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ABSTRACT

Let G be a finite group. The trace formula for G, which is the trivial case of the Arthur trace formula, is well known with
many applications. In this note, we further consider a subgroup I" of G and a representation p : I' — GL(V,,) of I" on a finite
dimensional C-vector space V,,, and compute the trace Tr(Indf-; (p)(f)) of the operator Indf-; o(f): Indlg(Vp) — Indlg V)
for any function f : G — C in two different ways. The expressions for Tr(lndlg (p)(f)) denoted by J(p, f) and
I(p, f) are the spectral side and the geometric side of the trace formula for Tr(lndlg (p)(f)), respectively. The identity
J(p, f) = Tr(lnd(F; (p)(f)) = I(p, f) is a generalization of the trace formula for the finite group G. This theory is then
applied to the “automorphic side” of the Macdonald correspondence for GL,, (F,); namely, to the “automorphic side”
of the local O-dimensional Langlands correspondence for GL(n), where new identities are obtained for the e-factors of
representations of GL,, (F,).
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1. INTRODUCTION

This short note which is the revised version of our colloquium talk notes that we delivered at Selcuk University, Konya in
2022, concerns the trivial case of the Arthur trace formula, namely the trace formula for finite groups. Let G be a finite
group. The trace formula for G is an identity involving characters of the finite group G, and although simple, this formula
is of central importance with deep applications in the theory of linear representations of G over C. For instance, using
the trace formula for G, it is well known that major theorems like the Frobenius reciprocity law (Example 6.1) and the
Plancherel formula (Example 6.2) for G follow directly.

In this note, we further consider a subgroup I' of G and a representation

p: T — GL(V,)

of I on a finite dimensional vector space V,, over C, and for any function f : G — C, we compute the trace Tr(Indlg (p)(f))
of the operator

Indfp(f) : Ind (V,,) — Indf (V)
which is defined by
(Indf (p) () (¢) = Y F(@IINAE () ()1(¢), ¥ € IndE (V,,)

geG

in two different ways. The first expression for Tr(Indff (p)(f)) denoted by J(p, f) involves multiplicities of irreducible
representations appearing in Indff(p) and called the spectral side of the trace formula for Tr(lndff (p)(f)). The second
expression I(p, f) for Tr(lndlg(p)( f)), which is called the geometric side of the trace formula for Tr(lndlg (p)(f)), is

Corresponding Author: K. 1. ikeda E-mail: kazimilhan.ikeda@bogazici.edu.tr
Submitted: 25.06.2024 o Last Revision Received: 12.12.2024 e Accepted: 17.12.2024

@' Al This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

55



http://orcid.org/0000-0001-6349-3541

Istanbul Journal of Mathematics

constructed by the conjugacy classes of I" and G. The identity (Theorem 3.1 and Theorem 5.1)
J(p. £) = Te(IndF () (1) = 1(p. f)

that we derive and call the trace formula for G with respect to the subgroup I' and p : I' — GL(V,,) in this note, is
a generalization of the well known trace formula for the finite group G which corresponds to the case I' = (1) and
p =¥y : (1) = GL(C). In the remainder of this work, that is in Section 7, we apply this theory to the “automorphic side”
of the Macdonald correspondence for GL,,(F,); namely, to the “automorphic side” of the local 0-dimensional Langlands
correspondence for GL(n), where new identities are obtained for the e-factors of representations of GL,, (F,).

The main references that we follow closely in this work are Terras Terras (1999) and Yang Yang (2006). However, we
will deal with the trace formula for finite groups in full generality. The trace formula stated and proved in this note should
be considered “folklore", videlicet, well-known to researchers in the area, and seems only treated recently in the M.Sc.
thesis of Chasek Chasek (2023) and in a note of Lee Lee (2022). Therefore, the only contribution of this note is the last
section on the Macdonald correspondence for GL,,(F,), where the main references that we follow are Macdonald (1980);
Piatetski-Shapiro (1983); Silberger and Zink (2008); Ye and Zelingher (2021)

2. THE REPRESENTATION INDf (p) OF G ON INDE (V,)) OVER C INDUCED FROM p : I' — GL(V,) UP TO
G

To fix the very basic notation, let G be a finite group, I" a fixed subgroup of G of index (G : I') = ¢, and p : I' = GL(V,)
a representation of I" on a d-dimensional vector space V,, over C whose character is denoted by x,, : I' — C as usual. Set
Xp(1) = d, the dimension dimc(V,,) of V,, called the degree of p : I' — GL(V,,)). Introduce further the map

p:G — (GL(V,) U{0:V, - {0y,}})
by defining
~ p(x), xel; v
= eq.
p) {0, xeG-T, *

Recall that Piatetski-Shapiro (1983); Serre (1972), the C[G]-module Ind? (V,,) induced from the C[I']-module V,, is
defined by

Indf (Vp) = {¢: G =V, | ¢(yx) = p()(¢(x)), "x € G, "y € T},
which defines a representation
Ind¥ (p) : G — GL(Ind< (V,))
of the finite group G on the induced C-linear space Ind?(Vp) by
[Indf (p)(2)1() (x) = (xg), Yg € G, ¢ € IndFV,,"x € G,
called the representation induced from p : I' — GL(V,,) upto G.
Recall that Ind? (V,,) is an inner product space under the inner product
(o] @) :IndE(V,) x IndZ (V,) — C
on Ind? (V,,) defined by

L

(o1 1 g2y = > Mlpa(en]sy, [p1(2)]sy, Yo1,02 € Idf(V,),
i=1

which neither depends on a choice of a complete set of representatives Rr\g = {g1,- -+ ,&.} C G of the coset space I'\G
nor a choice of an ordered basis va ={v1,--+,vq} of V, over C (in particular, nor a choice of an ordered orthonormal
basis va ={ey, -+ ,eq} of V, over C), and

Ninag v,) = {‘pi'i};Z}:fffch;
is an orthonormal basis of Ind?(Vp) over C, where fori =1,---,tcandj=1,---,d
ij: G-V,
is defined by

gij(x) = p(xgi e, "x € G.
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The (G : T')dim(V,,) = td-dimensional representation Ind? (p) of G on Ind?(Vp) over C decomposes into the direct
sum

Ind?(p)= P m(ro.Indf (p))m, (1)
no€[n]eN(G)

of non-isomorphic irreducible representations 7, of G over C with m(n,, Ind? (p)) € Ny = NU {0}, where 1(G) denotes
the set of all isomorphism classes [7] of irreducible representations 7 of G over C.

3. THE TRACE FORMULA FOR G WITH RESPECT TO THE SUBGROUPI" AND p : I" — GL(V,)

Letr: G — GL(V;) be a representation of the finite group G on a d-dimensional vector space V; over C. For any function
f : G — C, there exists a C-linear operator

r(f): Vi - Ve
on V; defined by
(NG = ) F@r(@ M), v eV
geG

We can compute the trace Tr(r(f)) of the operator r(f) : V; — V; on V.
In this note, in particular, we are interested in computing the trace Tr(lndlq (p)(f)) of the linear operator Ind? (p)():
Ind?(Vp) — Ind?(Vp) on Ind?(Vp). Observe that, the operator

Indf (o) (f) = IndF (V,)) — Indf (V)
on the C-linear space Ind? (V,,) given by
(Indf () (M)(@) = D F(@)[INAF (p)()1(¢), “¢ € IndF (V)
geG
is defined explicitly by

(Indf (p) (NI ) = Y F(@IINF () ()1(9)(x) = Y fR)e(xg), Yo € INdZ (V,), Yx e G.

geG geG
Therefore changing the G-variables xg ~» y and partitioning G as G = | |;_, I'g;, the equalities

(Indf (p) (@) () = > F' W)

yeG

= Z Z f(x_l'ygi)QO(')’gi) V‘p € |ndlg(vp)’ Yy € G, )

i=1 yell
=2 FT e () (e(g0)
i=1 yel
follow immediately. Define now an Endc(V,,)-valued function
Ky :GxG — Endc(V,)
on G X G by

Kr(x,y) =Y f&'yy)p(y), "x,y€G.
yell

The operator Ind? (P)(f): Ind?(Vp) — Indlg(Vp) on Ind? (V,,) is then an “integral operator” on Indlg (V,,) with “kernel”
K¢ : G xG — Endc(V,), given by

(Indf (D) () () = Y Kr(x.e)(g(g), g endf(V,), "xeG. 3)

i=1
The trace formula for G with respect to the subgroup I and p : I' — GL(V,) is an identity that computes the trace
Tr(lndlq (p)(f)) of the operator Ind? (P)(f): Ind?(Vp) - Ind?(Vp) on |nd?(Vp) in two different ways:

“Spectral side” = Tr(lnd? (p)(f)) = “Geometric side”.

More precisely, the trace formula for the finite group G with respect to the subgroup I' and p : I' — GL(V,,) states the
following:




Istanbul Journal of Mathematics

Theorem 3.1. (Trace formula for finite groups — Version 1) For any function f : G — C, the trace Tr(lnd? (P)(f)) of
the operator

IndF () (f) : Indf (V) — Indf (V,,)
on the C-linear space Ind? (V,,) satisfies the identity
G
Jp.f)= >, mlre,dE (p)Tr(mo () = Tr(IndE (p) () = ) et D, F@yn =1, ),

7o €[] €M(G) ye{l'} |Fy| teG,\G
4)

where

— {T'} = a set consisting of all representatives for the conjugacy classes in T';

-Iy={6eT| 6~lys =y} fory € {T'};

- Gy={geGlglyg=y}forye{l}.
Here, J(p, [) and I(p, [) are called the spectral side and the geometric side of the trace formula for the finite group G
with respect to the subgroup I and p : I' — GL(V,,), respectively.

In the next section we sketch a proof of this theorem.

4. PROOF OF THE TRACE FORMULA FOR G WITH RESPECT TO THE SUBGROUP I' AND
p: = GL(V,)

To establish the spectral side J(p, f) of the trace formula for G with respect to the subgroup I' and p : I' — GL(V,,),
observe that the irreducible decomposition

IndZ(p) = 5 mro, Indf (07,
no €] el(G)

of the representation Ind? (p) of the finite group G on the vector space Ind?(Vp) over C induced from p : I' — GL(V,)
up to G, stated in (1) yields, for any function f : G — C, the decomposition

Indf(p)(f) = B mro, INGE (0)mo(f)

no €[ n]el(G)

of the operator Ind? (P)(f): Ind?(Vp) — Indg(Vp) on Ind?(Vp). Therefore, the trace Tr(lnd? (p)(f)) of Ind? ) :
IndZ (V,) — IndZ (V,,) is given by

Tr(Indf () (M) =Te[ P mlm,dZ(p)mo(f)|= D, m(ro, INdE (0)Tr(ro () = I (o, £),

noe[n]el(G) n, €[ n]el(G)

which is the spectral side of the formula stated in (4).
For the geometric side I(p, f) of the trace formula for G with respect to the subgroup I" and p : I' — GL(V,,), recall
that, by (3), the operator

IndZ () (f) : Indf (V,,) — Indf (V,,)
on the C-linear space Indlg (V,,) has an expression of the form
(Indf () (He)(x) = > Kr(x.g)(p(2)), e elndf(V,), "x e G.
i=1

On the other hand, the matrix representation [Ind? (P)(NHN € Ctdxud of the operator Ind? () (f): Ind?(vp) —

IndS (Vp)
Ind?(Vp) on Ind?(vp) with respect to the “lexicographically” ordered orthonormal basis Nlndf Wy = {@ij}i=1,-..,. of
, j=leld

Ind?(vp) is given by

Ind (o) (A)(en) o) {(INAE () (F)(@12) | @11} ... (IndZ(0)(f)(ew) | 11

. IdS () (N (i) L ei2)  (IGE ()N (1) | ¢12) - (INdE (D)) (gua) | 12
[Ind€ () (N nq e, =

nd€ (V)

(ind? (o) (N (@) [ 9a) (INGZPIA@0) [ @a) . (INdE () (i) | £1a)
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Therefore, the trace Tr(lnd? (p)(f)) of the operator Ind?(p) (f): Ind?(Vp) - Ind?(Vp) on Ind?(Vp) is given by

(¢,d)
Te(nd? () () = Y, (IOF (A () | g).
(s,1)=(1,1)
which is in explicit form given by
(¢,d)
Te(indf (o) (1) = Y (INdF(p)(N(gar) | ¢nr)

(s,t)=(1,1)

(¢,d) ¢

= DL D M), LNGE (D)) ) (i) v,
(s,t)=(1,1) ip=1
(¢,d) L

= > D> Mewlei)a,

(s,t)=(1,1) ip=1
(¢,d) ¢

= > D Miealalng

(s,0)=(1,1) ip=1

(¢,d) ¢ d

Y ZZ@st(gi(,)|e,~,,>2Zf(g;lygi)<p(7)<<ps,<g,->)|e,~o>.

(s,)=(1,1) io=1 jo=1 i=1 yel'

Z Kr(gi,-8i) (s (1))
i=1

Nv,

i=1 yell

> f(g;lygop(y)(%,(gi»l
Ny,

Note that, for s,i, = 1,--- ,1;t, jo=1,-+-,d

— p(gi,gsVer=e;, Tg, =Tgs ©ip=s;
es1(8i,) = p(gi, 85 er = )
OVP, ngo +lgs i #+s
and

1, i,=sand j, =t;
<90st(gi0) | ejo> =40, i,=sandj, #1;
0, i, #s.
Also, fory € Iy s,i,ip =1,-++ ,1;t,jo=1,-+- ,d,

= orom p(r8igs er = p(y)er, Tygi=Tgi=Tg; &i=s
P(1)(@s1(80)) = @5t (v8:) = P(78i85 er = 8 e ’ i=Tgi=Tgs i
Ov,, Iygi=Tg #lgsoi%s
and

-1 .
. FGive) (p(eilej,), Tygi=Tgi=Tgsei=s;

i i i))1ej,)= ¢ )
I8 ve) (PN (@5 (8) | €j,) {0’ Fyg; = Tg; % g, & i 5.

Therefore, forafixeds =1,--- ,tandafixedtr=1,--- ,d,

] d [}
(Ind? (o) (N ee) 1ow) = 20 " {puri) Tes) D" £lgi v80 (o) (i (8i)) 1 es,)

io=1 jo=1 i=1 yel'

=203 £ vg) (e (psi(2)) | er)

i=1 yell

=) F(85'789) (o) (s (85) | er)

yell
= > Flgstves) (per L er)
yell
proving that
(¢,d)

TH(IndZ () (M = Y, (Indf0)(New) o) = . D Flg5 780 (per ). (5)

(s,r)=(1,1) I<s<¢yel
1<t<d

Introduce:

— {T'} = a set consisting of all representatives y for the conjugacy classes Cg in T
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-Iy={6eTl| 6~ 1ys =y} fory e {T'};
- Gy={geG|glyg=y}forye (I}
Then the subgroup I' of G decomposes as
r= |_| C, = |_| {67'y6 | 6 € Rr,\r},
ye{T'} ye{l'}

where RF.,\F denotes any fixed complete set of representatives of I, \I'. Therefore, for s = 1,--- ,candt =1,--- ,d, the
following identities hold

D Fe e eerley = DT D7 flgr wgs) {p(wher | er)

vel ye{l'} weC,

151 -1 ©)
= D, DL &6 y080) (p(67 v0)er | er).
ye{T} 6€Rr\r
Now, substituting eq. (6) into eq. (5),
Tr(indZ () (N = > > D, fles'o7yse) (p(6~ yd)es | er)
Iss<tye{l'} 6€Rr,\r
1<t<d
= D0 D D, fe5'67 vog) (p(67 yd)er | er)
P o 27
=> > ( > f(g§15‘175gs)) ( > {p07 yo)er | er)),
ye{T} 6€Rr,\r \I<s<1 1<t<d
where for y € {I'} and 6 € R\,
D (e y0)es | er) =Trp(67'y6) = Trp(y) = xp (7).
1<t<d
Therefore,
Tr(Indf () () = D, xe D, D, Flgr'o7 yogy).
ye{l'} 6€Rp\r 1<s<1
Observe that, for y € {T'}, the group G has the following subgroups as seen in the Hasse diagram:
G
r G,
Ly
Each chain of subgroups
r,<r<aG
and
r,<G,<G
of G produces different partitions of G into cosets modulo Iy, as will be discussed in the next two observations.
Observation 4.1. For y € {T'}, the group G partitions into cosets modulo I'y, as
L
G=|| || nyez.
s=1 66Rry\r
where Rr,\r C I is any fixed complete set of representatives of the coset space 'y \I'.
Proof. We have already fixed a complete set of representatives Rr\g = {g1,---, 8.} € G of the coset space I'\G. So,

there is a decomposition of the group G into cosets moduloI"as G = | |;_, I'g;.
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There is also the decomposition of the subgroup I" of G into cosets modulo I',, as
r= || ne.
o€ Rry \r

Therefore the group G decomposes into cosets modulo Iy, as:

L
G=Tgiu---ulg,=( || Oyogiu-—u( || Tyoeg = || ryoes.
6e7€l—y\1— 6E’R1—7\1— s=1 6E‘R1—y\r

Observation 4.2. For y € {T'}, there is another partitioning of the group G into cosets modulo I, given by
G = U |_| I,yt,
tERGy\G yERFy\Gy

where R \¢ € G and Rr,\G, C Gy are any fixed complete set of representatives of the coset spaces G, \G and I')\G,,
respectively.

Proof. We have already fixed a complete system of representatives Rg,\G C G of the coset space Gy\G. So, there is a

decomposition of the group G into cosets modulo G, as G = || G,t.
IE'RGy\G
There is also the decomposition of the subgroup G, of G into cosets modulo I, as

Gy= || T
YERM\Gy
Therefore the group G decomposes into cosets modulo Iy as:
G= || Ge= || L] oyfe= | ] e
1eRG,\G teRGV\G yEﬂry\Gy teRGy\G yeRry\Gy

So by Observation 4.1,
Tr(Ind? (p) () = D, x>, D> Fles'67 yses)

ye{T'} 5€'RFY\I‘1SSSL
= > e Y fay,
ye{T'} xeRr,\G
and by Observation 4.2,
Te(IndZ (D) (M) = Y xp(¥) D, FO'yx)
ye{l'} xeRr\G
= > x> D fay
ye{l'} teRG,\G YERM\Gy
|Gy _
= > M= DL Fey =1, ),
1Ty
ve{l'} teRG\G

which is the geometric side of the formula stated in (4), completing the proof of Theorem 3.1.

5. TRACE FORMULA FOR G IN “ARTHUR FORM”

Finite groups are (locally) compact groups under the discrete topology. By compactness of G, there is a unique (left and
right invariant) Haar measure dugaar on G, which in this case is nothing but the counting measure d,ug"um on G. The same
holds true for the subgroup I' of G as well as the subgroups I'y and G, of I" and G, respectively, for y € {I'}. So the

invariant measures on the coset spaces I',\G, and G, \G, which are defined by the products a’,u]gaar = d/,t];jar x dytax
Y

H\Gy
and dlugaar = dﬂgiaf X dﬂgia\f G lorye {I'} are all uniquely defined and are the counting measures on I',\G, and G, \G,
respectively.

Therefore, in this setting, for y € {T'},

G
alg(y) =vol(I',\G,) = dygaar = d/lgoum = E 1= —| 7|.
2 v T, |
L\G, L\G, yeRFy\Gy Y
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Define the orbital integral O(y, f) of f : G — C over the conjugacy class Cy G ofy € {T'}in G by

d Haar d Count
o0 fi= [ v #gaar:/(;\c s y)dcm— RG]

GY\G /’l tEﬂG \G

So, the trace formula for G with respect to the subgroup I" and p : I' — GL(V,,) stated in (4) becomes:

Theorem 5.1. (Trace formula for finite groups — Arthur form) For any function f : G — C, the trace Tr(lndg ) ()
of the operator

Indf (p)(f) : IndE (V) — IndF (V,,)

on the C-linear space Indlg (V,,) satisfies the identity

Hp = Y mime,IndZ (p)Te(ro(£) =Tr(ndf (0)(N) = Y xoMal (O, f)=1(p. ), (7)

no €[ n]elM(G) ye{l'}
where

— {I'} = a set consisting of all representatives for the conjugacy classes in IT';

~Ty={6el |6 'ys=y}forye{T}

- Gy={geGlglyg=y}forye{l}.
Here, J(p, f) and I(p, [) are the spectral side and the geometric side of the trace formula for the finite group G with
respect to the subgroup I" and p : I — GL(V,,), respectively.

Theorem 5.1 is exactly the trace formula given in Arthur (Arthur 2005, eq (1.3)).

6. TEST FUNCTIONS F : G —» C

Clearly, the operator Indlg (p)(f) : Indlg(Vp) — Ind?(Vp) on the C-linear space Ind?(Vp) depends on the choice of
f : G — C. Therefore the trace formula for the finite group G with respect to the subgroup I"' and p : I' — GL(V,,),
namely, the spectral side J(p, f) and the geometric side I(p, f) of the formula corresponding to the trace Tr(lnd?(p) ()
of Ind? PN : Indlg(Vp) — Indlg(Vp) depend on the function f : G — C as well. The function f : G — C s called a
“test function” of the trace formula for G (with respect to the subgroup I"and p : I' — GL(V,,)), and choosing f : G — C
carefully, the trace identities for the operator Ind? (P)(f) : Ind? (Vo) — Ind? (V) on Ind? (V,,) yield extremely deep
results.
The first example is the Frobenius reciprocity law for the finite group G.

Example 6.1. (Frobenius reciprocity law for G) For any o, € [o] € [1(G),
<Ind19(p), 0'0>G = <p, ReS?(O'O)>F

Proof. For o, € [o] € [1(G), define a test function f, : G — Cby fr,(8) = X, (8) = X0, (g) for g € G. The spectral
side J(p, fo,) of the trace formula for the operator Ind? ) (fo,) : Indlg(Vp) — Ind?(Vp) on Ind?(Vp) is then given by

Jp.fo)= D, mlro, NGE (p)Tr(o(for,))

no €[ n]elM(G)

D mae,IndE (TR D fo, (9)70(2))

7o €[7]€M(G) geG

m(7o, 0T (0)) Y for, () Tr(mo(8))-

7o €[x]€N(G) geG

Now, by the orthogonality of irreducible characters of G, for 7, € [n] € [1(G),

G o =00,
Z foo (&) Tr(mo(g)) = Z Xo, (&) Xn,(8) = {l L mo=0

2¢G 2¢€G [ro] N [op] =@

Therefore, the spectral side J(p, fo,) of the trace formula for the operator Ind? () (fo,) : Ind?(Vp) — Ind?(Vp) on
Indg (V,) is

Jpifa)= Y, mrendf(0) 3 fo, (8)Te(xo(8)) = [Glm(cy. A (p)) = |G| (IndF (p). ) .

noe[n]el(G) geG
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that is,

|G|J(p o) = <|nd?(p),%>G

Next, computing the “|G|~! multiple” of the geometric side I(p, f., ) of the trace formula for the operator Ind? () (fo,) :
Ind (V,) — Ind& (V,)) on Ind (V,,),

1 1
Gl fo) =151 2, Xeaf NOW: fo)

ye{l'}

IR CC S YN G

ye{l'} teRG,\G

1
=G 24 Xe(wl(Ty\Gy)vel(Gy\G) X, (7)
ye{I'}
_ Z XoVX o, (¥)
ye{l} It

1
- > %, 0.

Il 24, 15

Observe that, for y € {I'}, the coset space I',\T" is in bijective correspondence with the conjugacy class G, Uofy € {T'}
in I under the bijection I'y\I' — C}, defined by I',,§ + x~'y¢ for all § € I'. Therefore, Ilrr | |C},1, and the following

identities

|G| 1(p. for,) = — |r| >

ye{l'}

IT’|

I, o (0 er, () = 2 OG0T, () = 1 3 (00T, (0) = (. Resf (0]

yef{T} o€l
follow at once, completing the proof of the Frobenius reciprocity law.
For the second example, define an inner product
(o] o):C[G] xC[G] »C
on the group algebra C[G] of G over C by
(f1h):=1GI Y f(g™)h(g), Y f.heCIG].

geG

The Fourier transform
Fr : C[G] — Endc (V)

on G coupled to a representation r : G — GL(V;) of G on a d-dimensional vector space V; over C is defined by

FoifoFif = F0 Y Y for@) =r(f). Yfeclal.
geG
It is well known and easy to derive that
T#h(r) = f(noh), Yf heC[G]. ©)

Here, for f,h € C[G], their convolution product f = h € C[G] is defined by (f * h)(x) = Xsei f(xg~Hh(g) for all

x€G.So (f*h)(1)=Xgeq (g7 )h(g).
Now, having set the stage, we can now state and prove the Plancherel formula for G in the following example.

Example 6.2. (Plancherel formula for G) For any two functions f,h : G — C,
(Fliy= > dTe(f(m) 0 h(mo)).

noe[n]el(G)

Proof. For any two functions f, h : G — C and for any 7, € [n] € [1(G), by (8) the identity f % h(r,) = f(no) o h(ry)
holds true. Therefore, the right-hand side of the Plancherel formula becomes

e, Tr(f(mo) o h(mo)) = > da, Te(Frh(no)) = ). dg,Tr(mo(f * h).
no€[n]elM(G) no€l[n]el(G) no €[] el(G)

Now, we consider the standard case of the trace formula for the finite group G; that is, the trace formula for G with respect

63




Istanbul Journal of Mathematics

to the subgroup I' = (1) and p = ¥r : I' — GL(C). Then, by (7), the spectral side J (¥ 1y, f * h) of the trace formula for
G with respect to the subgroup (1) and ¥y : (1) — GL(C) reads as

Joeay, fehy= DT m(me, G k) Te(ro (Fx ) = > do, Trl(mo (f + b)),

no€[n]€MN(G) no€ln]€M(G)

and the geometric side of (¥ 1y, f * 1) of the trace formula for G with respect to the subgroup (1) and ¥y : (1) — GL(C)
reduces to

1@ o) = Y Xy ()aG, (O £+ h) = [GI(f * (1) =G| Y £(s™)h(g) = (f | b,

ye{{D)} geG

completing the proof of the Plancherel formula for G.

Our third example needs some preliminaries. Hence deserves discussion in a new section.

7. THE “AUTOMORPHIC SIDE” OF THE MACDONALD CORRESPONDENCE FOR GLy (Fp)

Macdonald proved Macdonald (1980) an analogue of the local Langlands correspondence for GL,, (F) where F is a local
field with finite residue class field kr = F, for the finite group GL, (F,); namely, following the reformulation of Vogan
Vogan (2020), there exists a bijective correspondence

Mn(Fq) : Xn(WM]Fq) = n(GLn(Fq)) 9

between the set X, (WMg, ) of “isomorphism classes of complex n-dimensional admissible, that is Frob,, equivariant and
semisimple representations of the absolute Weil-Macdonald group WM, of F,;” and the set [(GL,,(F,)) of “isomorphism

classes of irreducible representations of GL,, (F,) over C” (but we can also assume over Qy, Q¢, ..) where g = p/ with p a
prime number and 0 < f € Z. Here, WMg,, is defined by WM, = (EiLn ]Fj;m) =< C* where the inverse limit l(inIF;m is with

m m

de/m

—— F;(md for all 0 < m, d € Z. The action of Frob, on
WM, is defined by the g-th power map and the multiplication by g on the components of WMg,_ , and the action of m ]F;m

m
on the additive group C* is defined via the canonical isomorphism l(ln ]Fj;m ~ Iy /P where F is alocal field with kp = F,,

respect to the connecting maps given by the norm maps Fz;m

and I, Pr are the inertia and the wild inertia subgroups of the Weil group Wr of F together with the homomorphism

Art .
|.|FoArtg : Wg A, px i Rﬁo, where Artr : Wr — F* is the local Artin reciprocity law of F. This correspondence

satisfies the “naturality” properties; that is, matching of corresponding local e-factors and corresponding local ¢- and
L-factors, and corresponding conductors. The bijection (9) is called the Macdonald correspondence for GL,, (F;), which
needs further discussion and postponed to a future study

In this note we are interested in I(GL,, (F,)), namely the “automorphic side” of the Macdonald correspondence (9) for
GL, (F,), and the main references that we follow closely are Carter (1993); Green (1955) and Macdonald (1980); Ye and
Zelingher (2021).

7.1. Parabolic induction and cuspidal representations of GL,, (F;)

To describe the “automorphic side” of the Macdonald correspondence (9) for GL,, (F,) precisely, let us fix :

- 9 ={j1, -, Jjs} an ordered partition of n; thatis, 0 < jj,---, js € Z such that the ordered sum j; + - - - + j; = n.
— P g the standard parabolic subgroup of GL,, (F,) with respect to the partition J defined by

GLj, (F,) X X X X
GL;,(F,) x X X
Pg:= Loox X ;

0 e
GLjs (Pq) nxn
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— M the Levi factor of P 4 by

[ GL/] (Fq)
Gsz (Fq) O
Mg = ’ ;
0
GLjS (]Fq) Inxn
— N4 the unipotent radical of P 4 by
1, x x x X
1, x x X
Ng:= X X
O X
1j5 nxn
Note that, M 4 acts on N ¢ by conjugation, and
Pj = MJ X NJ.

For1 <i < s,letn; : GLj, (F;) — GL(Vy,) be a representation of GL j, (F,) on a d;-dimensional vector space V, over
®l<i<s i

C. Then, the natural isomorphism Mg — [];<;<, GL j; (Fy) yields a representation M ¢ = [Ti<i<s GL i (Bg)
GL(),.;<, Vx,) of the Levi factor M g of P ¢ on the C-linear space X), ;. Vx;» Which in return defines via inflation to
Pgsa rep_re_sentation ®l<icsT; Py — GL(®1<i<s V) of P g on ®1<_l.<_s Vx, by letting the matrices in N 4 act as the
identity on (X), <i<s Vr;- Consider the representat_io_n o

GL, (Fy

MO0 :=|ndPJ

-~ GLy, (Fy)
(®1<i<s7) : GLa(F) — GL(Indg " (X) Vi)

1<i<s

of GL,(F,) on Ind%" (Fa) (®1 <i<s Vr;) constructed by this parabolic induction process. For 1 < n € Z, an irreducible
representation 7 : GL,(F,) — GL(V,) of GL,(F,) on a d-dimensional vector space V. over C is called cuspidal,
if it does not occur in any representation of GL,(F,) of the form 7y o 75, where 7y : GLj (F,) — GL(V,,) and
7y @ GLj,(Fy) — GL(Vy,) are both irreducible and 0 < jj, j» € Z such that j; + jo = n. For n = 1, all irreducible
representations of GL; (F,) = ]FZ; over C are by definition cuspidal. The “Philosophy of Cusp Forms” of Harish-Chandra
(for details Bump (2013)) states that the cuspidal representations of GL,, (F,) are the basic building blocks of all irreducible
representations of GL,, (F,,) in the sense that for 7, € [n] € IM(GL,(F,)), there exists an ordered partition J = {1, -, js}
of n and cuspidal representations xy,--- , 7, of GLj (Fy),---,GL;, (F,), respecively, such that 7, is an irreducible
constituent of 77y o - - - o . This completes the description of the set [1(GL,(F,)) of isomorphism classes of irreducible
representations of GL,, (F,) over C via the “Philosophy of Cusp Forms”.

7.2. {-functions (integrals) of GL, (F,)

For a representation 7 : GL, (F,) — GL(V,) of GL, (F,) on a d-dimensional vector space V, over C, denoting the set of
all n X n matrices over F; by M,,(F,), Macdonald attached a function

Z(e,7) : C[M,,(Fg)] — Endc(Vx)
defined by

Z@,m)=n(@) = Y O(gn(e), '®eCIM(F,),
g€GL, (F,)

called the {-function of the representation 7 : GL,,(F,;) — GL(V,) of GL,(F,) on V, over C (Macdonald 1980, Section
2).

Now, the trace formula for GL,, (F,) with respect to the parabolic subgroup P 4 of GL,,(F,) corresponding to an ordered
partition J of nand p : P 4 — GL(V,) computes the trace Tr(Z(®, IndS (Fa) (p))) of the operator Z(®, IngStn Fa) (p)):

Py Pg
IndS;" Fa) (Vp) — IndS;"(Fq) (V,,) on the C-linear space IndS;"(Fq) (V,,). More precisely, we have the following theorem,

which is essentially a reformulation of Theorem 5.1 in this setting.
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GLn (Fy

Theorem 7.1. For any function ® : M,,(F;) — C, the trace Tr(Z(®, Ind, )(p))) of the operator

GLn (Fy GL,l (Fy GL,, (Fy

Z(®, Ind3™ " (p)) < Ind3™ ) (v,) — IndS" ) (v,)

on the C-linear space IndS;”(]Fq) (V,,) satisfies the identity

GL, (Fq) GL,, (Fy)

GL, (F
m(mo, Ind " (D)) TH(Z(®, 70)) = THZ(®@, Inds " (p)) = 3" xp(ap." ™ )0y, @),
no€[n]eM(GL, (Fy)) y€{Pg}
where
- {P g} = a set consisting of all representatives for the conjugacy classes in P I
- Pg ={6€Pg|6'ys=y}forye{Pg};
— GL,(Fy)y = {g € GL.(F,) | ¢ 'yg =y} fory € {Pg}.

Furthermore, fory € {P s},

IGL,, (Fg), |
[Pl

GL (]F)

(y) =

and the orbital integral O(y, @) of ® : M,,(F,) — C over the conjugacy class Cs Ln () of v in GL,,(Fy) is given by

Oy, ®) = > e,

1€RGL, (Fg)y\GLn (Bq)

There is an important special case of Theorem 7.1. Let J; = {1,---,1} be the ordered partition of n given by
n—copies

—_—~—

1+---+1 = n. Then Ng becomes the subgroup of GL, (F,;) consisting of the upper traingular unipotent matrices in

GL, (F,). Now, define a 1-dimensional representation
9¢, . N:ﬁ g Cx
of N4, over C by

Oy : [xif] P Y +xs+ X)) [xu]1<l<n e Ng, (10)

i<n
j<n <js<n

where  : Fj — C* is a non-trivial additive character of F,. Set C = Vj,,. The representation

dGL 2 (Fy) GL, (Fg)

In (8y) : GL,(F,) —>GL(|nd (Veo,))

of GL,(F,) on the C-linear space Ind (Fq)

states:

(Ve,) is multiplicity free; that is, it has multiplicity one property, which

GL, (Fy)

- If 7, € [n] € (GL,(F,)) then m(ﬂo,lnd (6y)) < 1.

Now, 71, € [n] € [(GL,(Fy)) is said to have a Whittaker model if there exists a non-trivial additive character y : F; — C*
of Fy such that m(r,, IhdGL n(Fq )(0¢)) = 1. Moreover,
— If 7, is a cuspidal representation of GL,,(F,), then 7, has a Whittaker model.

The trace formula for GL, (F,) with respect to the subgroup N g of upper triangular unipotent matrices in GL,, (F,)

and 6, : Ng — C* given by (10) computes the trace Tr(Z(®D, IndGL"(F") (6y))) of the operator Z(®, Indsl;"(F") (8y)) :
T 1

In dGLn(Fq)(ng) |ndGL n(Fq) n(]F )

multiplicity one property of the representation Ind "(]F )(6 ) : GL (Fg) — GL(Ind
GL, (Fq)

(Ve, ) on the C-linear space Ind (Ve, ), which has a simpler form thanks to the

N )(Ve¢)) of GL,(F,) on the

C-linear space Ind (Ve,,), which follows as a corollary of Theorem 7.1.

GLn (Fg)

Corollary 7.2. For any function @ : M, (F,) — C, the trace Tr(Z(®, Ind (64))) of the operator

GLn (Fg)

GL, (Fy)

GLn (Fq)

Z(@, Indy " (6,)) : Indy " (V,) = Indg ) (v, )
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Ln (Fq

5 )(Vg ¢) satisfies the identity

. G
on the C-linear space Ind

GL,, (F, GLy, (F, GL,, (F,
m(r. Indy " ) (0,) Tr(Z(@, 7)) = TeZ(@. I3 @) = Y xa, (Day,” ™ (1)O(. @),
no€[n]€N(GL, (Fg)) v€{Ng }
> Tr(Z(®,75)) GLn (Fq)
no €[] €M(GL, (Fy)) ' " 7&(%ﬁ)HW(Y)aN$ T 0@
m(no,lndS;"(Fq)(9¢))=1
1

where

— {Ng } = aset consisting of all representatives for the conjugacy classes in N g;
- Ng, ={6eNg |67 'ys =y} fory e (Ng};
- GLn(Fq)y ={ge€ GLn(Fq) | g_lv’g =y}forye {Nj}

Furthermore, for y € {N 4},

aGLn(]Fq)(y) _ |GLn(Fq)y|
N INg, |

and the orbital integral O(y, ®) of ® : M,,(F;) — C over the conjugacy class CS LnEa) o v in GL,, (F,) is given by
O(y,®) = > ot yt).

te€RaL, (Fg)y\GLn (Fg)

7.3. e-factors of representations of GL,, (F,)

Let ¢ : ]F; — C* be a non-trivial additive character of F,. For x € M, (F,), let xu : M,,(F,) — M, (F,) be the additive
homomorphism defined by 1y : y > xy for all y € M, (F,). For x € M,,(F,;), we consider the Fourier transform

Fr. : C[Mu(Fg)] — Endc(Vr,)
on M, (F,) coupled to the representation ry : M, (F,) RGN M. (F,) x, F, Y C* of the additive group M,,(F,) on the
1-dimensional vector space Vy = C over C defined by
=~ = def _1
Fr, 1 @ F O = D(ry) = O(x) = My, (Eg) ™2 Z D(g)r(g) = rx(P), Yo e C[M,,(Fy)].
8<M, (Fg)
Let 7 : GL,(F,;) — GL(V,) be a representation of GL, (F,;) on a d-dimensional vector space V, over C. For each
® e C[M,(F,)], by Macdonald (Macdonald 1980, eq. (2.3)),
Z@,m= > ®@r@)= >  O(-x)W(ry;x),
8€GL, (Fq) xeM, (Fy)
where
1
Wm,wsx) = IMu (B2 D w(Tr(h))m(h), Yx € My(Fy). (11)
heGL, (Fy)

Now choosing x = 1 for x € M,,(F,;), Macdonald proved (Macdonald 1980, eq. (2.4)) that
W(x, s Dr(g) = n()W(m, 1), Vg € GL,(Fy).
Therefore, there exists a constant (7, 4) € C such that
W(n,y:1) = (z,¢)n(1).

The epsilon factor e(r, y) of the representation 7 : GL,, (F;) — GL(V,) of GL,(FF,) on the d-dimensional vector space
V. over C with respect to the choice of a non-trivial additive character  : Pg — C* is defined by

e(n,¢) = (4. 4),

where 7 : GL,(F;) — GL(V;) denotes the contragradient of 7 : GL, (F,) — GL(V,); that is, the representation of
GL,(F,) on the dual space V of V,; defined by #(g) = (g™ ").
Thus, it follows from (11) that

W) = My B > g(Tr()i(h) = e(r.g)i(1).

heGL, (R,)
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Therefore,
TrW(# 05 1) = My B2 D" w(Tr()Tr(E(R) = €, ) Tr(#(1)),
heGL, (Fy)
proving that
M (Fy)| 7 V
€(ru) = G hEGg(Fq)w(Trm))Xn(h), (12)

as Tr(#(1)) = dim(r).
Moreover, Ye and Zelingher studied the effect of the linear algebraic operations & and ® on [1(GL..(F,)) = L] MN(GL,(F,))
0<nez

to e-factors in Ye and Zelingher (2021). More precisely, for 7 € M(GL,, (F,)) and 7, € MN(GL,, (Pq)) there exist
1 By € N(GLy, 4, (Fy)) and 71 ® 1y € N(GL,y,, (Fy)), whose e-factor, and - and L-factors are known instead of
my B, and 1y ® 7, themselves, and it is proved Ye and Zelingher (2021) by Ye and Zelingher that

e(my B, Y) =e(m,¥)e(m, ). (13)
Now, combining (13) with the identity (12), for 7y € (GLp, (F,)) and > € MN(GL,, (F,)), we have

Mn] F _% ’ ’ an E _% 7 ’”
et ) = S EDE S e, ) S E S ) )

dim(r) 6, dim(m2) 4T e

1
My, (Fg) X My, (Fg)| 2 ( [h’ 0 ]) Koo
= N " lﬂ Tr | | Xten ’” .
dim(7r;)dim(m;) h’eGLZ,,I (Ey) 0 h 0 h

" €GLa, (Fq)

(14)

In case the representation 7 : GL,(F;) — GL(V,) has no 1-component; that is, 7 is not a constituent of p,_; o (1),
where p,,_; is the regular representation of GL,,_;(F,) over C and (1) is the trivial representation GL;(F,) — C*,
Macdonald further proved (Macdonald 1980, Proposition 2.7) that

1Z2(®, %) = e(m, ) Z(D, 7), (15)

where ’Z(&), 7t) is the transpose of Z((IS, 7). Applying Theorem 5.1, the trace formula for finite groups in Arthur form, to
the identity (15), the following identities follow immediately.

Theorem 7.3. Let p : Py — GL(V,) be a representation of the standard parabolic subgroup P g of GL,,(F,) with respect
to the partition J on the vector space V,, over C. Assume that the representation

Inds" " (p) : GLy (Fy) — GL(Indg "™ (v,,))

GLn (Fy GL,, (F,

'(0),0)

) (V,,)) with respect to the choice of a non-trlwal additive

)(V ) has no 1-component. The epsilon factor e(lnd
GL, (F,

of GL,(Fy) on the induced C-linear space Indg
of the representation Ind P, Ln (g )(p) GL,(Fy) — GL(lnd

character  : IFZ — C* has then the following descrlptzon

Tr(Z(®, 7))
——

GL,, (F, “ = GL, (F, =
m(mo. Indg ") (5)) Tr('Z(®, 7,)) S x0ap," " ()00, ®)
7o €[n]€MN(GL, (Fy)) _ E(IndGLn(]Fq)(p) v) = ve{Pg}
GL IF > GL IF s
m(m,, Indg " (0) T(Z(@, 7)) S xeap, " ()0, @)
HUE[K]EH(GL,,(]FQ)) ye{Pgs}

where

— {Pg} = a set consisting of all representatives for the conjugacy classes in P q;
- Pg ={6ePg |6 'ys=y}forye{Pg};
- GLn(Fq)y ={ge€ GLn(Fq) | g_l'yg =y} forye€ {P[f}

Furthermore, fory € {P g},
GL,, (]Fq)( ) |GLn (]Fq)y|
Pgl
and the orbital integral O(y, @) of ® : M,,(F,) — C over the conjugacy class CS’L" (Fq) of v in GL, () is given by

Oy, ®) = > oulyn

1E€RGLy (Fq)y\GLn (Fq)
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and the orbital integral O(7y, &)) of&) : M,.(Fy) — C over the conjugacy class CVGL"OF") of v in GL,,(Fy) is given by
O(y,®) = > ot yt)

t€RGL (Fg)y\GLn (Fg)

The identities given by Theorem 7.3 do not seem to appear in the literature and may have applications in the e-factor
analysis of representations of GL,, (F,) over C.
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