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Abstract

This work primarily investigates the numerical solution of fuzzy fractional parabolic integro-
differential equations of the Volterra type with the time derivative defined in the Caputo
sense using the fuzzy Adomian decomposition method. Fuzzy fractional partial integro-
differential equations pose significant mathematical challenges due to the interplay between
fuzziness and fractional-order dynamics, while at the same time, there is a growing need
for accurate and efficient methods to model real-world phenomena involving uncertainty in
physics, biology, and engineering. The fuzzy Adomian decomposition method provides
an alternative approach for obtaining approximate fuzzy solutions, and its applicability
to such equations has not been studied in detail previously in the literature. Furthermore,
existence and uniqueness theorems for the fuzzy fractional partial integro-differential
equation are established by considering the differentiability type of the solution. The
accuracy and efficiency of the proposed method are demonstrated through a series of
numerical experiments.

1. Introduction

Fractional differential equations and fractional integral equations are powerful tools for modeling and describing the hereditary properties
of various materials and processes. In recent years, the widespread use of Fractional differential equations in engineering and scientific
domains has motivated researchers to pursue advancements in both theoretical and applied research methods. Many researchers have focused
on establishing existence results to confirm that the mathematical models accurately describe real-world phenomena [1–3], while other
research has concentrated on finding explicit or approximate solutions to these models. [4–6]. When modeling real-world phenomena using
fractional differential equations, the behavior of dynamical systems can be complex and affected by errors and uncertainty. To address
this, some researchers have introduced approaches that define parameters and initial conditions within a fuzzy fractional framework. Early
contributions to the study of fuzzy fractional differential equations were made by Agarwal et al. [7] and Arshad et al. [8], who applied the
Riemann–Liouville derivative with fuzzy initial conditions. This approach extends the classical Riemann–Liouville derivative using the
Hukuhara difference (H-difference) [9]. However, a limitation of the H-difference is that the support of fuzzy solutions tends to increase over
time (see [10–12]). Moreover, the Riemann–Liouville derivative requires knowledge of the fractional derivative of the unknown solution
at the initial point, which is often difficult to measure or may not exist. To overcome these challenges, several studies have combined
Caputo derivatives with generalized Hukuhara differentiability (gH-differentiability), leading to the concept of Caputo gH-differentiability, as
discussed in works by Salahshour et al. [13], Long et al. [14], Alqudah et. al. [15] and Saeed et. al. [16].
Recently, numerous authors have developed and analyzed various numerical techniques of fuzzy fractional differential equations. These
include studies on the existence of global solutions using upper and lower solutions method [17], integro-differential equations with
generalized Caputo differentiability [18], the fractional differential transform method [19], the Adomain decomposition method [20, 21], the
Jacobi polynomial operational matrix [22], the two-dimensional Legendre wavelet method [23], the power series method [24, 25], homotopy
perturbation transform method [26] and the optimal homotopy asymptotic method [27].
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The main objective of this work is to prove the uniqueness of solution of fuzzy fractional partial integro-differential equation. We also
investigate the the numerical solution of fuzzy fractional parabolic integro-differential equations under Caputo generalized Hukuhara
differentiability by fuzzy Adomian decomposition method. To achieve this, we convert a fuzzy fractional parabolic integro-differential
equation into a system of crisp equations that can be solved bya standard numerical method.
The significance of this study from the theoretical point of view is that the current fuzzy Adomian decomposition method is developed for a
general form of fuzzy fractional partial integro-differential equation under Caputo generalized Hukuhara differentiability. This can greatly
help the numerical study of fuzzy fractional partial integro-differential equations and other equations in this form due to the difficulty of
solving these equations analytically.
The paper is organized as follows: Section 2 introduces essential definitions and notations related to fuzzy fractional calculus. In Section
3, we present a fuzzy fractional partial integro-differential equation under Caputo generalized Hukuhara differentiability and examine the
existence and uniqueness of its solutions. Section 4 discusses the convergence of the Fuzzy Adomian Decomposition Method for determining
approximate solutions to the fuzzy fractional parabolic integro-differential equation (fuzzy fractional parabolic IDEs). Additionally, we
explore solutions of fuzzy fractional parabolic IDEs under different differentiability types. Section 5 provides examples to illustrate the
effectiveness of the proposed method.

2. Preliminary Concepts

In this section, we recall some of the basic preliminaries of fuzzy fractional calculus.
Let C[I,R] be the Banach space of all real-valued continuous functions from I = [0,a] into R. For measurable real-valued function

f : I → R, define the norm ∥ f∥Lp(I,R) =

(∫
I | f (κ)|p

) 1
p

< ∞, 1 ≤ p < ∞, where Lp(I,R) denote the Banach space of all Lebesgue

measurable real-valued functions f . Also, we use the notations listed below:

FR is the set of all fuzzy numbers on R.
C[J,FR] is a space of all continuous fuzzy-valued functions which are on J= [0,a]× [0,b]⊂ R2.
L[J,FR] is the set of Lebesque integrable for fuzzy-valued functions on B, where B ⊂ Rm,m ∈ N.

Definition 2.1. [28] A fuzzy number is a mapping α : R→ [0,1] with the following features:

(1) For κ0 ∈ R,α is normal. It means, α(κ0) = 1.
(2) For κ1,κ2,∈ R and t ∈ [0,1], α is convex such that

α(tκ1 +(1− t)κ2)≥ min{α(κ1),α(κ2)}.

(3) α is upper semicontinuous.
(4) cl{κ ∈ R,α(κ)> 0} is compact.

The set of a fuzzy number α(κ) ∈ FR in the ς -level form is denoted by [α]ς and defined as:{
{κ ∈ R | α(κ)≥ ς} if 0 < ς ≤ 1,
cl(suppα(κ)) if ς = 0.

It is clear that the set of a fuzzy number κ in ς -level form is a closed and bounded interval [ας ,ας ], where ας is the left end point and ας is
the right end point.
For any arbitrary elements α,β ∈ FR and scalar k ∈ R, the operations of addition and scalar multiplication are respectively defined by their
ς -level sets as follows:

[α +β ]ς = (ας +βς ,ας +βς ),

[kα]ς =

{
(kας ,kας ) if k ≥ 0,

(kας ,kας ) if k < 0.

A triangular fuzzy number is characterized as a fuzzy set in RF , represented by an ordered triple α = (a,b,c) ∈ R3 where a ≤ b ≤ c. The
ς -level set of α is given by the endpoints:

ας = a+(b−a)ς , ας = c− (c−b)ς ,

for all ς ∈ [0,1].

Definition 2.2. [14] Let D : FR ×FR −→ R be the Hausdorff distance between two fuzzy numbers α ,β and defined as

D(α,β ) = sup
0≤ς≤1

dH{[α]ς , [β ]ς}

= sup
0≤ς≤1

max{|ας −βς |, | ας −βς |},

where the metric space (FR,D) is complete, separable and locally compact. The supremum metric D∗ on C[J,FR] is considered as

D∗(α,β ) = sup
(κ,t)∈J

{ D(α(κ, t),β (κ, t))}. (2.1)
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Definition 2.3. [28] The Hukuhara difference (H-difference) between two fuzzy numbers α and β is defined as

α ⊖ β = w ⇔ α = β +w,

where + denotes the standard fuzzy addition. Moreover, if α ⊖ β exists, then α ⊖ α = 0.

In [14] authors have given some properties of the metric D in FR and Hukuhara difference as:

Lemma 2.4. For all α,β , l,γ,ϖ ∈ FR we have

(1) D(α + l,β + l) = D(α,β ).
(2) D(α +β ,γ +ϖ)≤ D(α,γ)+D(q,ϖ).
(3) D(α +β ,0) = D(α,0)+D(β ,0).
(4) If α ⊖β exists then (−1)α ⊖ (−1)β exists and (−1)(α ⊖β ) = (−1)α ⊖ (−1)β .
(5) If α ⊖β and γ ⊖ϖ exist then D(α ⊖β ,γ ⊖ϖ)≤ D(α,γ)+D(β ,ϖ).

Definition 2.5. [28] The generalized Hukuhara difference of two fuzzy numbers α,β ∈ FR (gH-difference for short) is defined as follows:

α ⊖gH β = w ⇔


(i) α = β +w,
or
(ii) β = α +(−1)w.

It is easy to show that (i) and (ii) are both valid if and only if w is a crisp number.
For the ς -levels, the generalized Hukuhara difference (gH-difference) between α and β is given by:

[α ⊖gH β ]ς =
[
min{ας −βς ,ας −βς},max{ας −βς ,ας −βς}

]
.

If the Hukuhara difference (H-difference) exists, then α ⊖β = α ⊖gH β . The conditions for the existence of α ⊖gH β ∈ FR are shown
in [10, 29].

Remark 2.6. Throughout the remainder of this paper, we assume that α ⊖gH β ∈ FR.

Definition 2.7. [30] A fuzzy number α can be represented in parametric form as [α(ς),α(ς)], for 0 ≤ ς ≤ 1, if and only if

(i) α(ς) is increasing bounded function and left continuous over (0,1].
(ii) α(ς) is decreasing bounded function and right continuous over (0,1].
(iii) α(ς)≤ α(ς).

Allahviranloo [28] introduced the definition of fuzzy partial derivative as follows:

Definition 2.8. Let ν : J−→ FR, then gH-partial derivative of first order at the point (κ0, t0) ∈ J with respect to variables κ, t are denoted
by ∂ν(κ0,t0)

∂κ , ∂ν(κ0,t0)
∂ t and given by

∂ν(κ0, t0)

∂κ
= lim

h→0

ν(κ0 +h, t0)⊖gH ν(κ0, t0)

h
,

∂ν(κ0, t0)

∂ t
= lim

k→0

ν(κ0, t0 + k)⊖gH ν(κ0, t0)

k
,

provided that ∂ν(κ0,t0)
∂κ and ∂ν(κ0,t0)

∂ t ∈ FR.

Definition 2.9. Let ν : J−→ FR be gH-partial differentiable with respect to κ at (κ0, t0) ∈ J. We say that

(1) ν is (i) gH-partial differentiable with respect to κ at (κ0, t0) ∈ J. If[
∂ν(κ0, t0,ς)

∂κ

]
=
[

∂ν(κ0, t0,ς)

∂κ
,

∂ν(κ0, t0,ς)

∂κ

]
, ∀ς ∈ [0,1].

(2) ν is (ii) gH-partial differentiable with respect to κ at (κ0, t0) ∈ J. If[
∂ν(κ0, t0,ς)

∂κ

]
=
[

∂ν(κ0, t0,ς)

∂κ
,

∂ν(κ0, t0,ς)

∂κ

]
, ∀ς ∈ [0,1].

Definition 2.10. [14] For a fixed κ0, the point (κ0, t) ∈ J is called a switching point for the differentiability of ν with respect to κ0 if, in
every neighborhood V of (κ0, t), there exist points A1(κ1, t) and A2(κ2, t) with κ1 < κ0 < κ2 such that either:

1. ν is (i)-gH differentiable at A1 and (ii)-gH differentiable at A2 for all t, or
2. ν is (i)-gH differentiable at A2 and (ii)-gH differentiable at A1 for all t.

Lemma 2.11. [14] (Newton–Leibniz formula) Let ν ∈ C(R2,FR).

(1) If ν is (i)-gH differentiable with respect to t, with no switching point on R× [b, t], then∫ t

b

∂ν(κ,δ )
∂δ

dδ = ν(κ, t)⊖ν(κ,b).
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(2) If ν is (ii)-gH differentiable with respect to t, with no switching point on R× [b, t], then∫ t

b

∂ν(κ,δ )
∂δ

dδ = (−1)ν(κ,b)⊖ (−1)ν(κ, t).

In [13, 28], authors have defined the concepts of Riemann-Liouville integral and Caputo’s gH-derivative of fuzzy valued functions as follows:

Definition 2.12. Let ν(κ) ∈ C[I ,FR]∩L[I ,FR], I ∈ R. The fuzzy fractional integral in Riemann-Liouville sense of order θ > 0 is
defined as

Iθ
ν(κ,ς) = [Iθ

ν(κ,ς),Iθ
ν(κ,ς)], ς ∈ [0,1],

where

Iθ
ν(κ,ς) =

1
Γ(θ)

∫ κ

0
(κ− τ)θ−1

ν(τ,ς)dτ, κ > 0,

Iθ
ν(κ,ς) =

1
Γ(θ)

∫ κ

0
(κ− τ)θ−1

ν(τ,ς)dτ, κ > 0.

Definition 2.13. Let ν(κ) ∈ C[I ,FR]∩L[I ,FR]. Then the fuzzy fractional Caputo’s gH-derivative under (i) gH-differentiability is defined
as

c
gHD

θ
κν(κ,ς) = [ cDθ

κν(κ,ς), cDθ
κν(κ,ς)]

and under (ii) gH-differentiability is given as:

c
gHD

θ
κν(κ,ς) = [ cDθ

κν(κ,ς), cDθ
κν(κ,ς)],

where

cDθ
κν(κ,ς)] =

1
Γ(m−θ)

∫ κ

0
(κ− τ)m−θ−1

ν
(m)(τ,ς)dτ,

cDθ
κν(κ,ς) =

1
Γ(m−θ)

∫ κ

0
(κ− τ)m−θ−1

ν
(m)(τ,ς)dτ.

Proposition 2.14. [28] If ν(κ) : [0,a]→ E f is an integrable fuzzy function and θ1 > 0, θ2 > 0. Then,

(Iθ1)(Iθ2)ν(κ) = (Iθ1+θ2)ν(κ), κ ∈ [0,a].

Theorem 2.15. [31](Holder’s Inequality) If q1 and q2 are positive numbers satisfying the relation 1
q1

+ 1
q2

= 1 and if f ∈ Lq1(0,a),
g ∈ Lq2(0,a), then fg ∈ L(0,a) and

∫ a

0
|f(κ)g(κ)|dκ ≤

(∫ a

0
|f(κ)|q1

) 1
q1
(∫ a

0
|g(κ)|q2

) 1
q2
.

3. Fuzzy Fractional Partial Integro-Differential Equations (FFPIDEs)

In the current section, we establish that the following FFPIDEs of Volterra type have a unique solution in C(J,FR).

cDθ
t ν(κ, t) = ϒ(κ, t,ν ,νκ ,νκκ ,Sν),

ν(κ,0) = £(κ),
(3.1)

where cDθ
t is the fuzzy Caputo derivative with respect to t, 0 < θ < 1,(κ, t) ∈ J, ϒ : I×FR ×FR ×FR ×FR → FR and S is a linear

integral operator given by:

Sν =
∫ t

0
k(κ, t,s)ν(s, t)ds,

where k is a sufficiently smooth crisp function.
The following lemma provides the equivalent formulations to equation (3.1).

Lemma 3.1. The fuzzy initial value problem (3.1) is equivalent to one of the following integrals equations:

Case (I): If ν is (i)−gH differentiable, then

ν(κ, t) = £(κ)+Iθ
t
[
ϒ(κ, t,ν ,νκ ,νκκ ,Sν)

]
. (3.2)

Case (II): If ν is (ii)−gH differentiable, then

ν(κ, t) = £(κ,)⊖ (−1)Iθ
t
[
ϒ(κ, t,ν ,νκ ,νκκ ,Sν)

]
. (3.3)

Proof. Applying integral operator Iθ
t on both the sides of equation (3.1) and from the Proposition 2.14 and the Lemma 2.11 we get (3.2) and

(3.3). Thus (3.1) and (3.2) - (3.3) are equivalent.

Now we establish the existence and uniqueness of the fuzzy solution to the problem (3.1) using the Banach contraction principle.
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Theorem 3.2. Let C(J,FR) be the Banach space of all continuous fuzzy-valued functions. Assume that the following hypotheses are fulfilled

• H1 : For any ν ,ω ∈ C(J,FR), there exists a constant θ1 ∈ (0,θ) and real-valued positive functions K1(κ, t),K2(κ, t) ∈ L
1
θ (J,R+)

such that

D
(

ϒ(κ, t,ν ,νκ ,νκκ ,Sν),ϒ(ω, t,ω,ωκ ,ωκκ ,Sω)
)
≤ K1(κ, t)D

(
ν(κ, t),ω(κ, t)

)
+K2(κ, t)D

(
Sν(κ, t),Sω(κ, t,)

)
.

• H2 : For the set of all non negative continuous function on I = {(κ, t,s) ∈ R×R×R : 0 ≤ s ≤ t ≤ b} there exist η0 such that

η0 = sup
(κ,t)∈J

∫ t

0
|k(κ, t,s)|ds. <+∞

and M= {K1(κ, t,s)+η0dK2(κ, t,s)}
L

1
θ1 (J,R+)

.

If

l∗ =
Mdθ−θ1

Γ(θ)( θ−θ1
1−θ1

)1−θ1
< 1,

then the problem (3.1) has a unique solution defined on J.

Proof. We define the operator Ξ : C(J,FR)→ C(J,FR) by

Ξ(ν(κ, t)) = £(κ)+
1

Γ(θ)

∫ t

0
(t−ρ)θ−1

ϒ(κ,ρ,ν ,νκ ,νκκ ,Sν)dρ,

for all (κ, t) ∈ J.
Assume that ν ∈ C(J,FR). First we show that Ξ is a fuzzy continuous operator. Let us assume that {νn} be a sequence such that νn → ν as
n → ∞ in C[J]. Then for each (κ, t) ∈ J. We have

D
(
(Ξνn)(κ, t),(Ξν)(κ, t)

)

≤ 1
Γ(θ)

∫ t

0
(t−ρ)θ−1D

(
ϒ(κ,ρ,νn,νnκ ,νnκκ ,Sνn),ϒ(κ,ρ,ν ,νκ ,νκκ ,Sν)

)
dρ.

From (2.1) and H1 we have

D
(
(Ξνn)(κ, t),(Ξν)(κ, t)

)

≤
D∗

(
ϒ(κ,ρ,νn,νnκ ,νnκκ ,Sνn),ϒ(κ,ρ,ν ,νκ ,νκκ ,Sν)

)
Γ(θ)

∫ t

0
(t−ρ)θ−1dρ.

≤
tθ D∗

(
ϒ(κ,ρ,νn,νnκ ,νnκκ ,Sνn),ϒ(κ,ρ,ν ,νκ ,νκκ ,Sν)

)
Γ(θ +1)

.

Since ν is a fuzzy continuous function, we have

D
(
(Ξνn)(κ, t),(Ξν)(κ, t)

)

≤
tθ D∗

(
ϒ(κ,ρ,νn,νnκ ,νnκκ ,Sνn),ϒ(κ,ρ,ν ,νκ ,νκκ ,Sν)

)
Γ(θ +1)

→ 0 as n → ∞.

Hence, N∗ is a fuzzy continuous operator.
Now, we transform the problem (3.1) into a fixed-point problem. Suppose that ν(κ, t) is a (i)-gH differentiable. We shall prove that Ξ is a
contraction mapping using Banach contraction principle theorem. For this, let ν ,ω ∈ C(J,FR) and (κ, t) ∈ J. Using Lemma 2.11, H1 and
Theorem 2.15 we have that

D
(
(Ξν)(κ, t),(Ξω)(κ, t)

)
≤ 1

Γ(θ1)

∫ t

0
(t−ρ)θ−1D

(
ϒ(κ, t,ν ,νκ ,νκκ ,Sν),ϒ(ω, t,ω,ωκ ,ωκκ ,Sω)

)
dρ

≤ 1
Γ(θ)

∫ t

0
(t−ρ)θ−1

[
K1(κ, t)D

(
ν(κ, t),ω(κ, t)

)
+K2(κ, t)D

(
Sν(κ, t),Sω(κ, t,)

)]
dρ
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≤
D∗

(
ν(κ, t),ω(κ, t)

)
Γ(θ)

∫ t

0
|(t−ρ)|θ−1[K1(κ, t)+η0dK2(κ, t)

]
dρ

≤
D∗

(
ν(κ, t),ω(κ, t)

)
Γ(θ)

(∫ t

0
(t−ρ)

θ−1
1−θ1 dρ

)1−θ1
(∫ t

0

[
K1(κ, t)+η0dK2(κ, t)

] 1
θ1 dρ

)θ1

.

This implies that

D∗
(
(Ξν)(κ, t),(Ξω)(κ, t)

)
≤ Mdθ−θ1

Γ(θ)( θ−θ1
1−θ1

)1−θ1
D∗

(
ν(κ, t),ω(κ, t)

)

≤ l∗D∗
(

ν(κ, t),ω(κ, t)
)
.

Since l∗ < 1, the operator Ξ is a contraction mapping. Thus, according to Banach fixed point theorem, the problem (3.1) has a unique fuzzy
solution ν defined on J which is the unique (i)−gH differentiable solution of the problem (3.1).
Let ν(κ, t) be (ii)−gH differentiable. In this case, we define the operator Ξ : C(J,FR)→ C(J,FR) by

Ξ(ν(κ, t)) = £(κ)⊖ (−1)
1

Γ(θ)

∫ t

0
(t−ρ)θ−1

ϒ(κ,ρ,ν ,νκ ,νκκ ,Sν)dρ.

Similarly, this type of differentiability can be demonstrated and therefore, it is not included in the proof.

4. Fuzzy Adomian Decomposition Method (FADM)

The Adomian decomposition method, introduced by G. Adomian in 1984 [32], is a straightforward and effective approach for solving both
linear and nonlinear differential equations. This method serves as a powerful tool for approximating solutions to fuzzy differential equations
by representing the solution as an infinite series, often converging to the exact solution. Although the Adomian decomposition method
may have some limitations, such as being computationally intensive for complex problems, it is particularly valuable for problems that are
challenging or unsolvable by other means. Recently, several researchers have employed this method to solve various linear and nonlinear
systems within fuzzy frameworks. For instance, Pandit et al studied a population dynamic model of two species and solved it using the
FADM [33]. Saeed et al. [34] applied FADM to solve some nonlinear FFPDE. Further we can see [35–39].
Consider the following FFPIDE:

cDθ
t ν(κ, t) = ϒ(κ, t,ν ,νκ ,νκκ ,Sν) = Lν(κ, t)+Aν(κ, t)+ Iν(κ, t), (4.1)

with fuzzy initial condition ν(κ,0) = £(κ). Where L is a linear operator, A represents the nonlinear operator and I is an integral operator.
The Adomian supposes that the unknown function ν(κ, t) can be written by a series as

ν(κ, t) =
∞

∑
k=o

νk(κ, t). (4.2)

The nonlinear operator is represented by an infinite series as

Aν =
∞

∑
k=0

Mk,

where Mk is Adomian polynomials given by

Mk =
1
k!

∂ k

∂β k

[
A(

∞

∑
i

β
i
νi)

]
β=0

.

Finally, to compute the terms of the series ∑
∞
k=o νk, we use the following iterated scheme

• If ν is (i)−gH differentiable, then

ν0(κ, t) = £(κ),

νk+1(κ, t) = Iθ
t
(
Lνk +

∞

∑
k=0

Mk + Iνk
)
.

(4.3)

• If ν is (ii)−gH differentiable, then

ν0(κ, t) = £(κ),

νk+1(κ, t) =⊖(−1)Iθ
t
(
Lνk +

∞

∑
k=0

Mk + Iνk
)
.

(4.4)
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4.1. Convergence of FADM

Here, we aim to thoroughly demonstrate the convergence of the series solution that is obtained from equation (4.2), by analyzing its structure
and applying appropriate mathematical techniques to ensure that the solution behaves as expected under the given conditions.

Theorem 4.1. Assume that the operators L, N and I defined in Equation (4.1) satisfy the following Lipschitz conditions with constants L1, L2
and L3.

D(Lνk(κ, t),Lνk−1(κ, t))≤ L1,
D(Aνk(κ, t),Aνk−1(κ, t))≤ L2,
D(Iνk(κ, t), Iνk−1(κ, t))≤ L3.

The series solution (4.2) of Equations (4.1) converges to the exact solution if 0 < L1 +L2 +L3 < 1 and D(νk,0)< ∞,k ≥ 0, where νk are
given by (4.3) and (4.4).

Proof. Here we will prove the theorem for case ν is (i)−gH differentiable. The proof of case ν (ii)−gH differentiable is similar, so it will
omitted.
Let Sn be the partial sum of the series Sn = ∑

n
k=o νk(κ, t). We prove that Sn is a Cauchy sequence in the Banach space C(J,FR). By

hypothesis, we get

D∗(Sn(κ, t),Sm(κ, t))

= sup
(κ,t)∈J

D
( n

∑
k=m+1

νk(κ, t),0
)

= sup
(κ,t)∈J

D
(

1
Γ(θ)

∫ t

0
(t−ρ)θ−1(LSn−1(κ,ρ)+ASn−1(κ,ρ)

+ ISn−1(κ,ρ)
)
dρ,

1
Γ(θ)

∫ t

0
(t−ρ)θ−1(LSm−1(κ,ρ)+ASm−1(κ,ρ)

+ ISm−1(κ,ρ)
)
dρ

)
≤ 1

Γ(θ)
sup

(κ,t)∈J

(
D
(
LSn−1(κ, t),LSm−1(κ, t)

)
+D

(
ASn−1(κ, t),ASm−1(κ, t)

)
+D

(
ISn−1(κ, t), ISm−1(κ, t)

))∫ t

0
|t−ρ|θ−1dρ

≤CD∗(Sn−1(κ, t),Sm−1(κ, t)
)
,

where C = (L1 +L2 +L3)
bθ

Γ(θ+1) .

If n = m+1. We get

D∗(Sn(κ, t),Sm(κ, t)≤CD∗(Sm(κ, t),Sm−1(κ, t)
)

≤C2D∗(Sm−1(κ, t),Sm−2(κ, t)
)

...

≤CmD∗(S1(κ, t),S0(κ, t)
)
.

Now, for n > m, we have

D∗(Sn(κ, t),Sm(κ, t))≤D∗(Sm(κ, t),Sm+1(κ, t)
)
+ · · ·+D∗(Sn(κ, t),Sn+1(κ, t)

)
≤ Cm

1−C
D∗(

ν1(κ, t),0
)
.

Since ν is bounded, as m → ∞, then D∗(Sn(κ, t),Sm(κ, t))→ ∞. Hence, Sn is a Cauchy sequence in C(I,FR) and therefore, the series
converges and the proof is complete.

4.2. FADM for solving fuzzy fractional parabolic IDEs

Now, we employ the FADM to analyze the following fuzzy fractional parabolic IDEs

cDθ
t ν(κ, t) = νκκ(κ, t)+

∫ t

0
k(κ, t,s)ν(s, t)ds+h(κ, t),

ν(κ,0) = £(κ),
(4.5)

where cDθ
t is the fuzzy Caputo derivative with respect to t, 0 < θ < 1,(κ, t) ∈ J, k is a crisp function whose sign does not change in J and

£,h are known crisp or fuzzy valued functions.
By applying the operator Iθ

t to both side of equation (4.5), we get

ν(κ, t)⊖ν(κ,0) = Iθ
t

[
νκκ(κ, t)+

∫ t

0
k(κ, t,s)ν(s, t)ds⊕h(κ, t)

]
.



88 Universal Journal of Mathematics and Applications

If ν is (i)−gH differentiable, then

ν(κ, t) = ν(κ,0)+Iθ
t

[
νκκ(κ, t)+

∫ t

0
k(κ, t,s)ν(s, t)ds⊕h(κ, t)

]
(4.6)

and if ν is (ii)−gH differentiable, then

ν(κ, t) = ν(κ,0)⊖ (−1)Iθ
t

[
νκκ(κ, t)+

∫ t

0
k(κ, t,s)ν(s, t)ds⊕h(κ, t)

]
. (4.7)

Now we study four cases to find the numerical solution:

Case (1): Let ν be (i)−gH differentiable and k(κ, t,s) be a positive real function, then the parametric form of equation (4.6) is:

ν(κ, t,ς) = £(κ,ς)+Iθ
t

[
νκκ(κ, t,ς)+

∫ t

0
k(κ, t,s)ν(s, t,ς)ds+h(κ, t,ς)

]
,

ν(κ, t,ς) = £(κ,ς)+Iθ
t

[
νκκ(κ, t,ς)+

∫ t

0
k(κ, t,s)ν(s, t,ς)ds+h(κ, t,ς)

]
.

The standard Adomian Method assumes that the solution ν(κ, t,ς) can be written as the following series

ν(κ, t,ς) =
∞

∑
k=o

νk(κ, t,ς),

ν(κ, t,ς) =
∞

∑
k=o

νk(κ, tς).

Finally, to calculate the terms of the above series, we use the following iterated scheme

ν0(κ, t,ς) = £(κ,ς)+Iθ
t h(κ, t,ς),

νk+1(κ, t,ς) = Iθ
t

[
νκκ(κ, t,ς)+

∫ t

0
k(κ, t,s)ν(s, t,ς)ds

]
and

ν0(κ, t,ς) = £(κ,ς)+Iθ
t h(κ, t,ς),

νk+1(κ, t,ς) = Iθ
t

[
νκκ(κ, t,ς)+

∫ t

0
k(κ, t,s)ν(s, t,ς)ds

]
.

Case (2): Let ν be (i)−gH differentiable and k(κ, t,s) be a negative real function, then the parametric form of equation (4.6) is:

ν(κ, t,ς) = £(κ,ς)+Iθ
t

[
νκκ(κ, t,ς)+

∫ t

0
k(κ, t,s)ν(s, t,ς)ds+h(κ, t,ς)

]
,

ν(κ, t,ς) = £(κ,ς)+Iθ
t

[
νκκ(κ, t,ς)+

∫ t

0
k(κ, t,s)ν(s, t,ς)ds+h(κ, t,ς)

]
.

According to the above process , we get the solutions ν(κ, t,ς) and ν(κ, t,ς).
Case (3): Let ν be (ii)−gH differentiable and k(κ, t,s) be positive real function, then the parametric form of equation (4.7) is:

ν(κ, t,ς) = £(κ,ς)+Iθ
t

[
νκκ(κ, t,ς)+

∫ t

0
k(κ, t,s)ν(s, t,ς)ds+h(κ, t,ς)

]
,

ν(κ, t,ς) = £(κ,ς)+Iθ
t

[
νκκ(κ, t,ς)+

∫ t

0
k(κ, t,s)ν(s, t,ς)ds+h(κ, t,ς)

]
.

Then in the same way to previous case, we obtain the solutions ν(κ, t,ς) and ν(κ, t,ς).
Case (4): Let ν be (ii)−gH differentiable and k(κ, t,s) be negative real function, then the parametric form of equation (4.7) is:

ν(κ, t,ς) = £(κ,ς)+Iθ
t

[
νκκ(κ, t,ς)+

∫ t

0
k(κ, t,s)ν(s, t,ς)ds+h(κ, t,ς)

]
,

ν(κ, t,ς) = £(κ,ς)+Iθ
t

[
νκκ(κ, t,ς)+

∫ t

0
k(κ, t,s)ν(s, t,ς)ds+h(κ, t,ς)

]
.

Therefore, by applying the method discussed in detail in the previous case, we get the solutions ν(κ, t,ς) and ν(κ, t,ς).
Remark 4.2. In this subsection, the fuzzy fractional parabolic IDEs were converted into a system of scalar differential equations via ς -level
representations and subsequently solved using the FADM. While the scalarized problems yield unique solutions under standard conditions, it
is important to note that this does not necessarily guarantee the uniqueness of the original fuzzy solution. This discrepancy arises due to the
inherent properties of fuzzy arithmetic, particularly in the multiplication of fuzzy numbers, which may result in non-uniqueness or bifurcation
of solutions. In such cases, multiple fuzzy-valued functions can correspond to the same scalar ς -level solutions. A similar observation
has been made in [40], where a numerical scheme for fuzzy fractional models resulted in bifurcated solutions depending on the nature of
fuzzy multiplication. To address this challenge, we adopt the concept of maximal solutions as proposed in [29]. A maximal fuzzy solution is
one that dominates all other admissible fuzzy solutions pointwise, providing an upper bound to the solution set. This approach not only
accommodates the possibility of non-uniqueness but also strengthens the interpretation and reliability of the obtained fuzzy solution.
Hence, while our method guarantees the uniqueness of the scalar components, we emphasize that the full fuzzy solution may admit multiple
interpretations. The incorporation of maximal solutions allows for a well-defined framework within which these solutions can be understood
and compared.
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5. Applications and Simulations

In this chapter, we provide a series of numerical examples corresponding to each of the cases discussed in the previous chapter, with the aim
of illustrating the applicability and effectiveness of the proposed methods.

Example 5.1. Consider the following fuzzy fractional parabolic IDEs:
cDθ

t ν(κ, t) = νκκ(κ, t)+
∫ t

0(t− s)ν(κ,s)ds+h(κ, t), 0 ≤ κ, t ≤ 1,

ν(κ,0) = 0,
(5.1)

where

h(κ, t) = [ς +1,5−3ς ]cosκ[
t1−θ

Γ(2−θ)
+ t− t3

6
].

The exact solution of Equation (5.1) is ν(κ, t) = [ς +1,5−3ς ]tcosκ. Figure 5.1 represent (a) the exact solutions and its cDθ
t ν(κ, t) plotted

in (b) with θ = 3
4 and different values of uncertainty ς ∈ [0,1]. As it is seen, ν(κ, t) is (i)−gH-differentiable, this problem has been solved

by FADM for k = 2. Figure 5.2 clearly shows that the numerical solution converges to the exact solution. This demonstrates that the proposed
method is highly efficient for obtaining numerical solutions to these problems.

(a) (b)

Figure 5.1: 2D plots of ν(κ, t) and cD
3
4
t ν(κ, t) of ς -level of Example 5.1 at κ = 1

2 .

Figure 5.2: 2D plot of ς -level representations of exact and FADM solution of Example 5.1 at κ = 1
2 and ς = 1

2 .

Example 5.2. Let us Consider the fuzzy parabolic IDEs of fractional order as:
cDθ

t ν(κ, t) = νκκ(κ, t)+
∫ t

0 −κ(t− s)ν(κ,s)ds+h(κ, t), 0 ≤ κ ≤ 1,0 ≤ t ≤ 0.5,

ν(κ,0) = 0,
(5.2)
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where

h(κ, t) = B1(1−κ2)

[
t1−θ

Γ(2−θ)
+Γ(θ +1)

]
+B1(t+ tθ )+B2

[
t3

6
+

t2+θ

(1+θ)(2+θ)

]
and B1 = [ς ,2− ς ], B2 = [2− ς ,ς ].

The exact solution of Equation (5.2) is ν(κ, t) = B1(1−κ2)(t+ tθ ). Figure 5.3 represent (a) the exact solutions and its cDθ
t ν(κ, t) plotted

in (b) with θ = 1
2 and different values of uncertainty ς ∈ [0,1]. From Figure 5.3, ν(κ, t) is (i)−gH-differentiable. By applying the FADM

for k = 2, we get the numerical results shown in Figure 5.4.

(a) (b)

Figure 5.3: 2D plots of ν(κ, t) and cD
1
2
t ν(κ, t) of ς -level of Example 5.2 at κ = 1

4 .

Figure 5.4: 2D graph of ς -level representations of exact and FADM solution of Example 5.2 at κ = 1
4 and ς = 1

2 .

Example 5.3. Now we consider another fuzzy fractional parabolic IDEs under the initialcondition as:
cDθ

t ν(κ, t) = νκκ(κ, t)+
∫ t

0 tν(κ,s)ds+h(κ, t), 0 ≤ κ, t ≤ 1,

ν(κ,0) = 0,
(5.3)

where

h(κ, t) = [2+3ς ,8−3ς ]sinκ
[

Γ(1−θ)

Γ(2−θ)
t−2θ + t−θ − t2−θ

1−θ

]
.

The exact solution of Equation (5.3) is ν(κ, t) = [2+3ς ,8−3ς ]sinκt−θ . Figure 5.5 represent (a) the exact solutions and its cDθ
t ν(κ, t)

plotted in (b) with θ = 3
4 and different values of uncertainty ς ∈ [0,1]. As it is seen, ν(κ, t) is (ii)−gH-differentiable, so by applying the

FADM discussed in detail in Subsection 4.2, with k = 3, we have the numerical results shown in Figure 5.6.
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(a) (b)

Figure 5.5: 2D plots of ν(κ, t) and cD
3
4
t ν(κ, t) of ς -level of Example 5.3 at κ = 1.

Figure 5.6: 2D graph of ς -level representations of exact and FADM solution of Example 5.3 at κ = 1 and ς = 1
4 .

Example 5.4. Consider the following fuzzy fractional parabolic IDEs:


cDθ

t ν(κ, t) = νκκ(κ, t)+
∫ t

0 −ν(κ,s)ds, 0 ≤ κ, t ≤ 1,

ν(κ,0) = [0.5ς ,1−0.5ς ]κ.
(5.4)

The exact solution of Equation (5.4) is given by ν(κ, t) = [0.5ς ,1−0.5ς ]κEθ+1(−tθ+1). Figure 5.7 represent (a) the exact solutions and its
cDθ

t ν(κ, t) plotted in (b) with θ = 1
2 and different values of uncertainty ς ∈ [0,1]. Figure 5.7 shows that ν(κ, t) is (ii)−gH-differentiable.

Thus, by applying the FADM discussed in detail in case 4, for k = 4. Figure 5.8 shows the exact and approximate results.
The results in Figure 5.8 show that the numerical solution converges to the exact solution. This confirms that the proposed method is highly
efficient for obtaining numerical solutions to such problems.

6. Conclusion

In this article, we have established sufficient conditions for the existence and uniqueness of solutions to FFPIDEs. Additionally, we applied
the FADM to obtain approximate solutions for the problem taking into account the type of differentiability. Also, the convergence of FADM
to the exact solution is proved. Four illustrative examples of fuzzy fractional parabolic IDEs are provided to validate the effectiveness and
performance of our method. The proposed method provides reliable series solutions with continuity depending on the fuzzy fractional
derivative. As the number of decomposed terms increases, the numerical solution converges. As a future extension, this method could be
applied to two-dimensional fuzzy fractional parabolic IDEs with both constant and variable coefficients and could also be expanded to
address nonlinear problems.
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(a) (b)

Figure 5.7: 2D plots of ν(κ, t) and cD
1
2
t ν(κ, t) of ς -level of Example 5.4 at κ = 1

4 .

Figure 5.8: 2D graph of ς -level representations of exact and FADM solution of Example 5.4 at κ = 1
4 and ς = 3

4 .
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