?):(65225)(6522)}

D) 96D e (55)
{GrD) (G ol () #2505 (52) |- 2000w |axars

2.4. Solution Procedure

It is known that Hamilton’s principle can be expressed as Lagrange equations when the functions of
infinite dimensions can be expressed in terms of generalized coordinates. Therefore, the displacement

functions u(x), wy,(x), ws(x) and w,(x) are presented by the following polynomial series which are
satisfy the kinematic boundary conditions given in Table 1,

u(x) = iAjei“’tHj(x), 6;(x) = (x + g)l’u (x — g)qu xJ71 (16a)
OE Z:Bjeiw%p,-(x), o =(x+2) " (=22 o)
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w(x) = jz:cjeiwt(j(x), i(x) = (x + g)pws (x — g)qws -1 (16¢)
w, () = ;Djefwfz/)f(x). o= (x+D) (x5 "x aea)

where 4;, B;, C; and D; are unknown values to be determined, w is the natural frequency of the beam,
i =+v—1 is the complex number, 8;(x), @;(x), {;(x) and ;(x) are the shape functions which are
proposed for the boundary conditions (BCs) to be studied within this paper, p; and g (§ =

u, wy,, wg, w,) are the boundary exponents of the auxiliary functions related with the boundary
conditions given in Table 2. It has to be mentioned that the shape functions which do not satisfy the
boundary conditions may cause slow convergence rates and numerical instabilities.

Table 1. Kinematic boundary conditions used for the numerical computations.

BC x=-L/2 x=L/2
SS u=0w,=0w,=0,w,=0 w,=0,w,=0,w,=0
CS u=0w,=0w,=0,w,=0,w,=0,w,/ =0 w, =0,w, =0,w, =0

CC u=0w,=0w,=0,w,=0,w,' =0,w, =0 u=0w,=0w,=0,w,=0,w,’” =0,w, =0

CF u=0w,=0w,=0,w,=0,w, =0,w,/=0

Table 2. Boundary exponents for various boundary conditions.

Left end Right end
BC
Pu Pw, Pw, Pw, qu qw, qw, qw,
SS 1 1 1 1 0 1 1 1
CS 1 2 2 1 0 1 1 1
CcC 1 2 2 1 1 2 2 1
CF 1 2 2 1 0 0 0 0

The governing equations of motion for free vibration analysis can be obtained by substituting Eq. (16)
into Eq. (15) and using Lagrange equations

on _ o (om\ _ .

with g; representing the values of (4;, B;, C;and D;), that leads to

[[Kll] [Ki2]  [Kis] [K14]] [[Mn] [Mi2]  [My3] [M14]] {4} {0}
[K12]" [K22]  [Ka3] [Ka4] 2 IM12]" [Map]  [Ma3]  [My4] {B}( _ ){0} 18
|[K13]T [K23]"  [Kasl [K34]|_w |[M13]T [My3]"  [M33] [M34]| {cy( {0} (18)
l[Kial” [oal” [Kaal™ [Kasll M) M0a]7 Ms0)” a1l (03 0}

where [Kj;] are the stiffness matrices and [My;] are the mass matrices. It should be noted that the
stiffness and mass matrices are symmetric and in size mxm.

The components of the stiffness and mass matrices are given by:
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L/2
o 1 x Px
Kll(l']) = f A (E + Z) + A1 Gi_XBj'xdx,
—L/2
L/2
o 1 X Px
K12(l']) = - B (E + Z) + Bl gi,x(pj,xxdxr
—-L/2
L/2
o 1 x Px
K13(l,]) = - By (E + Z) + By Glx(] xxdX,
—L/2
L/2
o 1 x Px
Ki4(i,j) = f X (E + Z) + X1 |0, Y;dx,
-L/2
L/2 . ) L/2
. . x *
KZZ (l:]) = f [D (E + Z) + Dl] §0i,xx(pj,xxdx - NO f @i,x(pj,x dx
s v
/ 1 o /
Kx3(i,j) = j [Ds (E + Z) + Dsl] (pi,xxgj,xxdx — Ny f PixCjx dx
-L/2 L2 -L/2
o 1 x Px
Kya(i,)) = — f Y (E + Z) + V1| @ixxpjdx
-L/2
L/2 L/2
o 1 x Px 1 x Px
K33(l;]) = -[ [H (E + Z) + Hl] (i,xx(j,xxdx + f [As (E + Z) + Asl] Ci,x(j,xdx
-L/2 -L/2
L/2 L/2
— N f CixCjpx dx — f q(x)¢; ¢ dx
-L/2 —-L/2
L/2 L/2
o 1 x Px 1 x DPx
K34(l;]) = - -[ [Ys (E + Z) + Ysl] (i,xxl/)jdx + f [As (E + Z) + Asl] (i,xlpj,xdx
—-L/2 —-L/2
L/2 L/

2

- 1y Ly

KuG= [ |2(3+7) +z|vadrs [ [A(G+T) +An|piaycdx
-L/2 -L/2

L/2

. . 1 x px
M3, j) = f Iy (E"‘Z) + Ioo| 6:6;dx,
-L/2
L/2
o 1 X Px
Mi,(i,j) = — f 11(5"‘2) + 11| 0,9 xdx,
-L/2
L2
o 1 x Px
Mi3(i,j) = — _[ ]1(5"‘[) + /11| 0i§j xdx
-L/2
M14(i.j) =0
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L/2 L/2
o 1 x Px 1 x Px
My, (i,)) = f Iy (E + Z) + oo | @ip;dx + I, (E + z) + Lz | QixPjcdx
-L/2 -L/2

L/2 L/2
. 1 x\P* 1 x\P
M,3(i,)) = f Iy (E"‘Z) + Ioo | @i{jdx + f I3 (E"‘Z) + J33 | @ixCjdx
-L/2 ~L/2

L/2

= | 6+ o

-L/2
L/2 L/2
o 1 X Px 1 x Px
M33(i,j) = f Iy (E"'Z) + I | (i¢jdx + f K, (E-I_Z) + Ki1 | ixCjxdx
-L/2 -L/2
L/2
. 1 x\P
M= [ [a(3+7) +| Gty
-L/2
L2
.. 1 x\P* .
My, (i, )) = j K, (Z-I_Z) + Kpp | i dx i,j=123,....,m (19)
-L/2

The free vibration and buckling behavior of the two directional FGBs can be investigated by using
Egs. (18) and (19).

3. NUMERICAL RESULTS

In this section a number of numerical examples are presented to discuss the effects of gradient indexes
(or material composition), aspect ratios and boundary conditions on the critical buckling loads and
natural frequencies of the two directional FGBs using a quasi-3D shear deformation theory. It is
assumed that the Poisson’s ratio is constant and the material properties vary along both longitudinal
and thickness directions according to the power-law distribution. Two different aspect ratios (L/h) 5
and 20 are considered with arbitrary boundary conditions, namely simply supported-simply supported
(SS), clamped-simply supported (CS), clamped-clamped (CC) and clamped-free (CF).

The material properties of the two constitutes are given as

Ceramic (Al,03) : E; = 380GPa,v, = 0.3 and p; = 3960 kg/m3
Metal (Aluminium) : E, = 70GPa,v, = 0.3 and p, = 2702 kg/m3

The following non-dimensional quantities are used for the representation of the results;

The dimensionless buckling load (N,)

_ 12N I? 20
cr — Ezbh3 ( )
The dimensionless frequency (1)
wl? |p,
=— |— 21
A=— L (21)
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Table 3. Verification and convergence studies, dimensionless fundamental frequency (1) of homogeneous beams with
respect to various boundary conditions and aspect ratio change.

Boundary Condition

L/h Reference S cC CF
HBT [23] 5.1528 10.0726 1.8953
Quasi-3D [24] 5.1618 10.1851 1.9055
Quasi-3D [25] 5.1620 10.1790 1.9053
2 terms 5.7158 10.5992 1.9477
5 4 terms 5.1631 10.3276 1.9172
6 terms 5.1616 10.2488 1.9107
Present 8 terms 5.1616 10.2064 1.9078
10 terms 5.1616 10.1835 1.9061
12 terms 5.1616 10.1759 1.9053
14 terms 5.1616 10.1748 1.9051
HBT [23] 5.4603 12.2243 1.9496
Quasi-3D [24] 5.4610 12.2660 1.9527
Quasi-3D [25] 5.4611 12.2756 1.9530
2 terms 6.1034 12.7736 1.9959
20 4 terms 5.4627 12.3896 1.9647
6 terms 5.4610 12.3218 1.9577
Present 8 terms 5.4610 12.2930 1.9549
10 terms 5.4610 12.2794 1.9537
12 terms 5.4610 12.2721 1.9531
14 terms 5.4610 12.2676 1.9527

Firstly, the numerical computations are performed for the convergence analysis to make comparison
studies along with the solutions from previous studies [18-24-29]. The convergence and verification
studies are carried out by employing different number of terms in the displacement functions (m=2, 4, 6,
8, 10, 12 and 14) and different aspect ratios (L/h=5 and 20). The computed results are presented in terms
of dimensionless fundamental frequencies and dimensionless critical buckling loads of a homogenous
beam considering various boundary conditions, namely SS, CC and CF. The present results based on the
dimensionless fundamental frequencies of the homogenous beams agree well with those from the
previous studies [18-24-29]. It can be seen that for the free vibration analysis of SS beams, the responses
converge quickly, when the number of terms in polynomial expansion is set to 6 as given in Table 3.
However, the agreed results are obtained for CC and CF boundary conditions by employing 10 terms in
polynomial expansion as it is seen in Table 3. It is clear that the dimensionless fundamental frequencies
obtained based on the Quasi-3D theories are a bit higher than the ones based on the HBT. For the sake of
accuracy, 12 terms in the polynomial expansion is employed for the extensive free vibration analysis of
two directional FGBs.

Table 4. Verification and convergence studies, dimensionless critical buckling loads (N,,) of homogeneous beams with
respect to various boundary conditions and aspect ratio change.

Boundary Condition

L/h Reference S e CF
HBT [23] 48.5964 152.1588 13.0595
Quasi-3D [24] 49.5906 160.2780 13.1224
Quasi-3D [25] 49.5970 160.3064 13.1138
2 terms 59.9462 169.2615 13.6065
5 4 terms 49.6171 160.5097 13.2304
6 terms 49.5906 160.3503 13.1653
Present 8 terms 49.5906 160.3145 13.1289
10 terms 49.5906 160.2839 13.1178
12 terms 49.5906 160.2679 13.1140
14 terms 49.5906 160.2662 13.1115
HBT [23] 53.2364 208.9515 13.3730
Quasi-3D [24] 53.3145 210.7420 13.3981
Quasi-3D [25] 53.3175 210.7774 13.3993
2 terms 65.7932 239.9515 13.8748
20 4 terms 53.3455 212.3740 13.4792
6 terms 53.3145 211.4672 13.4313
Present 8 terms 53.3145 211.0324 13.4126
10 terms 53.3145 210.8367 13.4040
12 terms 53.3145 210.7416 13.3996
14 terms 53.3145 210.6946 13.3971

384



Karamanii | Anadolu Univ. J. of Sci. and Technology A — Appl. Sci. and Eng. 19 (2) — 2018

Regarding to the numerical results for the dimensionless critical buckling loads given in Table 4, it is
clear that for SS beams, the computed first critical buckling loads show excellent agreement when the
number of terms in the displacement functions is set to 6. Agreed results are obtained as the number of
terms in the displacement functions is set to 10 for CC and CF beams. The computed results based on the
present Quasi — 3D theory is higher than the ones obtained by the HBT theory. The extensive studies based
on the buckling behavior of two directional FGBs are performed by employing 12 terms in the
displacement functions. In Tables 5-8, the first three dimensionless frequencies of the 2D-FGBs with SS,
CS, CC and CF boundary conditions are presented for two different aspect ratios (L/h=5 and 20) and
various gradient indexes in both directions (p; and px). It is observed that that the first three dimensionless
frequencies decrease for all type of end conditions except CF beams while the gradient indexes increase.
For CF beams with p,, > 2, the dimensionless fundamental frequencies increase as the gradient index in
the z direction increases for the studied aspect ratios. Moreover, the second dimensionless frequencies of
CF beams with p,, = 10 increase as the gradient index in the z direction increases. And finally, the third
dimensionless frequencies of CF beams with p, = 5 increase as the gradient index in the z direction
increases only for the aspect ratio 5. It is expected that the frequencies have to decrease since the Young’s
modulus, ultimately the rigidity of the beam decreases with the increase of the gradient indexes. However,
the mass is not constant and decreased by the material gradient indexes. It is very well known in vibration
theory and should be noted that the frequency is inversely proportional with the mass of the beam. It is
clear that the effect of the mass on the first three dimensionless frequencies of the SS, CS and CC beams
is a bit more dominant than the effect of the Young’s modulus.

Table 5. The first three dimensionless frequencies of SS two directional FGBs with respect to gradient index and aspect ratio
change.

Pz

2 [ px |Lih=5 L/h=20

0 0.5 1 2 5 10 0 0.5 1 2 5 10

0 |5.1616 | 4.4236 | 4.0073 | 3.6434 | 3.4126 | 3.2898 | 5.4610 | 4.6658 | 4.2345 | 3.8763 | 3.6822 | 3.5589
0.5/4.6312 | 4.0223 | 3.7065 | 3.4470 | 3.2724 | 3.1586 | 4.9210 | 4.2586 | 3.9284 | 3.6711 | 3.5172 | 3.3958
1 [4.1791 | 3.7055 | 3.4744 | 3.2888 | 3.1504 | 3.0499 | 4.4310|3.9173 | 3.6762 | 3.4936 | 3.3703 | 3.2634
2 | 3.5772|3.3007 | 3.1727 | 3.0685 | 2.9758 | 2.9045 | 3.7660 | 3.4718 | 3.3414 | 3.2435 | 3.1642 | 3.0912
5 12.9643 | 2.8841 | 2.8468 | 2.8132 | 2.7758 | 2.7488 | 3.1030 | 3.0222 | 2.9881 | 2.9620 | 2.9360 | 2.9118
10 | 2.7726 | 2.7493 | 2.7373 | 2.7248 | 2.7092 | 2.6997 | 2.9071 | 2.8860 | 2.8773 | 2.8705 | 2.8630 | 2.8564
0 |15.8455(13.9581|12.5700{11.1032| 9.8030 | 9.2152 {21.5835|18.4530|16.7400|15.3000{14.4865|13.9937
0.5(12.0062(11.1381(10.5612| 9.9133 | 9.1984 | 8.8160 (19.2395|16.6946|15.4215|14.4158|13.7879|13.3164
1 |10.0770( 9.7108 | 9.4647 | 9.1619 | 8.7745 | 8.5557 (17.3484|15.3895|14.4511(13.7186|13.2184|12.8205
2 |8.6965 | 8.6391 | 8.5833 | 8.5011 | 8.3895 | 8.3277 |15.1628|13.9183|13.3337(12.8787|12.5453|12.2684
5 |8.0148 | 8.0946 | 8.1297 | 8.1630 | 8.1983 | 8.2155 |12.9496|12.4183|12.1807|11.9976/11.8380(11.6945
10| 7.9888 | 8.0690 | 8.1092 | 8.1497 | 8.1913 | 8.2105 |11.8844|11.6838(11.5980|11.5304|11.4606|11.3984
0 |17.9716|15.7982|14.6193|13.3673|12.0190|11.2896|47.6417|40.7450|36.9057|33.6081(31.6248|30.5486
0.5{15.8647|13.9906{12.9844(12.0412(11.1769|10.7077]42.2638|36.7311(33.9375|31.6950|30.2317{29.2003
1 ]14.3020|12.8353|12.0631|11.3601|10.7352|10.3812|38.0997|33.8924|31.8456|30.2096|29.0457|28.1740
2 |12.5555(11.6170{11.1376(10.7059|10.2974|10.0454|33.4581|30.7594|29.4675|28.4350(27.6526|27.0403
5 110.7851|10.3884(10.1936(10.0111| 9.8061 | 9.6698 |28.8297|27.5972|27.0195|26.5604|26.1796|25.8618
10 | 9.9806 | 9.8194 | 9.7366 | 9.6493 | 9.5379 | 9.4692 (26.6522(26.0903|25.8388|25.6381|25.4434|25.2749
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Table 6. The first three dimensionless frequencies of CS two directional FGBs with respect to gradient index and aspect ratio
change.

Pz
2 [ px JLIA=5 L/h=20
0 0.5 1 2 5 10 0 0.5 1 2 5 10

7.6552 | 6.6074 | 6.0067 | 5.4570 | 5.0342 | 4.8103 | 8.5094 | 7.2741 | 6.6023 | 6.0420 | 5.7312 | 5.5356
6.3567 | 5.6592 | 5.2849 | 4.9519 | 4.6758 | 4.5131 | 6.9971 | 6.1958 | 5.7964 | 5.4853 | 5.2971 | 5.1431
5.7603 | 5.2358 | 4.9598 | 4.7156 | 4.5065 | 4.3792 | 6.3149 | 5.7242 | 5.4385 | 5.2207 | 5.0816 | 4.9588
5.1928 | 4.8393 | 4.6597 | 4.4986 | 4.3452 | 4.2475 | 5.6590 | 5.2746 | 5.0979 | 4.9655 | 4.8672 | 4.7747
4.5065 | 4.3661 | 4.2938 | 4.2207 | 4.1348 | 4.0829 | 4.8831 | 4.7442 | 4.6844 | 4.6385 | 4.5939 | 4.5523
41951 |4.1439 | 4.1134 | 4.0798 | 4.0351 | 4.0112 | 4.5636 | 4.5215 | 4.5037 | 4.4893 | 4.4735 | 4.4597
15.8455|14.2559(13.2040(11.9300|10.3600| 9.4973 {27.1362|23.2313|21.0898(19.2763|18.2034|17.5525
12.0062|11.1856{10.6542(10.0210| 9.2537 | 8.8375 |23.2137(20.3810|18.9464|17.7948|17.0570|16.5150
10.0770| 9.7128 | 9.4677 | 9.1637 | 8.7748 | 8.5559 |21.1411|18.9382|17.8570(17.0011(16.4223|15.9724
8.6965 | 8.6420 | 8.5906 | 8.5134 | 8.4010 | 8.3348 (18.9078|17.4079|16.6928|16.1306|15.7215|15.3883
8.0148 | 8.0962 | 8.1333 | 8.1683 | 8.2026 | 8.2180 (16.3260|15.6444|15.3353|15.0967|14.8958|14.7165
7.9888 | 8.0691 | 8.1095 | 8.1501 | 8.1916 | 8.2107 (15.0092|14.7358|14.6186|14.5273|14.4362|14.3532
21.0092|18.3303|16.6967(15.0492(13.4913|12.7572|55.3449|47.4742|43.1077|39.3361|36.9305|35.5329
0.5(17.9388|15.9748(14.8466(13.7410(12.7143|12.2179]|47.9082|41.9833|38.9482|36.4552|34.7599|33.6082
1 [16.2359(14.7230|13.8783|13.0664|12.3229(11.9458(40.3079|38.7665|36.6664(34.8267|33.5090|32.5477
2 |14.4376|13.4283(12.8877(12.3816|11.9126|11.6505|34.7862(34.5556|34.1544|32.9763|32.0645|31.3617
5 [12.4407(12.0153|11.8041|11.6113|11.4112|11.2778|32.0591|32.0686|31.4021|30.8587|30.4045(30.0354
0]11.5509(11.3841|11.3031(11.2247(11.1294(11.0649|31.0525|30.3768|30.0691(29.8196|29.5774|29.3748
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On the other hand, depending on the gradient index in the x direction, mode numbers and aspect ratios,
the vibration behavior of the 2D- FGBs with CF boundary condition is significantly affected with the
variation of the mass and Young’s modulus. It is clear that the reduction in the dimensionless free
vibration frequencies because of the gradient index variation in the x direction is more than the
gradient index variation in the z direction for all type of end conditions. The highest free vibration
frequencies for 2D-FGBs are obtained as the CC boundary condition is employed. As it is expected,
the lowest frequencies are observed for CF beams followed by SS and CS beams.

Table 7. The first three dimensionless frequencies of CC two directional FGBs with respect to gradient index and aspect ratio
change.

Pz

2 [ px JL/h=5 L/h=20

0 0.5 1 2 5 10 0 0.5 1 2 5 10

0 |10.1759| 8.8542 | 8.0672 | 7.2947 | 6.5887 | 6.2416 |12.2721|10.4992| 9.5300 | 8.7146 | 8.2446 | 7.9552
0.5/8.6837 | 7.7335 | 7.1984 | 6.6815 | 6.1950 | 5.9474 |10.4425| 9.1841 | 8.5464 | 8.0341 | 7.7086 | 7.4680
8.0146 | 7.2454 | 6.8189 | 6.4068 | 6.0187 | 5.8206 | 9.6508 | 8.6350 | 8.1285 | 7.7202 | 7.4470 | 7.2446
7.4211 | 6.8138 | 6.4827 | 6.1621 | 5.8589 | 5.7035 | 8.9312 | 8.1392 | 7.7478 | 7.4274 | 7.1994 | 7.0345
6.7044 | 6.3084 | 6.0929 | 5.8831 | 5.6831 | 5.5777 | 8.1208 | 7.5925 | 7.3283 | 7.1056 | 6.9363 | 6.8177
6.2354 | 5.9793 | 5.8418 | 5.7098 | 5.5829 | 5.5105 | 7.6339 | 7.2699 | 7.0859 | 6.9279 | 6.8005 | 6.7087
24.3589|21.3564(19.4838(17.5186|15.5157|14.5968|33.2845(28.5171|25.8895|23.6467|22.2759|21.4594
21.1061|18.8226|17.4750{16.0908|14.6829|14.0309|28.7587|25.2140|23.4044|21.9294(20.9462|20.2556
19.2354(17.4322(16.3953|15.3416|14.2693|13.7605(26.3398|23.5295|22.1316|20.9986|20.2035|19.6256
17.2189(15.9694(15.2693|14.5617{13.8333|13.4745|23.7650|21.7720|20.7950{19.9962|19.4007|18.9640
15.1832|14.4989(14.1212(13.7415|13.3534|13.1571|21.0582(19.9316|19.3703|18.8965|18.5278|18.2667
14.3429|13.8876(13.6351(13.3837|13.1361|13.0123(19.8630(19.1102|18.7254(28.3937|18.1345|17.9567
31.6911|28.5167|26.4184(23.8732|20.7275|18.9992|63.3236|54.4023|49.4097|45.0337(42.0880|40.4225
0.526.9491|24.5911|23.0946|21.3277(19.2155|18.0898|55.0410|48.2705(44.7633|41.8264|39.7191(38.3415
24.8720]22.9287|21.7150{20.2962(18.6227|17.7392|50.1770|44.8691(42.2028|39.9891|38.3169(37.1679
23.2602|21.6318|20.6357|19.4897(18.1606|17.4672|44.8669|41.2414(39.4503|37.9492|36.7350(35.8824
20.8850|19.8707|19.2443(18.5099(17.6318|17.1623|39.4386|37.5307|36.5711|35.7345|35.0129|34.5259
19.0593|18.5083(18.1557(17.7273|17.1985|16.9091|37.1394|35.9281|35.2980(34.7303|34.2408|33.9319
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Table 8. The first three dimensionless frequencies of CF two directional FGBs with respect to gradient index and aspect ratio
change.

Pz
A | px [L/h=5 L/h=20
0 0.5 1 2 5 10 0 0.5 1 2 5 10

1.9053 | 1.6311 | 1.4803 | 1.3523 | 1.2762 | 1.2308 | 1.9531 | 1.6684 | 1.5141 | 1.3863 | 1.3176 | 1.2737
1.3346 | 1.2291 | 1.1802 | 1.1455 | 1.1225 | 1.0972 | 1.3585 | 1.2510 | 1.2030 | 1.1715 | 1.1542 | 1.1299
1.0953 | 1.0646 | 1.0534 | 1.0491 | 1.0474 | 1.0378 | 1.1137 | 1.0834 | 1.0736 | 1.0722 | 1.0746 | 1.0660
0.9526 | 0.9640 | 0.9724 | 0.9837 | 0.9956 | 0.9980 | 0.9703 | 0.9829 | 0.9927 | 1.0059 | 1.0203 | 1.0235
0.9134 | 0.9366 | 0.9493 | 0.9628 | 0.9769 | 0.9832 | 0.9333 | 0.9577 | 0.9713 | 0.9858 | 1.0010 | 1.0078
0.9322 | 0.9503 | 0.9598 | 0.9696 | 0.9796 | 0.9843 | 0.9539 | 0.9729 | 0.9829 | 0.9933 | 1.0040 | 1.0089
10.3117]8.9194 | 8.1010 | 7.3287 | 6.7064 | 6.4024 |12.1046|10.3504| 9.3940 | 8.5933 | 8.1431 | 7.8632
0.5[8.3747 | 7.4849 | 6.9919 | 6.5473 | 6.2046 | 6.0242 | 9.9084 | 8.7781 | 8.2166 | 7.7819 | 7.5199 | 7.3028
7.3529 | 6.7574 | 6.4400 | 6.1684 | 5.9675 | 5.8429 | 8.8103 | 8.0170 | 7.6411 | 7.3623 | 7.1852 | 7.0173
6.3992 | 6.0889 | 5.9395 | 5.8215 | 5.7259 | 5.6464 | 7.6910 | 7.2467 | 7.0541 | 6.9209 | 6.8226 | 6.7129
5.5417 | 5.4874 | 5.4677 | 5.4556 | 5.4410 | 5.4222 | 6.5254 | 6.4440 | 6.4201 | 6.4131 | 6.4077 | 6.3852
5.2869 | 5.3090 | 5.3220 | 5.3362 | 5.3503 | 5.3555 | 6.1781 | 6.2076 | 6.2286 | 6.2541 | 6.2809 | 6.2897
15.8455|14.2627|13.2203|11.9578]10.3905| 9.5189 |33.3095|28.5237|25.8911|23.6527|22.3137|21.5126
0.5(12.0062(11.2003|10.6888|10.0767| 9.3064 | 8.8689 |28.4234|24.9643|23.2121|21.8068|20.9086{20.2493
1 ]10.0770] 9.7236 | 9.4905 | 9.1969 | 8.8026 | 8.5709 |25.7063|23.0718|21.7861|20.7774|20.0984|19.5580
2 | 8.6965 | 8.6428 | 8.5920 | 8.5155 | 8.4030 | 8.3357 |22.7193|21.0179|20.2227|19.6138/19.1709|18.7867
5 18.0148 | 8.0960 | 8.1331 | 8.1681 | 8.2027 | 8.2181 |19.2706|18.6485|18.3884|18.2051|18.0462|17.8799
10| 7.9888 | 8.0693 | 8.1098 | 8.1505 | 8.1919 | 8.2108 |17.6872|17.5547(17.5157|17.5014|17.4868|17.4500
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Table 9. The first three dimensionless critical buckling loads of SS two directional FGBs with respect to gradient index and
aspect ratio change.

Pz

2 [pL/h=5 L/h=20

0 0.5 1 2 5 10 0 0.5 1 2 5 10
0]49.5906 | 32.6756 | 25.3504 | 19.7589 |16.1607(14.4341 53.3145 | 34.8027 | 26.9773|21.1935|17.8416 | 16.1152
0.5/ 35.3718 | 24.7602 | 20.2383 | 16.7963 |14.4031|13.0663| 38.6353 | 26.6992 | 21.7735|18.1772|15.8911 | 14.4704
26.1885(19.6987|16.9169 | 14.7498 |13.0797/12.0455| 28.6050 | 21.2395|18.2024 | 15.9510 | 14.3482 | 13.2370
17.4341|14.6332|13.392412.3669 {11.437310.8086| 18.7056 | 15.6087 | 14.2949 | 13.2767 | 12.4178 | 11.7586
11.3382(10.7095|10.4114]10.1341|9.8266|9.6188 | 11.9565|11.3058|11.0224 | 10.7906 | 10.5563 | 10.3641
9.8204 | 9.6441 | 9.5527 | 9.4560 [9.3367|9.2648|10.3666|10.2033|10.1327|10.0737[10.0101 | 9.9585
160.0767|107.9494|84.0471 | 64.3616 {49.2866/42.9415210.1443[137.4481{106.5598/ 83.5726 | 69.9215 | 63.0022
99.7755(76.0225 [63.5501 | 52.6607 |43.5556/39.2360{146.3685(102.411384.0710| 70.4563 | 61.5106 | 56.0840
67.8901 [59.2406 | 52.3923 | 45.8828 [39.9031/36.7749(108.207981.7264 | 70.4370 | 61.8009 | 55.5820 | 51.4940
53.3409 | 46.5659 | 42.9634 | 39.5345 [36.1287|34.1773 76.0689 | 63.2377 | 57.4964 | 52.9287 | 49.3324 | 46.7737
38.8884 | 36.4863 | 35.2309 | 33.9732 [32.518331.5949 52.4749 | 48.3128 | 46.4090 | 44.8394 [ 43.3775 | 42.2166
33.5665 [32.6266 (32.1119 |31.5397[30.7894i30.3305[ 43.7292 | 42.2854 | 41.6358 | 41.0852 | 40.5033 | 40.0313
264.1664(182.3956/143.0163]108.0719[78.039366.4945461.4928302.8028]234.8215(183.6713[152.1656/136.5831
0.5/111.4783/89.1194 {81.4191 | 74.5207 |66.9518/61.2813316.6054{223.1402(183.6237|153.7839[133.4832(121.6130
76.0445 |65.1351 |62.6508 | 60.6303 [58.482557.2290[234.6189/178.4620[154.0632[135.0305[120.9720(112.0977|
57.3314156.4273|56.0330 | 55.6369 [55.1667/54.7658167.2355/139.3827|126.6949116.3829(108.1004{102.4613
54.7570|54.6089 | 54.5360 | 54.4559 [52.907051.5710{117.3598/107.6882/103.1064| 99.2438 | 95.7556 | 93.1277
54.4277|53.4927 |52.8044 |51.9771[50.8003550.0612( 98.9708 | 95.0530|93.2189|91.6397 | 90.0193 | 88.7342
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Table 10. The first three dimensionless critical buckling loads of CS two directional FGBs with respect to gradient index and
aspect ratio change.

p:

2 e |Lh=5 L/h=20

0 05 1 2 5 10 0 05 1 2 5 10

0 | 94.0478 | 62.5327 | 48.5623 | 37.5676 |29.9079] 26.4427 | 108.6714 | 70.9833 | 55.0171 | 43.1881 | 36.2764 | 32.7409
0.5 | 64.2361 | 45.9588 | 37.8666 | 31.3409 |26.2864] 23.7234 | 72.7936 | 51.4821 | 42.5060 | 35.8030 | 31.4353 | 28.7738
v L[ 49.4170 | 37.7128 | 32.3767 | 27.9220 [24.2243| 22.2404 | 55.7821 | 42.1563 | 36.2993 | 31.8385 | 28.7177 | 26.6579
crilp | 35.9854 | 29.8537 | 26.9478 | 24.3867 |21.9991] 20.6176 | 40.3933 | 33.2910 | 30.1730 | 27.7335 | 25.8003 | 24.3857
5 | 24.0509 | 22.2066 | 21.2691 | 20.3318 |19.2618| 18.6221 | 26.5656 | 24.5698 | 23.6820 | 22.9510 | 22.2348 | 21.6616
10 | 19.9078 | 19.2916 | 18.9437 | 18.5456 |18.0363 17.7548 | 21.9994 | 21.4193 | 21.1625 | 20.9435 | 20.7065 | 20.5184
0 [211.8124144.4790 | 112.8046 | 85.7574 |63.7602] 54.9418 | 314.9555 | 206.2605 | 159.9040 | 125.2480 | 104.3546 | 93.8850
0.5 [136.1394 | 102.3665 | 85.4022 | 69.9326 [56.2261] 50.2907 | 212.0265 | 150.0320 | 123.7775 | 103.9845 | 90.7297 | 82.8880
_ |1 [90.8112 | 78.0716 | 69.6881 | 60.6553 |51.7891| 47.5876 | 160.7081 | 121.9205 | 105.1172 | 92.1211 | 82.7459 | 76.7586
2 | 66.2973 | 60.5286 | 56.4359 | 51.9724 |47.2211| 44.6814 | 1155575 | 95.8646 | 86.9837 | 79.8476 | 74.1987 | 70.2817
5 | 49.9960 | 47.3950 | 45.9540 | 44.4588 |42.7184] 41.6253 | 79.8967 | 73.2954 | 70.2218 | 67.6717 | 65.3649 | 63.5700
10 | 43.8134 | 42.7397 | 42.1607 | 41.5319 |40.7033] 40.1608 | 66.7571 | 64.2626 | 63.1245 | 62.1625 | 61.1702 | 60.3607
0 [292.8246 | 204.7608 | 164.3272 | 123.8734 |87.7360| 74.1605 | 609.4937 | 400.6401 | 310.7122 | 242.6152 | 199.8402 | 178.9905
0.5 | 144.0408 | 118.5416 | 105.9832 | 92.5512 |76.2668| 68.3449 | 410.6930 | 291.4653 | 240.4355 | 201.3645] 174.2260| 158.8013
_ |1 [ 95.0928 | 85.3863 | 79.9084 | 74.5830 |68.3109| 64.4329 |309.1080 | 235.6851 | 203.4198 | 177.9771] 158.9640| 147.2979
crslp | 70.4121 | 67.5538 | 66.2419 | 64.7182 |62.6706] 60.9598 | 221.9889 | 185.0573 | 168.0923 | 154.1510] 142.7906| 135.2306
5 | 61.8920 | 61.4599 | 61.2122 | 60.8147 |59.4126] 58.1056 | 155.9941 | 143.0198 | 136.8016 | 131.4848] 126.6439] 123.0957
10 | 60.6936 | 60.0134 | 59.4694 | 58.7057 |57.4701] 56.6617 | 131.9974 | 126.5296 | 123.9185] 121.6305 119.2798] 117.4695

=

=

Table 11. The first three dimensionless critical buckling loads of CC two directional FGBs with respect to gradient index and
aspect ratio change.

Pz

2 [plLih=5 L/h=20

0 0.5 1 2 5 10 0 0.5 1 2 5 10
0 [160.2679(108.0746|84.1405 | 64.4273 149.332742.9835[210.7416[137.8225106.8192/ 83.7477 | 70.0605 | 63.1383
0.5(105.7401 77.2659 | 64.0343 | 52.6920 {43.2038/38.8848139.4402/ 99.0554 | 81.9713 | 69.1074 | 60.5477 | 55.4082
1[78.0764 |61.8422 |53.6846 | 46.2912 |39.7660[36.6520[106.2280| 80.8979 | 69.8762 | 61.3217 | 55.2183 | 51.3267

crll 2 156.5523 [48.5790 | 44.2899 [ 40.1780 [36.3473}34.3886) 78.3073 | 64.8021 | 58.6424 | 53.6657 | 49.8535 | 47.2692
5
10
0

=

41.1913|38.0888 |36.3760 | 34.6960 [33.094832.1795/57.1720 | 51.5890 | 48.8771 | 46.5946 | 44.7484 | 43.4120
35.842934.2305|33.3642 | 32.5459 [31.7765@381.2651/ 49.7673 | 46.6931 | 45.1599 | 43.8403 | 42.7116 | 41.8475
251.8003]173.3470/135.7595[102.7153/74.6796/63.8030422.19581276.9177]214.6817167.9352139.3281/125.1559
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Table 12. The first three dimensionless critical buckling loads of CF two directional FGBs with respect to gradient index
and aspect ratio change.

Pz
A |px|L/h=5 L/h=20
0 0.5 1 2 5 10 0 0.5 1 2 5 10
0/13.1140] 8.5785 |6.6516|5.2168|4.3630|3.9305|13.3996 | 8.7421 | 6.7750 | 5.3238 | 4.4887 [4.0573
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The first three dimensionless critical buckling loads of the 2D-FGBs are revealed in Tables 9-12. It is
clear that the first three critical buckling loads decrease for all type of end conditions as the gradient
indexes increase. It is interesting that the shear deformation effect becomes significantly important as
the buckling mode number increases. For all types of BCs, the relative difference between critical
buckling loads with respect to variation of the aspect ratio increases as the buckling mode increases.
The first dimensionless critical buckling loads of the 2D-FG CC beam with p,=1 and px=1 are N, =
53.6846 and N, = 69.8762 for L/h=5 and L/h=20, respectively. On the other hand, the third
dimensionless critical buckling loads are N, = 80.7869 and N, = 264.5835 for L/h=5 and
L/h=20, respectively. Using the value of the aspect ratio L/h=5 as a reference, the relative differences
are % 30 and % 228 for CC beams with L/h=5 and L/h=20, respectively. For SS beams, the values are
% 8 and % 153 for L/h=5 and L/h=20, respectively. The relative differences are % 35 and % 202 for
CS beams with L/h=5 and L/h=20, respectively. And finally, for CF beams, they are % 3 and % 107
for L/h=5 and L/h=20, respectively. These results can be compared with ones given in [35]. It is clear
that the relative difference is the least for CF beam while it is the most for CC beam.
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Figure 2. Variation of the dimensionless fundamental frequencies of SS two directional FGBs with respect to variation of
gradient indexes and aspect ratios a) px =1 and b) pz =1

Figures 2 to 5 are plotted to illustrate the effect of gradient indexes, px and pz, and aspect ratios on the
dimensionless fundamental frequencies of the 2D-FGBs for all type of boundary conditions. It is
observed that with the increase of the gradient indexes the dimensionless fundamental frequencies
decrease because of decreasing the rigidity of the beam for SS, CS and CC beams. When the gradient
index in the z direction is set to 1, the dimensionless fundamental frequencies decrease with respect to
variation of the gradient index in the x direction for all aspect ratios. Moreover, as the gradient index
in the x direction is set to 1, the dimensionless fundamental frequencies of CF 2D-FGBs decrease for
the aspect ratio L/h < 5. For higher values of aspect ratio of CF 2D-FGBs withp, =1 and 1 <p, <
5, the dimensionless fundamental frequencies increase. On the other hand, for CF 2D-FGBs with
L/h =10, p, =1 and 5 < p, < 10, the dimensionless fundamental frequencies decrease. As it is
explained before, the vibration behavior of the 2D- FGBs with CF boundary condition is significantly
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affected with the variation of the mass and Young’s modulus which depend on the gradient index in
the x direction, mode numbers and aspect ratios.

It is found that the reduction in the dimensionless fundamental frequencies because of the gradient
index variation in the x direction is more than the gradient index variation in the z direction for all
boundary conditions and aspect ratios. According to the presented 2D- FGBs in Figures 2 to 5, the
numerical results show that a thick 2D- FG beam can be defined with the aspect ratio L/h < 10 for
the free vibration analysis except the CF beam with p, = 1 and 0 < p, < 10.
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Figure 3. Variation of the dimensionless fundamental frequencies of CS two directional FGBs with respect to variation of
gradient indexes and aspect ratios a) px =1 and b) pz =1
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Figure 4. Variation of the dimensionless fundamental frequencies of CC two directional FGBs with respect to variation of
gradient indexes and aspect ratios a) px =1 and b) pz =1

Figures 6 to 9 examine the effect of the gradient indexes, aspect ratios and boundary conditions on the
first critical buckling loads of the 2D-FGBs. As expected, as the aspect ratio increases, the
dimensionless first critical buckling load increases for all types of BCs and the values of the gradient
indexes studied in these examples. Besides, the dimensionless first critical buckling load decreases
while the gradient index increases in any direction. It is clear that the highest first critical buckling
loads are seen in CC beams followed by CS, SS and CF beams. It is also observed that the reduction in
the dimensionless first critical buckling loads because of the gradient index variation in the x direction
is more than the gradient index variation in the z direction for all boundary conditions and aspect
ratios. Moreover, with the increase of the aspect ratio, the critical buckling loads become very close to
each other after in the region, for SS and CS L/h>20, CF L/h>10 and CC L/h>30. On the other hand,
for CC beams, the effect of the shear deformation is significant in the region L/h<I15.
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Figure 5. Variation of the dimensionless fundamental frequencies of CF two directional FGBs with respect to variation of
gradient indexes and aspect ratios a) px =1 and b) pz =1
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Figure 6. Variation of the dimensionless first critical buckling loads of SS two directional FGBs with respect to variation of
gradient indexes and aspect ratios a) px =1 and b) pz =1
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Figure 7. Variation of the dimensionless first critical buckling loads of CS two directional FGBs with respect to variation of
gradient indexes and aspect ratios a) px =1 and b) pz =1
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Figure 8. Variation of the dimensionless first critical buckling loads of CC two directional FGBs with respect to variation of
gradient indexes and aspect ratios a) px =1 and b) pz =1
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Figure 9. Variation of the dimensionless first critical buckling loads of CF two directional FGBs with respect to variation of
gradient indexes and aspect ratios a) px =1 and b) pz =1

The first four normalized vibration mode shapes of SS, CS, CC and CF 2D-FGBs with the gradient
indexes, p; =1and px =1, are illustrated in Figures 10 to 13. Actually, the obtained mode shape is a
quadruple mode shape. Since the small stretching deformation occurs, the resulting mode shape is
referred as triply coupled mode, which is substantial involving axial, shear and bending deformations
for all types of end conditions. The first four flexural normalized buckling mode shapes of the two
directional FGBs for all type of boundary conditions are presented in Figure 14 (L/h=5, pz=1 and
px=1). One may expect that for a homogeneous CC beam the mode shapes are symmetric about the
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midpoint of the beam. However, because of the material variation along the length of the beam the
mode shapes become anti-symmetric about the midpoint of the 2D-FGB.
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Figure 10. First four normalized vibration mode shapes of SS two directional FGBs (L/h=5, px=1 and pz =1)
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Figure 11. First four normalized vibration mode shapes of CS two directional FGBs (L/h=5, px=1 and p: =1)
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Figure 12. First four normalized vibration mode shapes of CC two directional FGBs (L/h=5, px=1 and p; =1)
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Figure 13. First four normalized vibration mode shapes of CF two directional FGBs (L/h=5, px=1 and p; =1)
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Figure 14. First four flexural (W) normalized buckling mode shapes of two directional FGBs for various boundary
conditions (L/h=5, px =1 and pz =1)

4. CONCLUSION

In this paper, the free vibration and buckling behaviors of the two directional functionally graded
beams having different boundary conditions are investigated by employing a four-unknown shear and
normal deformation theory. The governing equations of motions are obtained via Lagrange equations
in conjunction with polynomials added auxiliary functions that satisfy the boundary conditions.
Analytical polynomial displacement solutions are derived for Simply supported — Simply supported
(SS), Clamped-Simply supported (CS), Clamped — clamped (CC) and Clamped-free (CF) boundary
conditions by employing various gradient indexes in both axial and thickness directions. The
computed results in terms of dimensionless frequencies and critical buckling loads are compared with
the results from previous studies. It is found that computed results show excellent agreement with
previous ones. The effects of the boundary conditions, gradient indexes and aspect ratios on the
dimensionless frequencies and critical buckling loads of the 2D-FGBs are discussed. Based on the

extensive analysis, the main important results are given below:

The dimensionless frequencies and buckling loads of the 2D-FGBs are greatly affected by the
gradient indexes. However, the effect of the gradient index in the x direction is more
significant than the gradient index in the z direction.
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Increment of the gradient indexes, the dimensionless fundamental frequencies decrease
because of decreasing the rigidity of the beam for SS, CS and CC beams.

The effect of the mass on the dimensionless frequencies of the SS, CS and CC 2D-FGBs is a
bit more dominant than the effect of the Young’s modulus. The vibration behavior of the 2D-
FGBs with CF boundary condition is significantly affected with the variation of the mass and
Young’s modulus. This effect mainly depends on the gradient index value in the x direction,
mode number and aspect ratio.

The highest free vibration frequencies for 2D-FGBs are obtained while the CC boundary
condition is employed. The lowest frequencies are observed for CF beams followed by SS and
CS beams.

Increment of the gradient indexes, the critical buckling load increase.

The shear deformation effect becomes important as the buckling mode number increases. For
all types of BCs, the relative difference between critical buckling loads increases as the
buckling mode increases.

As the aspect ratio increases, the shear deformation effect on the critical buckling loads of the
2D-FGBs decreases. It is observed that CC 2D-FGB is much more sensitive to shear
deformation effect than the other 2D-FGB models.

A triply coupled mode shape which is substantial involving axial, shear and bending
deformations for all types of end conditions is obtained.

The highest first critical buckling loads are seen in CC beams followed by CS, SS and CF
beams.

To meet the design requirements, the vibration and buckling behaviors of the 2D-FGBs can be
controlled by selecting suitable gradient indexes.

Especially for thick beams, the shear deformation effect is very important and the proposed
theory provides accurate results and is efficient in solving the vibration and buckling
behaviors of the 2D-FGBs.
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