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ABSTRACT. The classical Markov inequality asserts that the n-th Chebyshev polynomial Tn(x) = cosn arccosx,
x ∈ [−1, 1], has the largest C[−1, 1]-norm of its derivatives within the set of algebraic polynomials of degree at most
n whose absolute value in [−1, 1] does not exceed one. In 1941 R.J. Duffin and A.C. Schaeffer found a remarkable
refinement of Markov inequality, showing that this extremal property of Tn persists in the wider class of polynomials
whose modulus is bounded by one at the extreme points of Tn in [−1, 1]. Their result gives rise to the definition of
DS-type inequalities, which are comparison-type theorems of the following nature: inequalities between the absolute
values of two polynomials of degree not exceeding n on a given set of n + 1 points in [−1, 1] induce inequalities
between the C[−1, 1]-norms of their derivatives. Here we apply the approach from a 1992 paper of A. Shadrin to
prove some DS-type inequalities where Jacobi polynomials are extremal. In particular, we obtain an extension of the
result of Duffin and Schaeffer.
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1. INTRODUCTION

Throughout this paper, πn stands for the set of real-valued algebraic polynomials of degree
not exceeding n, and ∥ · ∥ is the uniform norm in [−1, 1],

∥g∥ := max
x∈[−1,1]

|g(x)|.

The classical inequality of the brothers Markov reads as follows:

Theorem 1.1. If f ∈ πn satisfies

(1.1) ∥f∥ ≤ 1,

then

(1.2) ∥f (k)∥ ≤ ∥T (k)
n ∥, k = 1, . . . , n,

and the equality in (1.2) occurs if and only if f = ±Tn.

Here and henceforth, Tn is the n-th Chebyshev polynomial of the first kind, defined by

Tn(x) = cos(n arccosx), x ∈ [−1, 1] .

The case k = 1 is due to Andrei Markov [7], and his brother Vladimir Markov [8] proved the
general case, 1 ≤ k ≤ n. For the intriguing history of Markov inequality and some of its proofs
the reader is referred to the survey paper [21] .
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In 1941 Duffin and Schaeffer [5] found the following remarkable extension of Theorem 1.1
(for a proof, see also [18, Theorem 2.24] or [19, Section 5.6]):

Theorem 1.2 ([5]). Inequality (1.2) remains true if assumption (1.1) is replaced with

(1.3)
∣∣∣f (cos νπ

n

)∣∣∣ ≤ 1, ν = 0, . . . , n.

Theorem 1.2 may be viewed as a comparison type result: the inequality |f | ≤ |Tn| at the n+1
points in [−1, 1] where |Tn| = 1 implies inequalities between the uniform norms of the deriva-
tives of f and Tn. This observation motivated the author to formulate in [9] the following:

Definition 1.1. Let Q be a polynomial of degree n, and ∆ = {tν}nν=0, where 1 ≥ t0 > · · · > tn ≥ −1.
The pair {Q,∆} is said to admit Duffin–Schaeffer–type inequality (in short, DS–inequality), if for any
f ∈ πn, the assumption

|f | ≤ |Q| at the points from ∆

implies
∥f (k)∥ ≤ ∥Q(k)∥, k = 1, . . . , n.

In this definition Q (called henceforth as majorant) is mutually assumed to be an oscillating
polynomial in [−1, 1] (i.e., having n distinct zeros in (−1, 1)), however, ∆ is not necessarily the
set of its critical points.

The shortest ever given proof of Markov’s inequality, which moreover captures the refine-
ment of Duffin and Schaeffer, is due to Alexei Shadrin [20]. Its main ingredient is the following:

Theorem 1.3 ([20]). Let Q ∈ πn have n distinct zeros, all located in (−1, 1). If f ∈ πn satisfies

|f | ≤ |Q| at the zeros of (x2 − 1)Q′(x),

then for each k ∈ {1, . . . , n} and for every x ∈ [−1, 1] there holds

|f (k)(x)| ≤ max
{
|Q(k)(x)|,

∣∣∣∣x2 − 1

k
Q(k+1)(x) + xQ(k)(x)

∣∣∣∣ }.
Theorem 1.3 was applied in [3] for the proof of DS-inequalities where Q is an ultraspherical

polynomial P (λ)
n , λ ≥ 0 and ∆ is the set of its extreme points in [−1, 1]. As a matter of fact,

Theorem 1.3 implies DS-inequality whenever Q is oscillating polynomial with positive expan-
sion in Chebyshev polynomials of the first kind and ∆ is the set of its extreme points. Using
Shadrin’s idea to the proof of Theorem 1.3, we established various DS-type inequalities in [9],
where, typically, Q is an ultraspherical polynomial and ∆ is formed by the zeros of another
ultraspherical polynomial.

In the present paper, we apply the approach from [20] to obtain DS-inequalities, where some
Jacobi polynomials are the extremisers. As a particular case, we prove the following extension
of the inequality of Duffin and Schaeffer, given by Theorem 1.2:

Theorem 1.4. Let f ∈ πn satisfy |f(1)| ≤ 1 + 2nc for some c ∈ [0, 1] and∣∣∣f (cos νπ
n

)∣∣∣ ≤ 1, ν = 1, . . . , n .

Then

(1.4) ∥f (k)∥ ≤ ∥Q(k)
n ∥ , k = 1, . . . , n,

where Qn(x) = (1 − c)Tn(x) + cWn(x), with Tn and Wn being the n-th Chebyshev polynomials of
the first and the fourth kind,

Tn(x) = cos(nθ), Wn(x) =
sin

(
n+ 1

2

)
θ

sin
(
1
2θ

) , x = cos θ .
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The equality in (1.4) is attained only for f = ±Qn.

The rest of the paper is organized as follows. In Section 2 we prove Theorem 2.5, which
provides pointwise estimates for the derivatives of a polynomial f ∈ πn whose modulus is
bounded at a set of n + 1 distinct points in [−1, 1]. In Section 3 we apply Theorem 2.5 to ob-
tain some DS-inequalities where the majorants are Jacobi polynomials, Theorem 1.4 being a
particular case of them. In Section 4 we discuss applications of DS-inequalities and the in-
terlink between DS-inequalities and Markov-type inequalities for polynomials with a curved
majorant.

2. POINTWISE ESTIMATES FOR DERIVATIVES OF A POLYNOMIAL

If p and q are algebraic polynomials with only real and simple zeros, we say that the zeros of
p and q interlace, if one can trace all the zeros of both polynomials, switching alternatively from
a zero of p to zero of q and vice versa and moving only in one direction. If, in addition, no zero
of p coincides with a zero of q, then the zeros of p and q are said to interlace strictly.

Clearly, interlacing is only possible if p and q are polynomials of the same degree or of
degrees which differ by one. In the latter case, if p is of degree n + 1, q is of degree n and the
zeros of p and q interlace strictly, we say shortly that the zeros of q separate the zeros of p. The
following lemma, due to V. Markov [8], asserts that the interlacing property is inherited by the
zeros of the derivatives:

Lemma 2.1. If the zeros of polynomials p and q interlace, then the zeros of p′ and q′ interlace strictly.

Proofs of Lemma 2.1 can be found, e.g., in [11, Lemma 4], [18, Lemma 2.7.1] and [20]. For
the sake of brevity, we write in this section

p ≺ q

to say that p and q are polynomials of the same degree with interlacing zeros, with relation “≤”
between the corresponding zeros of p and q. The notation

p ≺ q ≺ p

means that the zeros of p and q interlace and p is of higher degree than q.
The following theorem provides pointwise bounds for derivatives of polynomials f ∈ πn

satisfying |f | ≤ |Qn| on a set of n+ 1 points related in a specific way to the majorant Qn.

Theorem 2.5. Let Qn be a polynomial of degree n with only real and distinct zeros, all located in
(−1, 1), and let ω be a polynomial of degree n− 1 whose zeros separate the zeros of Qn. Assume that for
some k ∈ {1, . . . , n} and constants a ≥ 1 and b ≤ −1,

(2.5) Q(k)
n (x) =

[
(a− b− 2)x+ a+ b

]
ω(k)(x) + k(a− b)ω(k−1)(x) .

If f ∈ πn satisfies

(2.6) |f | ≤ |Qn| at the zeros of (x2 − 1)ω(x),

then
|f (k)(x)| ≤ max

{ ∣∣∣Q(k)
n (x)

∣∣∣ , |Zn,k(x)|
}

for all x ∈ R,

where

(2.7) Zn,k(x) =
[
2x2 − (a+ b)x+ b− a

]
ω(k)(x) + k(2x− a− b)ω(k−1)(x) .
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Proof. We consider first the case 1 ≤ k ≤ n − 1. With the notation introduced above, the
assumption for the zeros of Qn and ω can be written shortly as

(2.8) Qn ≺ ω ≺ Qn .

If
ω0(x) = (x+ 1)ω(x) , ωn(x) = (x− 1)ω(x),

then obviously
ω0 ≺ Qn ≺ ωn

and, by Lemma 2.1,

(2.9) ω
(k)
0 ≺ Q(k)

n ≺ ω(k)
n .

Denote by {αk
i }n−k

i=1 and {βk
i }n−k

i=1 the zeros of ω(k)
0 and ω

(k)
n , respectively, labeled in increasing

order, then it follows from (2.9) that each interval (αk
i , β

k
i ), i = 1, . . . , n−k, contains exactly one

zero of Q(k)
n , hence the zeros of Q(k)

n belong to the set

Jn,k = Jn,k(ω) =

n−k⋃
i=1

(αk
i , β

k
i )

and each interval (αk
i , β

k
i ) contains one zero of Q(k)

n . Consequently,

(2.10) Q(k)
n (βk

i )Q
(k)
n (αk

i+1) > 0, i = 1, . . . , n− k − 1

(this statement is void if k = n− 1). Denote by In,k = In,k(ω) the complementary set R \ Jn,k,

In,k = In,k(ω) = (−∞, αk
1 ] ∪

n−k−1⋃
i=1

[βk
i , α

k
i+1] ∪ [βk

n−k,∞) .

The sets In,k and Jn,k are referred to as Chebyshev set and Zolotarev set, respectively.
Let t1 < · · · < tn−1 be the zeros of ω, and t0 = −1, tn = 1. If f ∈ πn satisfies |f(ti)| ≤ |Qn(ti)|

for i = 0, . . . , n, then

(2.11)
∣∣∣f (k)(x)∣∣∣ ≤ ∣∣∣Q(k)

n (x)
∣∣∣ , x ∈ In,k .

Indeed, if {ℓi}ni=0 are the fundamental polynomials for interpolation at {ti}ni=0, then

ℓn ≺ ℓn−1 ≺ · · · ≺ ℓ0

and, by Lemma 2.1,
ℓ(k)n ≺ ℓ

(k)
n−1 ≺ · · · ≺ ℓ

(k)
0 .

This observation, combined with the fact that the sign of the leading coefficient of ℓi(x) is
(−1)i, i = 0, 1, . . . , n, implies that if x is an interior point of In,k, then the signs of {ℓ(k)i (x)}ni=0

alternate. In view of (2.8), so do the signs of {Qn(ti)}ni=0, and using (2.6) we conclude that∣∣∣f (k)(x)∣∣∣ = ∣∣∣∣∣
n∑

i=0

ℓ
(k)
i (x)f(ti)

∣∣∣∣∣ ≤
n∑

i=0

∣∣∣ℓ(k)i (x)f(ti)
∣∣∣

≤
n∑

i=0

∣∣∣ℓ(k)i (x)Qn(ti)
∣∣∣ = ∣∣∣∣∣

n∑
i=0

ℓ
(k)
i (x)Qn(ti)

∣∣∣∣∣ = ∣∣∣Q(k)
n (x)

∣∣∣ .(2.12)

Obviously, (2.12) remains true also when x is a boundary point of In,k, and hence (2.11) is
proved. It is readily seen from (2.12) that in the case when x is an interior point of In,k, the
inequality (2.11) is strict unless f = ±Qn.
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Next, we show that on the Zolotarev set Jn,k,
∣∣f (k)∣∣ is bounded by |Zn,k|, i.e.,

(2.13)
∣∣∣f (k)(x)∣∣∣ ≤ |Zn,k(x)| , x ∈ Jn,k.

Using the representation of Q(k)
n and Zn,k, given in (2.5) and (2.7), we find that

Zn,k(x)−Q(k)
n (x) = 2(x− a)ω

(k)
0 (x),

Zn,k(x) +Q(k)
n (x) = 2(x− b)ω(k)

n (x).

Hence,

(2.14) Zn,k(x) =


Q

(k)
n (x), x ∈ {αk

i }
n−k
i=1 ∪ {a},

−Q(k)
n (x), x ∈ {b} ∪ {βk

i }
n−k
i=1 .

In view of (2.11), for an arbitrary constant c ∈ (−1, 1), we have

(2.15)
∣∣∣c f (k)(x)∣∣∣ < ∣∣∣Q(k)

n (x)
∣∣∣ = |Zn,k(x)| , x ∈ {b} ∪ {αk

i }n−k
i=1 ∪ {βk

i }n−k
i=1 ∪ {a}.

It follows from (2.10), (2.11), (2.14) and (2.15) that Zn,k − c f (k) has a zero in each interval
(βk

i , α
k
i+1), 1 ≤ i ≤ n− k− 1 (again, this statement is void if k = n− 1). Moreover, Zn,k − c f (k)

has a zero in each of intervals (b, αk
1) and (βk

n−k, a). To see this, we observe from (2.5) and (2.7)
that the leading coefficients of Q(k)

n (x) and Zn,k(x) have the same sign. Since Q(k)
n has no zeros

outside the interval (αk
1 , β

k
n−k), we find from (2.14) and (2.15) that

sign{Zn,k(x)− c f (k)(x)}|x=αk
1
= sign{Q(k)

n (αk
1)} = − sign{Zn,k(x)− c f (k)(x)}|x=b,

sign{Zn,k(x)− c f (k)(x)}|x=βk
n−k

= − sign{Q(k)
n (βk

n−k)} = − sign{Zn,k(x)− c f (k)(x)}|x=a ,

thus concluding that Zn,k − c f (k) has a zero in each of the intervals (b, αk
1) and (βk

n−k, a).
Hence, all n−k+1 zeros of Zn,k−c f (k) belong to the Chebyshev set In,k, and consequently

Zn,k − c f (k) ̸= 0 on Jn,k. Since c ∈ (−1, 1) is arbitrary, it follows that
∣∣c f (k)(x)∣∣ ̸= |Zn,k(x)|,

x ∈ Jn,k. On the boundary points of Jn,k = R \ In,k we have
∣∣c f (k)(x)∣∣ < |Zn,k(x)|, hence the

same inequality holds true on Jn,k. Therefore,
∣∣f (k)(x)∣∣ ≤ |Zn,k(x)| on the Zolotarev set, i.e.,

(2.13) holds true. The proof of Theorem 2.5 in the case 1 ≤ k ≤ n − 1 follows from (2.11) and
(2.13). The remaining case k = n is readily verified: since {ℓ(n)i (x)}ni=0 is a sequence of sign
alternating constants, (2.12) holds true in this case, too. □

Remark 2.1. When 1 ≤ k ≤ n−1 and x is an interior point of In,k, (2.12) implies the strict inequality∣∣f (n)(x)∣∣ < ∣∣∣Q(n)
n (x)

∣∣∣ unless f = ±Qn. The same conclusion follows from (2.12) in the case k = n,

i.e.,
∣∣f (n)∣∣ < ∣∣∣Q(n)

n

∣∣∣ unless f = ±Qn.

Remark 2.2. Theorem 1.3 can be obtained as a special case of Theorem 2.5 with a = 1, b = −1 and
ω = 1

2k Q
′
n.

3. DS-INEQUALITIES WITH JACOBI POLYNOMIALS AS MAJORANTS

Theorem 2.5 is applicable when the majorant Qn is a Jacobi polynomial. Recall that Jacobi
polynomials

{
P

(α,β)
m

}
m∈N0

are the orthogonal polynomials in [−1, 1] with respect to the weight
function wα,β(x) = (1− x)α(1 + x)β , α, β > −1, see e.g, [22, Chapt. 4].
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Jacobi polynomials P (α,β)
n , P (α,β+1)

n and P (α+1,β+1)
n−1 are connected with the identity

(3.16) P (α,β+1)
n (x) = P (α,β)

n (x) +
1

2
(x− 1)P

(α+1,β+1)
n−1 (x),

which is a consequence of Gauss’ contiguous relations (see, e.g. [1, Section 2.5]) and the repre-
sentation of Jacobi polynomials as hypergeometric functions. It follows from (3.16) and

(3.17)
d

dx

{
P (α,β)
n (x)

}
=

1

2
(n+ α+ β + 1)P

(α+1,β+1)
n−1 (x)

(see [22, eqn. (4.21.7)]) that the zeros of P (α,β+1)
n (x) and

d

dx

{
P (α,β)
n (x)

}
interlace.

Setting Qn := P
(α,β+1)
n and q := P

(α,β)
n , by k-fold differentiation of (3.16) we get

(3.18) Q(k)
n (x) =

1

n+ α+ β + 1

[
(x− 1)q(k+1)(x) + (n+ α+ β + k + 1) q(k)(x)

]
.

This representation of Q(k)
n provides relation (2.5) between Qn and ω in Theorem 2.5 with

ω(x) =
1

2k
q′(x), a = 1, b = −1− 2k

n+ α+ β + 1
.

Replacing these quantities in (2.7), we find that in this particular case Theorem 2.5 reads as:

Theorem 3.6. Let Qn = P
(α,β+1)
n and q = P

(α,β)
n . If f ∈ πn satisfies

|f | ≤ |Qn| at the zeros of (x2 − 1)q′(x),

then for k = 1, . . . , n and for every x ∈ R,∣∣∣f (k)(x)∣∣∣ ≤ max
{ ∣∣∣Q(k)

n (x)
∣∣∣ , |Zn,k(x)|

}
,

where

(3.19) Zn,k(x) =
x2 − 1

k
q(k+1)(x) + xq(k)(x) +

((x− 1)q′(x))
(k)

n+ α+ β + 1
.

Theorem 3.6 enables us to prove the following DS-inequality:

Theorem 3.7. Let Qn = P
(α,β+1)
n and q = P

(α,β)
n , where −1/2 < α ≤ β. If f ∈ πn satisfies

|f | ≤ |Qn| at the zeros of (x2 − 1)q′(x),

then

(3.20)
∥∥f (k)∥∥ ≤

∥∥Q(k)
n

∥∥ , k = 1, . . . , n .

The equality occurs in (3.20) if and only if f = ±Qn.

Proof of Theorem 3.7. We shall show that for Zn,k defined in (3.19) there holds

(3.21) ∥Zn,k∥ < ∥Q(k)
n ∥, k = 1, . . . , n.

We need the following property of Jacobi polynomials (cf. [22, Theorem 5.32.1] or [1, p. 350,
Problem 40]):

Lemma 3.2. Let max{α, β} ≥ −1/2. Then for every m ∈ N,∥∥P (α,β)
m

∥∥ =

{
P

(α,β)
m (1) =

(
m+α
m

)
, if α ≥ β,∣∣∣P (α,β)

m (−1)
∣∣∣ =

(
m+β
m

)
, if β ≥ α.

Unless α = β = −1/2, the norm of P (α,β)
m is attained only at end point of the interval [−1, 1].
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In view of (3.17), apart from constant factors, the polynomials Q(k)
n , q(k) and q(k+1) are equal

respectively to P (α+k,β+k+1)
n−k , P (α+k,β+k)

n−k and P
(α+k+1,β+k+1)
n−k−1 . Since β ≥ α ≥ −1/2, we have

β + k + 1 ≥ α+ k + 1 > α+ k ≥ 1/2, then (3.18) and Lemma 3.2 imply

(3.22) ∥Q(k)
n ∥ = |Q(k)

n (−1)| = 2

n+ α+ β + 1

∣∣∣q(k+1)(−1)
∣∣∣+ (

1 +
k

n+ α+ β + 1

) ∣∣∣q(k)(−1)
∣∣∣ .

We represent the polynomial Zn,k defined in (3.19) in the form

(3.23) Zn,k(x) = φ(x) +
1

n+ α+ β + 1
ψ(x),

where

φ(x) =
x2 − 1

k
q(k+1)(x) + xq(k)(x),

ψ(x) = (x− 1) q(k+1)(x) + kq(k)(x).

Lemma 3.3. Let q = P
(α,β)
n , where β ≥ α ≥ −1/2. Then

∥ψ∥ =
∥∥∥(x− 1)q(k+1)(x) + kq(k)(x)

)∥∥∥ = 2
∣∣∣q(k+1)(−1)

∣∣∣+ k
∣∣∣q(k)(−1)

∣∣∣ = |ψ(−1)|

and, in addition, ∥ψ∥ is attained only at x = −1.

Proof of Lemma 3.3. By triangle inequality and Lemma 3.2,

∥ψ∥ ≤
∥∥(x− 1)q(k+1)(x)

∥∥+ k
∥∥q(k)(x)∥∥ ≤ 2

∥∥q(k+1)
∥∥+ k

∥∥q(k)∥∥
= 2

∣∣∣q(k+1)(−1)
∣∣∣+ k

∣∣∣q(k)(−1)
∣∣∣ = ∣∣∣−2 q(k+1)(−1) + k q(k)(−1)

∣∣∣
= |ψ(−1)|.

On account of the last claim of Lemma 3.2, one can readily see that x = −1 is the unique point
[−1, 1] where the norm of ψ is attained. □

Next, we estimate the norm of φ.

Lemma 3.4. Let q = P
(α,β)
n , where β ≥ α ≥ −1/2. Then

∥φ∥ =
∥∥∥x2 − 1

k
q(k+1)(x) + xq(k)(x)

∥∥∥ =
∣∣∣q(k)(−1)

∣∣∣ = |φ(−1)|, k = 1, . . . , n.

Proof of Lemma 3.4. We consider separately three cases.
Case 1: α = β = −1/2. This case, corresponding to q = Tn, has been proven by Shadrin in

[20, Lemma 3], it reads as∥∥∥x2 − 1

k
T (k+1)
n (x) + xT (k)

n (x)
∥∥∥ =

∣∣∣T (k)
n (−1)

∣∣∣ = T (k)
n (1).

Case 2: α = β > −1/2. We make use of the fact that q = P
(α,α)
n admits non-negative

expansion in the Chebyshev polynomials of the first kind (cf. [2, eq. (7.34)]):

q(x) =

n∑
ν=0

cν Tν(x), cν ≥ 0.
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Using the result from Case 1, we find∥∥∥x2 − 1

k
q(k+1)(x) + x q(k)(x)

∥∥∥ =
∥∥∥ n∑

ν=0

cν

(
x2 − 1

k
T (k+1)
ν (x) + xT (k)

ν (x)

)∥∥∥
≤

n∑
ν=0

cν

∥∥∥x2 − 1

k
T (k+1)
ν (x) + xT (k)

ν (x)
∥∥∥

=

n∑
ν=0

cνT
(k)
ν (1) = q(k)(1) =

∣∣∣q(k)(−1)
∣∣∣ .

Case 3: β > α ≥ −1/2. Set r = P
(β,α)
n , then r(x) admits representation in the basis of{

P
(α,α)
ν (x)

}n

ν=0
=:

{
Pν(x)

}n

ν=0
with non-negative coefficients (cf. [2, eq. (7.33)]):

r(x) =

n∑
ν=0

cν Pν(x), cν = cν(n, α, β) ≥ 0.

This representation and the result from Case 2 imply∥∥∥x2 − 1

k
r(k+1)(x) + x r(k)(x)

∥∥∥ =
∥∥∥ n∑

ν=0

cν

(
x2 − 1

k
P (k+1)
ν (x) + xP (k)

ν (x)

)∥∥∥
≤

n∑
ν=0

cν

∥∥∥x2 − 1

k
P (k+1)
ν (x) + xP (k)

ν (x)
∥∥∥

=

n∑
ν=0

cνP
(k)
ν (1) = r(k)(1).

Now using the symmetry property P (β,α)
n (−x) = (−1)nP

(α,β)
n (x) (cf. [4, p. 144, eq. (2.8)], for

q(x) = P
(α,β)
n (x) = (−1)nr(−x) we obtain∥∥∥x2 − 1

k
q(k+1)(x) + x q(k)(x)

∥∥∥ =
∥∥∥x2 − 1

k
r(k+1)(x) + x r(k)(x)

∥∥∥ = r(k)(1) =
∣∣∣q(k)(−1)

∣∣∣ .
Lemma 3.4 is proved. □

Lemma 3.3 and Lemma 3.4 imply

∥Zn,k∥ =
∥∥∥φ+

1

n+ α+ β + 1
ψ
∥∥∥

≤ ∥φ∥+ 1

n+ α+ β + 1
∥ψ∥

= |φ(−1)|+ 1

n+ α+ β + 1
|ψ(−1)|(3.24)

=
∣∣∣q(k)(−1)

∣∣∣+ 1

n+ α+ β + 1

(
2
∣∣∣q(k+1)(−1)

∣∣∣+ k
∣∣∣q(k)(−1)

∣∣∣)
=

2

n+ α+ β + 1

∣∣∣q(k+1)(−1)
∣∣∣+ (

1 +
k

n+ α+ β + 1

) ∣∣∣q(k)(−1)
∣∣∣ .

According to (3.22), the last expression is equal to
∥∥Q(k)

n

∥∥, so we have proved the inequality∥∥Zn,k

∥∥ ≤
∥∥Q(k)

n

∥∥, and now inequality (3.20) in Theorem 3.7 follows from Theorem 3.6.



Duffin–Schaeffer inequality revisited 89

For the last statement of Theorem 3.7, we need to prove the strict inequality (3.21). We
observe that φ(−1) and ψ(−1) have opposite signs, namely,

signφ(−1) = − sign q(k)(−1) = (−1)n−1−k, signψ(−1) = sign q(k)(−1) = (−1)n−k.

Therefore, the inequality in the second line of (3.24) is strict, and hence (3.21) holds true. We are
ready now to prove the last claim of Theorem 3.7. The case k = n is a direct consequence from
Remark 2.1. The case 1 ≤ k ≤ n−1 is also justified with Remark 2.1 as follows. We recall that if
f ∈ πn satisfies the assumptions of Theorem 3.6, then |Zn,k(x)| (resp.

∣∣∣Q(k)
n (x)

∣∣∣) furnishes upper

bound for
∣∣f (k)(x)∣∣ when x belongs to the Zolotarev set Jn,k (resp. Chebyshev set In,k). In view

of (3.21), the equality
∥∥f (k)∥∥ =

∥∥Q(k)
n

∥∥ can happen only when the norm of f (k) is attained at

a point x from the set In,k
⋂
[−1, 1]. Since

∣∣f (k)(x)∣∣ ≤
∣∣∣Q(k)

n (x)
∣∣∣ for x ∈ In,k

⋂
[−1, 1] and, by

Lemma 3.2,
∥∥Q(k)

n

∥∥ =
∣∣∣Q(k)

n (−1)
∣∣∣ with x = −1 being the unique point where the norm of Q(k)

n

is attained, it follows that
∥∥f (k)∥∥ =

∥∥Q(k)
n

∥∥ is possible only when
∣∣f (k)(−1)

∣∣ =
∣∣∣Q(k)

n (−1)
∣∣∣.

Since x = −1 is an interior point for In,k, the last equality holds only if f = ±Qn, by virtue of
Remark 2.1. □

Let us consider the special case α = β = −1/2. According to (3.17),

q′(x) =
1

2
nP

(1/2,1/2)
n−1 (x)

and, apart from a constant factor, q′ is equal to the (n−1)th Chebyshev polynomial of the second
kind Un−1, which is defined for x ∈ [−1, 1] by

Un−1(x) =
sinnθ

sin θ
, x = cos θ,

and whose zeros are
tν = cos

νπ

n
, ν = 1, . . . , n− 1.

On the other hand, apart from a constant multiplier,Qn = P
(−1/2,1/2)
n is equal to the Chebyshev

polynomial of the third kind Vn(x), which is defined for x ∈ [−1, 1] by

(3.25) Vn(x) =
cos

(
n+ 1

2

)
θ

cos
(
1
2θ

) , x = cos θ .

Clearly,

Vn

(
cos

νπ

n

)
=(−1)ν , ν = 0, 1, . . . , n− 1,

Vn(−1) =(−1)n(2n+ 1) .

Thus, in the case α = β = −1/2, Theorem 3.7 comes down to the following:

Corollary 3.1. Let f ∈ πn satisfy |f(−1)| ≤ 2n+ 1 and∣∣∣f (cos νπ
n

)∣∣∣ ≤ 1, ν = 0, . . . , n− 1 .

Then

(3.26)
∥∥f (k)∥∥ ≤

∥∥V (k)
n

∥∥ , k = 1, . . . , n,

where Vn is the n-th Chebyshev polynomial of the third kind (3.25). The equality in (3.26) occurs only
if f = ±Vn.



90 Geno Nikolov

The n-th Chebyshev polynomial of the fourth kind Wn(x) = (−1)nVn(−x) is defined for
x ∈ [−1, 1] by

(3.27) Wn(x) =
sin

(
n+ 1

2

)
θ

sin
(
1
2θ

) , x = cos θ .

Reflection of the variable in Corollary 3.1 (i.e., replacement of x with −x) yields another corol-
lary of Theorem 3.7:

Corollary 3.2. Let f ∈ πn satisfy |f(1)| ≤ 2n+ 1 and∣∣∣f (cos νπ
n

)∣∣∣ ≤ 1, ν = 1, . . . , n ,

then

(3.28)
∥∥f (k)∥∥ ≤

∥∥W (k)
n

∥∥ , k = 1, . . . , n,

where Wn is the n-th Chebyshev polynomial of the fourth kind (3.27). The equality in (3.28) occurs only
if f = ±Wn.

Proof of Theorem 1.4. Theorem 1.4 is deduced as a convex combination of the result of Duffin
and Schaeffer (Theorem 1.2) and Corollary 3.2. Assume that for some c ∈ [0, 1], the polynomial
f ∈ πn satisfies ∣∣∣f (cos νπ

n

)∣∣∣ ≤ 1, ν = 1, . . . , n,

|f(1)| ≤ 1 + 2cn.

Clearly, f can be represented as f(x) = (1−c) g(x)+c h(x), where f, h ∈ πn obey the restrictions∣∣∣g (cos νπ
n

)∣∣∣ ≤ 1, ν = 0, . . . , n,∣∣∣h(cos νπ
n

)∣∣∣ ≤ 1, ν = 1, . . . , n,

|h(1)| ≤ 2n+ 1.

Theorem 1.2 implies ∥∥g(k)∥∥ ≤
∥∥T (k)

n

∥∥ = T (k)
n (1)

while Corollary 3.2 yields ∥∥h(k)∥∥ ≤
∥∥W (k)

n

∥∥ =W (k)
n (1).

Consequently, ∥∥f (k)∥∥ ≤ (1− c)
∥∥g(k)∥∥+ c

∥∥h(k)∥∥ ≤ (1− c)
∥∥T (k)

n

∥∥+ c
∥∥W (k)

n

∥∥
= (1− c)T (k)

n (1) + cW (k)
n (1) =

∥∥(1− c)T (k)
n + cW (k)

n

∥∥
=

∥∥Q(k)
n

∥∥ ,
where Qn(x) = (1 − c)Tn(x) + cWn(x). Since the norm of Q(k)

n is attained at x = 1, we apply
Remark 2.1 to conclude that the equality

∥∥f (k)∥∥ =
∥∥Q(k)

n

∥∥ occurs only when f = ±Qn. □
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4. CONCLUDING REMARKS

DS-inequalities can find application to the estimation of the round-off error of interpolatory
formulae for numerical differentiation (see [9, p. 174, Remark 2]). Also, DS-inequalities may
serve as a useful tool for establishing Markov-type inequalities for polynomials with curved
majorants. For the readers convenience, we provide below a brief information on this topic.

We call majorant a continuous positive (or non-negative) function µ(x) in [−1, 1]. If there ex-
ists a polynomial P ∈ πn, P ̸= 0, such that −µ(x) ≤ P (x) ≤ µ(x), x ∈ [−1, 1], then there exists a
unique (up to orientation) polynomial ωµ ∈ πn (snake polynomial) which oscillates most between
±µ. The n-th snake polynomial ωµ, associated with the majorant µ, is uniquely determined by
the following properties:

a) |ωµ(x)| ≤ µ(x) x ∈ [−1, 1] ;
b) There exists a set δ∗ = (τ∗i )

n
i=0, 1 ≥ τ∗0 > · · · > τ∗n ≥ −1, such that

ωµ(τ
∗
i ) = (−1)iµ(τ∗i ), i = 0, . . . , n.

The set δ∗ is referred to as the set of alternation points of ωµ.
Associated with a given a majorant µ(x), we have the following extremal problems (cf. [14]):

Problem 1: Markov inequality with a majorant. Given n, k ∈ N, 1 ≤ k ≤ n, and a majorant
µ ≥ 0, find

Mk,n(µ) := sup{∥p(k)∥ : p ∈ πn, |p(x)| ≤ µ(x), x ∈ [−1, 1]} .
Problem 2: Duffin-Schaeffer inequality with a majorant. Given n, k ∈ N, 1 ≤ k ≤ n, and a
majorant µ ≥ 0, find

Dk,n(µ) := sup{∥p(k)∥ : p ∈ πn, |p(x)| ≤ µ(x), x ∈ δ∗} .

Clearly, Mk,n(µ) ≤ Dk,n(µ), and the results of V. A. Markov and of R. J. Duffin and A. C.
Schaeffer (Theorem 1.2) read as:

µ(x) ≡ 1 ⇒Mk,n(µ) = Dk,n(µ) = ∥T (k)
n ∥ , 1 ≤ k ≤ n .

A natural question is: for which other majorants µ the snake-polynomial ωµ is extremal to
both Problems 1 and 2, i.e., when do we have the equalities

Mk,n(µ)
?
= Dk,n(µ)

?
= ∥ω(k)

µ ∥ ?

A conjecture (belonging to mathematical folklore) states that the extremal polynomial to Prob-
lem 1 is the snake polynomial ωµ. So far, no counterexample to this conjecture is found. On the
contrary, ωµ is not always the extremal polynomial to Problem 2, the following counterexam-
ples are known:

1) µ(x) =
√

1− x2, k = 1 (cf. [16]);
2) µ(x) = 1− x2, k = 1, 2 (cf. [17]).

The difficulty with the proof of the above conjecture comes from the fact that only in some
exceptional cases the snake polynomials are known explicitly (and the same applies to the as-
sociated sets of alternation points). Assuming the snake polynomial ωµ is known, a possible ap-
proach to showing that ωµ is the extreme polynomial to Problem 2 is to show that DS-inequality
holds for any pair (ωµ,∆) such that the points from ∆ are separated by the zeros of ωµ. For
µ ≡ 1 (and ωµ = Tn) this plan was realized by the author in [10] (for k = 1) and [12] (the general
case 1 ≤ k ≤ n), thus showing that whenever Tn is a snake polynomial associated with some
majorant µ, then Tn is the extreme polynomial to Problem 2. Even more is true: in [14, 15] we
proved that whenever the snake polynomial associated with a majorant µ possessses positive
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or sign-alternating expansion in the Chebyshev polynomials of the first kind, it is the extreme
polynomial to Problem 2.

The DS-inequalities in this paper were announced without proof in [13]. Although they can
be derived from the results in [14, 15], we decided to propose here a direct self-contained proof,
emphasizing to the important particular case presented by Theorem 1.4.

5. ACKNOWLEDGMENT

This study is financed by the European Union-NextGenerationEU, through the National
Recovery and Resilience Plan of the Republic of Bulgaria, project No BG-RRP-2.004-0008.

REFERENCES

[1] G. E. Andrews, R. Askey and R. Roy: Special Functions, Cambridge University Press (1999).
[2] R. Askey: Orthogonal Polynomials and Special Functions, SIAM, Philadelphia (1975).
[3] B. Bojanov, G. Nikolov: Duffin and Schaeffer type inequalities for ultraspherical polynomials, J. Approx. Theory, 84

(1996), 129–138.
[4] T. S. Chihara: An Introduction to Orthogonal Polynomials, Gordon and Breach Sci. Pub., New York (1978).
[5] R. J. Duffin, A. C. Schaeffer: A refinement of an inequality of brothers Markoff, Trans. Amer. Math. Soc., 50 (1941),

517–528.
[6] M. E. H. Ismail: Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia in Mathematics and

its Applications, vol. 98, Cambridge University Press (2005).
[7] A. A. Markov: On a question of D. I. Mendeleev, Zap. Petersburg Akad. Nauk, 62 (1889), 1–24, [In Russian].
[8] V. A. Markov: On functions least deviated from zero in a given interval, St. Petersburg (1892), [In Russian].
[9] G. Nikolov: On certain Duffin and Schaeffer type inequalities, J. Approx. Theory, 93 (1998), 157–176.

[10] G. Nikolov: Inequalities of Duffin–Schaeffer type, SIAM J. Math. Anal., 33 (3) (2001), 686–698.
[11] G. Nikolov: An extremal porperty of Hermite polynomials, J. Math. Anal. Appl., 290 (2004), 405–413.
[12] G. Nikolov: Inequalities of Duffin–Schaeffer type, II, East J. Approx., 11 (2005), 147–168.
[13] G. Nikolov: Jacobi polynomials and inequalities of Duffin–Schaeffer type, In Proceedings Book of MICOPAM 2024
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