
Istanbul Journal of Mathematics
ijmath 2 (2), 87–94, 2024

DOI: 10.26650/ĳmath.2024.00019

RESEARCH ARTICLE

Generalizations of third-order recurrence relation

K. L. Verma1*

1Career Point University, Department of Mathematics, Hamirpur (HP), 176041, India.

ABSTRACT
This paper presents a generalization of the sequence defined by the third-order recurrence relation𝑉𝑛 (𝑎 𝑗 , 𝑝 𝑗 ) =

3∑
𝑗=1
𝑝 𝑗𝑉𝑛− 𝑗 , 𝑛 ≥ 4,,

𝑝3 ≠ 0 with initial terms𝑉 𝑗 = 𝑎 𝑗 , where 𝑎 𝑗 and 𝑝 𝑗 𝑗 = 1, 2, 3, are any non-zero real numbers. The generating function and Binet’s
formula are derived for this generalized tribonacci sequence. Classical second-order generalized Fibonacci sequences and other
existing sequences based on second-order recurrence relations are implicitly included in this analysis. These derived sequences
are discussed as special cases of the generalization. A pictorial representation is provided, illustrating the growth and variation of
tribonacci numbers for different initial terms 𝑎 𝑗 and coefficients 𝑝 𝑗 . Additionally, the tribonacci constant is examined and visually
represented. It is observed that the constant is influenced solely by the coefficients 𝑝 𝑗 of the recurrence relation and is unaffected
by the initial terms 𝑎 𝑗 .
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1. INTRODUCTION

Tribonacci sequences are the generalization of the classical Fibonacci sequence, defined by a recurrence relation involving the sum
of the three preceding terms, where each term is the sum of the three preceding terms. The enigmatic tribonacci number sequences
with its captivating properties, has piqued the curiosity of mathematicians and researchers, opening doors to a world of intriguing
applications as it has attracted attention in various branches of physical sciences and its applications. Sequence terms in a recursive
relations are generated sequentially, the process of calculating any specific term is computationally intensive, as it necessitates
the calculation of all its predecessors. Alternatively, using the index form of a generating function or Binet’s formula provides
efficient methods for directly computing any term of a recursive sequence. Although extensive research has been conducted on
second-order Fibonacci sequences and their generalizations, the exploration of third-order recurrence relations, particularly in
the context of third-order Fibonacci-like sequences, has received comparatively less attention. A generalized tribonacci sequence,
{𝑉𝑛}, is result of the recurrence relations with coefficients 𝑝 𝑗 and arbitrary first three initial terms 𝑎 𝑗 . The concept of tribonacci
sequence mentioned and studied, first time by Feinberg M. Feinberg (1963), then number of generalizations of the Fibonacci
sequence have been considered and examined by many authors W. R. Spickerman (1982); T. Komatsu (2018); R. Frontczak (2018);
A. G. Shannon (1972); A. C. F. Bueno (2015); T. Komatsu and R. Li (2017); T. Koshy (2001); P. Y. Lin (1988); S. Pethe (1988);
Y. Soykan (2019); C. C. Yalavigi (1972). F. T. Howard (2001) extended and generalize the main result obtained by F. T. Howard
(1999) for tribonacci sequences. Generalization of Tribonacci sequences for quaternions studied by G. Cerda-Morales (2017). In
the literature. Generalized Tribonacci sequence has also been considered and studied by A. G. Shannon and A. F. Horadam (1972);
M. E. Waddill and L. Sacks (1967); T. Komatsu and R. Li (2017) and Y. Soykan, I. et al. (2020); A. Scott, T. et al. (1997).

This research aims to address by considering and exploring the properties, patterns, and potential applications of generalized
third-order Fibonacci sequences. In this article, generalized third-order recurrence relations with variable coefficients 𝑝 𝑗 and
initial terms 𝑎 𝑗 are taken to derive the generalized form of generating function and the Binet’s formula. Classical second-order
generalized Fibonacci sequences and other existing sequences based on second-order recurrence relations are implicitly included in
this analysis. These derived sequences are discussed as special cases of the generalization. A pictorial representation is provided,
illustrating the growth and variation of tribonacci numbers for different initial terms 𝑎 𝑗 and coefficients 𝑝 𝑗 . Additionally, the
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Tribonacci constant is examined and visually represented. It is observed that the constant is influenced solely by the coefficients
𝑝 𝑗 of the recurrence relation and is unaffected by the initial terms 𝑎 𝑗 .

Definition 1.1. We define the Generalized Tribonacci sequence {𝑉𝑛} by the following linear recurrence relation:

𝑉𝑛 (𝑎1, 𝑎2, 𝑎3, 𝑝1, 𝑝2, 𝑝3) = 𝑝1𝑉𝑛−1 + 𝑝2𝑉𝑛−2 + 𝑝3𝑉𝑛−3, 𝑛 ≥ 4, (1)

with the initial conditions,𝑎 𝑗 = 𝑉 𝑗 , 𝑎 𝑗 , 𝑝 𝑗 , 𝑗 = 1, 2, 3 are any non–zero real numbers.

The expression for {𝑉𝑛} in (1) is holds true T. Koshy (2001) for every integer 𝑛 ≥ 4.
Terms of the Generalized Tribonacci Sequence The first few terms in the generalized form of the sequence defined in (1) are:

{𝑉𝑛} =

𝑎1, 𝑎2, 𝑎3, 𝑝1𝑎3 + 𝑝2𝑎2 + 𝑝3𝑎1,

(
𝑝2

1 + 𝑝2

)
𝑎3 + (𝑝1𝑝2 + 𝑝3) 𝑎2 + 𝑝1𝑝3𝑎1,(

𝑝3
1 + 𝑝3 + 2𝑝1𝑝2

)
𝑎3 +

(
𝑝2

1𝑝2 + 𝑝2
2 + 𝑝1𝑝3

)
𝑎2 +

(
𝑝2

1𝑝3 + 𝑝2𝑝3

)
𝑎1 + · · ·

 .
Tribonacci Sequences pictorial representations A few values Y. Soykan, I. et al. (2020) of Tribonacci sequences represented

in the following figure.

Figure 1.Tribonacci sequences progression and comparison

Special Cases

Remark 1.2. With initial conditions 𝑉0 = 0, 𝑉1 = 1, 𝑉2 = 1, and 𝑝1 = 𝑝2 = 𝑝3 = 1, recurrence relation (1) is known as the
generalized Lucas tribonacci sequence and is denoted by 𝑇𝑛 in F. T. Howard (1999). The first few terms of the sequence deduced
from the above generalization:

{𝑉𝑛}𝑛≥0 = {𝑇𝑛} = {0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, · · · } .

This tribonacci number sequence is A000073 on the OEIS, N. J. A. Sloane (1973).

Remark 1.3. If we substitute the initial conditions 𝑉0 = 3, 𝑉1 = 1, 𝑉2 = 3, and 𝑝1 = 𝑝2 = 𝑝3 = 1 in (1), it reduces to 𝐾𝑛 sequence
which is explained in ?. The first few terms of the sequence 𝐾𝑛 are:

{𝑉𝑛}𝑛≥0 = {𝐾𝑛} = {3, 1, 3, 7, 11, 21, 39, 71, 131, 241, 443, 815, 1499, 2757, 5071, 9327, · · · } .

This tribonacci number sequence is A001644 on the OEIS, N. J. A. Sloane (1973).
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2. GENERALIZED GENERATING FUNCTIONS

A generating function W. Watkins (1987) is a representation of a sequence as the coefficients of a power series in mathematics. By
analyzing the generating function, we can derive various properties of the generalized Tribonacci sequence, such as closed-form
expressions, asymptotic behavior, and generating function identities.

Theorem 2.1. (Generalized Generating Functions) The generalized generating function of the sequence defined in (1) is

𝑉 (𝑥) = 𝑓 (𝑥)
1 − 𝑝1𝑥 − 𝑝2𝑥2 − 𝑝3𝑥3 , (2)

where 𝑓 (𝑥) = 𝑉0 + (𝑉1 − 𝑝1𝑉0) 𝑥 + (𝑉2 − 𝑝1𝑉1 − 𝑝2𝑉0) 𝑥2.

Proof. If 𝑉 (𝑥) is the generating function of 𝑉𝑛 = 𝑝1𝑉𝑛−1 + 𝑝2𝑉𝑛−2 + 𝑝3𝑉𝑛−3, then we have

𝑉 (𝑥) =
∞∑︁
𝑛=0

𝑉𝑛𝑥
𝑛 = 𝑉0 +𝑉1𝑥 +𝑉2𝑥

2 +𝑉3𝑥
3 + · · · (3)

Multiplying 𝑉 (𝑥) by 𝑝1𝑥, 𝑝2𝑥
2 and 𝑝3𝑥

3, we have

𝑝1𝑥𝑉 (𝑥) = 𝑝1𝑉0𝑥 + 𝑝1𝑉1𝑥
2 + 𝑝1𝑉2𝑥

3 + 𝑝1𝑉3𝑥
4 + · · ·

𝑝2𝑥
2𝑉 (𝑥) = 𝑝2𝑉0𝑥

2 + 𝑝2𝑉1𝑥
3 + 𝑝2𝑉2𝑥

4 + 𝑝2𝑉3𝑥
5 + · · ·

𝑝3𝑥
3𝑉 (𝑥) = 𝑝3𝑉0𝑥

3 + 𝑝3𝑉1𝑥
4 + 𝑝3𝑉2𝑥

5 + 𝑝3𝑉3𝑥
6 + · · ·

. (4)

Subtracting (3)- (4) and rearranging the above equations, we have

𝑉 (𝑥)
[
1 − 𝑝1𝑥 − 𝑝2𝑥

2 − 𝑝3𝑥
3] = 𝑓 (𝑥).

Solving for 𝑉 (𝑥), we obtain

𝑉 (𝑥) = 𝑓 (𝑥)
1 − 𝑝1𝑥 − 𝑝2𝑥2 − 𝑝3𝑥3 , (5)

where 𝑓 (𝑥) = 𝑉0 + (𝑉1 − 𝑝1𝑉0) 𝑥 + (𝑉2 − 𝑝1𝑉1 − 𝑝2𝑉0) 𝑥2 is a polynomial.
Hence 𝑉 (𝑥) is the generating function of the sequence {𝑉𝑛}.

Remark 2.2. If we substitute 𝑉0 = 3, 𝑉1 = 1, 𝑉2 = 3, and 𝑝1 = 𝑝2 = 𝑝3 = 1 in the result obtained in (5), it reduces to the
generating function

𝑉 (𝑥) = 3 − 2𝑥 − 𝑥2

1 − 𝑥 − 𝑥2 − 𝑥3 = 𝑇 (𝑥),

which is the same as result, which is explained in M. Elia (2001); M. Catalani (2002).

Remark 2.3. If we substitute 𝑉0 = 0, 𝑉1 = 1, 𝑉2 = 1, and 𝑝1 = 𝑝2 = 𝑝3 = 1 in result of (5), it reduces to the generating function

𝑉 (𝑥) = 𝑥

1 − 𝑥 − 𝑥2 − 𝑥3 = 𝐾 (𝑥),

which is the same as result, which is explained in M. Elia (2001); M. Catalani (2002).

2.1. Even and odd terms Generating Functions of the Generalized Tribonacci Sequence

Theorem 2.4. [Even and odd terms Generating Functions] The generating functions of even 𝑉2𝑛 (𝑥) and odd 𝑉2𝑛+1 (𝑥) terms of
the Generalized Tribonacci Sequence (1) are:

𝑉𝑒𝑣𝑒𝑛 (𝑥) =
𝑉0 −

[
(2𝑝2 + 𝑝2

1)𝑉0 −𝑉2
]
𝑥 +

[
(𝑝2

2 − 𝑝1𝑝3)𝑉0 + (𝑝1𝑝2 + 𝑝3)𝑉1 − 𝑝2𝑉2
]
𝑥2

1 − (𝑝2
1 + 2𝑝2)𝑥 − (2𝑝1𝑝3 − 𝑝2

2)𝑥2 − 𝑝2
3𝑥

3
,

and

𝑉𝑜𝑑𝑑 (𝑥) =
𝑉1 +

[
𝑉0𝑝3 − (𝑝2

1 + 𝑝2)𝑉1 + 𝑝1𝑉2
]
𝑥 + [𝑝3𝑉2 − 𝑝1𝑝3𝑉1 − 𝑝2𝑝3𝑉0] 𝑥2

1 − (𝑝2
1 + 2𝑝2)𝑥 − (2𝑝1𝑝3 − 𝑝2

2)𝑥2 − 𝑝2
3𝑥

3
.

Proof. From the definition of the even 𝑉2𝑛 (𝑥) =
𝑉𝑛 (√𝑥)+𝑉𝑛 (−√𝑥)

2 and odd 𝑉2𝑛+1 (𝑥) =
𝑉𝑛 (√𝑥)−𝑉𝑛 (−√𝑥)

2
√
𝑥

functions and employing
the Generalized generating function of the Tribonacci sequence (1) obtained in the Theorem (2.1) we have
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𝑉𝑛 (𝑥) =
𝑓 (𝑥)

1 − 𝑝1𝑥 − 𝑝2𝑥2 − 𝑝3𝑥3 ,

where 𝑓 (𝑥) = 𝑉0 + (𝑉1 − 𝑝1𝑉0) 𝑥 + (𝑉2 − 𝑝1𝑉1 − 𝑝2𝑉0) 𝑥2.
On simplification we obtained the Generalized Generating function of even and odd terms of Tribonacci sequence

𝑉𝑒𝑣𝑒𝑛 (𝑥) =
𝑉0 −

[
(2𝑝2 + 𝑝2

1)𝑉0 −𝑉2
]
𝑥 +

[
(𝑝2

2 − 𝑝1𝑝3)𝑉0 + (𝑝1𝑝2 + 𝑝3)𝑉1 − 𝑝2𝑉2
]
𝑥2

1 − (𝑝2
1 + 2𝑝2)𝑥 − (2𝑝1𝑝3 − 𝑝2

2)𝑥2 − 𝑝2
3𝑥

3
, (6)

and

𝑉𝑜𝑑𝑑 (𝑥) =
𝑉1 +

[
𝑉0𝑝3 − (𝑝2

1 + 𝑝2)𝑉1 + 𝑝1𝑉2
]
𝑥 + [𝑝3𝑉2 − 𝑝1𝑝3𝑉1 − 𝑝2𝑝3𝑉0] 𝑥2

1 − (𝑝2
1 + 2𝑝2)𝑥 − (2𝑝1𝑝3 − 𝑝2

2)𝑥2 − 𝑝2
3𝑥

3
. (7)

2.2. Special cases of Even and odd terms Generating Functions

Remark 2.5. With initial conditions 𝑉0 = 0, 𝑉1 = 1, 𝑉2 = 1, and 𝑝1 = 𝑝2 = 𝑝3 = 1, the even and odd terms Generating Functions
of the generalized Lucas sequence 𝑇𝑛 T. Koshy (2001)) are deduced from the (6) and (7) generalized even and odd terms generating
functions as:

𝑉𝑒𝑣𝑒𝑛 (𝑥) = 𝑇𝑒𝑣𝑒𝑛 (𝑥) =
𝑥 + 𝑥2

1 − 3𝑥 − 𝑥2 − 𝑥3 ,

and

𝑉𝑜𝑑𝑑 (𝑥) = 𝑇𝑜𝑑𝑑 (𝑥) =
1 − 𝑥

1 − 3𝑥 − 𝑥2 − 𝑥3 .

Similarly with initial conditions 𝑉0 = 3, 𝑉1 = 1, 𝑉2 = 3, and 𝑝1 = 𝑝2 = 𝑝3 = 1 in (1), the even and odd terms Generating
Functions of the generalized Lucas sequence 𝐾𝑛. T. Koshy (2001)) are deduced from the (6) and (7) generalized even and odd
terms Generating Functions are:

𝑉2𝑛 (𝑥) = 𝐾𝑒𝑣𝑒𝑛 (𝑥) =
3 − 6𝑥 − 𝑥2

1 − 3𝑥 − 𝑥2 − 𝑥3 ,

and

𝑉𝑜𝑑𝑑 (𝑥) = 𝐾𝑜𝑑𝑑 (𝑥) =
3 + 4𝑥 − 𝑥2

1 − 3𝑥 − 𝑥2 − 𝑥3 .

These even and odd terms of the Generating Functions of 𝑇𝑛 and 𝐾𝑛 are same as obtained by T. Komatsu (2018).

Theorem 2.6. (Generalized Binet’s formula for Tribonacci sequence) Generalized form of the Binet’s formula for the sequence
defined in (1) is

𝑉𝑛 (𝑥) =
3∑︁
𝑗=1


𝐴1𝛼

2
𝑗
+ 𝐴2𝛼 𝑗 + 𝐴3∏

1≤𝑖≤3
𝑖≠ 𝑗

(
𝛼 𝑗 − 𝛼𝑖

)

𝛼𝑛
𝑗 =

3∑︁
𝑗=1

(
𝛼2
𝑗
𝐴1 + 𝛼 𝑗𝐴2 + 𝐴3

)
𝑝3𝛼

𝑛+1
𝑗

𝛼3
𝑗
𝑝3 − 𝛼 𝑗 𝑝1 + 2

.

Proof. Since 𝑉 (𝑥) is the generating function of the sequence {𝑉𝑛}

𝑉 (𝑥) = 𝑓 (𝑥)
1 − 𝑝1𝑥 − 𝑝2𝑥2 − 𝑝3𝑥3 ,

where 𝑓 (𝑥) = 𝑉0 + (𝑉1 − 𝑝1𝑉0) 𝑥 + (𝑉2 − 𝑝1𝑉1 − 𝑝2𝑉0) 𝑥2 .
Consider the partial fraction decomposition of the right-hand side of the generating function , we have

𝑉 (𝑥) = 𝐴1 + 𝐴2𝑥 + 𝐴3𝑥
2

1 − 𝑝1𝑥 − 𝑝2𝑥2 − 𝑝3𝑥3 =
𝐴1 + 𝐴2𝑥 + 𝐴3𝑥

2

(1 − 𝛼1𝑥) (1 − 𝛼2𝑥) (1 − 𝛼3𝑥)
,

where 𝐴1 = 𝑉0, 𝐴2 = 𝑉1 − 𝑝1𝑉0, 𝐴3 = 𝑉2 − 𝑝1𝑉1 − 𝑝2𝑉0 and 𝛼𝑖 , 𝑖 = 1, 2, 3, are roots of the equation 1− 𝑝1𝑥 − 𝑝2𝑥
2 − 𝑝3𝑥

3 = 0.
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On simplification we have

𝑉𝑛 (𝑥) =
3∑︁
𝑗=1


𝐴1𝛼

2
𝑗
+ 𝐴2𝛼 𝑗 + 𝐴3𝑘∏

1≤𝑖≤3
𝑖≠ 𝑗

(
𝛼 𝑗 − 𝛼𝑖

)

𝛼𝑛
𝑗 =

3∑︁
𝑗=1

(
𝛼2
𝑗
𝐴1 + 𝛼 𝑗𝐴2 + 𝐴3

)
𝑝3𝛼

𝑛+1
𝑗

𝑝3𝛼
3
𝑗
− 𝛼 𝑗 𝑝1 + 2

. (8)

The above relation is the Generalized Binet’s formula for Tribonacci sequence

2.3. Special cases: Generalized Binet’s formula for Tribonacci sequence

Remark 2.7. Generalized form of the Binet’s formula (8) for the generalized sequence(1) can also be written as

𝑉𝑛 =



(
𝛼𝑛+2

3 − 𝛼𝑛+2
2

𝛼3 − 𝛼2

)
𝛼1

(𝛼1 − 𝛼3) (𝛼2 − 𝛼1)
+

(
𝛼𝑛+2

1 − 𝛼𝑛+2
3

𝛼1 − 𝛼3

)
𝛼2

(𝛼3 − 𝛼2) (𝛼2 − 𝛼1)

+
(
𝛼𝑛+2

2 − 𝛼𝑛+2
1

𝛼2 − 𝛼1

)
𝛼3

(𝛼3 − 𝛼2) (𝛼1 − 𝛼3)


=

𝑛∑︁
𝑗=0

(
𝑛− 𝑗∑︁
𝑘=0

𝛼
𝑗

1𝛼𝑘𝛼
𝑛− 𝑗−𝑘
3

) .

Remark 2.8. If we put 𝑉3 = 0, 𝑝3 = 0, in equation (1) then tribonacci sequences becomes the generalized classical Fibonacci
sequence, and the Binet’s formula (8) in this case reduces to

𝑉𝑛 (𝑥) =
𝐴1 + 𝐴2𝑥

1 − 𝑝1𝑥 − 𝑝2𝑥2

𝑉𝑛 (𝑥) =
(𝛼1𝐴1 + 𝐴2)

(
𝛼𝑛

1
)
− (𝛼2𝐴1 + 𝐴2)

(
𝛼𝑛

2
)

𝛼1 − 𝛼2

𝑉𝑛 (𝑥) =
𝐴1

(
𝛼𝑛+1

1 − 𝛼𝑛+1
2

)
+ 𝐴2

(
𝛼𝑛

1 − 𝛼𝑛
2
)

𝛼1 − 𝛼2
= 𝐴1

(
𝛼𝑛+1

1 − 𝛼𝑛+1
2

𝛼1 − 𝛼2

)
+ 𝐴2

(
𝛼𝑛

1 − 𝛼𝑛
2

𝛼1 − 𝛼2

) ,
where 𝐴1 = 𝑉0,𝐴2 = (𝑉1 − 𝑝1𝑉0) and 𝛼𝑖 , 𝑖 = 1, 2 are roots of the equation 1 − 𝑝1𝑥 − 𝑝2𝑥

2 = 0.

Remark 2.9. If we take 𝑉0 = 0, 𝑉1 = 1, 𝑉2 = 1, and 𝑝1 = 𝑝2 = 𝑝3 = 1, in the expression (8) this reduces to

𝑉𝑛 (𝑥) =
𝛼𝑛+1

1
(𝛼1 − 𝛼2) (𝛼1 − 𝛼3)

+
𝛼𝑛+1

2
(𝛼2 − 𝛼1) (𝛼2 − 𝛼3)

+
𝛼𝑛+1

3
(𝛼3 − 𝛼1) (𝛼3 − 𝛼2)

= 𝑇𝑛

. which is same, as obtained by R. Frontczak (2018).
When𝑉0 = 3, 𝑉1 = 1, 𝑉2 = 3, and 𝑝1 = 𝑝2 = 𝑝3 = 1, in the expression (8) this reduces to

𝑉 (𝑥) = 𝛼𝑛
1 + 𝛼𝑛

2 + 𝛼𝑛
3 = 𝐾𝑛

where 𝛼𝑖 , 𝑖 = 1, 2, 3 are roots of the equation 1−𝑥−𝑥2 −𝑥3 = 0. This is in agreement with W. R. Spickerman (1982); R. Frontczak
(2018). .

Theorem 2.10. If

𝑉𝑛 =

{
𝑎𝑖 if 1 ≤ 𝑛 ≤ 3
𝑝1𝑉𝑛−1 + 𝑝2𝑉𝑛−2 + · · · + 𝑝3𝑉𝑛−3 if 𝑛 > 3

then for 𝑛 ≥ 4, we have

𝑉𝑛 = 2𝑝1𝑉𝑛−1 +
(
𝑝2 − 𝑝1

2
)
𝑉𝑛−2 + (𝑝3 − 𝑝1𝑝2)𝑉𝑛−3 − 𝑝1𝑝3𝑉𝑛−4.

Proof. Rewrite the recurrence relation (1) as

𝑉𝑛 = 𝑝1𝑉𝑛−1 + 𝑝2𝑉𝑛−2 + 𝑝3𝑉𝑛−3 + 0

= 𝑝1𝑉𝑛−1 + 𝑝2𝑉𝑛−2 + 𝑝3𝑉𝑛−3 +
(
𝑝1𝑉𝑛−1 − 𝑝1

2𝑉𝑛−2 − 𝑝1𝑝2𝑉𝑛−3 − 𝑝1𝑝3𝑉𝑛−4

)
= 2𝑝1𝑉𝑛−1 +

(
𝑝2 − 𝑝1

2
)
𝑉𝑛−2 + (𝑝3 − 𝑝1𝑝2)𝑉𝑛−3 − 𝑝1𝑝3𝑉𝑛−4
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[
∵ 𝑉𝑛 = 𝑝1𝑉𝑛−1 + 𝑝2𝑉𝑛−2 + 𝑝3𝑉𝑛−3 by multipling 𝑝1 and replacing 𝑛 by (𝑛 − 1) , we have

𝑝1𝑉𝑛−1 − 𝑝1
2𝑉𝑛−2 − 𝑝1𝑝2𝑉𝑛−3 − 𝑝1𝑝3𝑉𝑛−4

]
𝑉𝑛 = 2𝑝1𝑉𝑛−1 +

(
𝑝2 − 𝑝1

2
)
𝑉𝑛−2 + (𝑝3 − 𝑝1𝑝2)𝑉𝑛−3 − 𝑝1𝑝3𝑉𝑛−4. (9)

Remark 2.11. On substituting 𝑝1 = 𝑝2 = 𝑝3 = 1,in the result of above Theorem (2.10) we have

𝑉𝑛 = 2𝑉𝑛−1 + (0)𝑉𝑛−2 + (0)𝑉𝑛−3 −𝑉𝑛−4

, this implies that

𝑉𝑛 = 2𝑉𝑛−1 −𝑉𝑛−4

. which is in agreement with F. T. Howard and C. Cooper (1970); M. E. Waddill and L. Sacks (1967).

Theorem 2.12. If 𝑉𝑛 = 𝑝1𝑉𝑛−1 + 𝑝2𝑉𝑛−2 + 𝑝3𝑉𝑛−3, 𝑛 > 3, 𝑓 (𝑥) = 𝑥3 − 𝑝1𝑥
2 − 𝑝2𝑥 − 𝑝3 = 0,, then

lim
𝑛→∞

𝑉𝑛+1 (𝑎1, 𝑎2, 𝑎3, 𝑝1, 𝑝2, 𝑝3)
𝑉𝑛 (𝑎1, 𝑎2, 𝑎3, 𝑝1, 𝑝2, 𝑝3)

=



𝛼, real root of 𝑓 (𝑥) = 0, 𝑝𝑖 > 0, others roots are complex,
𝛼 (largest root), if all roots of 𝑓 (𝑥) = 0 𝑎𝑟𝑒 real,
𝑝𝑖 > 0, others roots are complex,
1.839, if 𝑝 𝑗 = 1 and 𝑎 𝑗 ( 𝑗 = 1, 2, 3) 𝑎𝑟𝑒 any 𝑟𝑒𝑎𝑙 numbers,
1.618, if 𝑝3 = 0, 𝑎3 = 0, 𝑎𝑛𝑑 𝑝 𝑗 , 𝑎 𝑗 , ( 𝑗 = 1, 2) 𝑎𝑟𝑒 any 𝑟𝑒𝑎𝑙 numbers.

Remark 2.13. Graphical representation of the theorem (2.12)for the polynomials
𝑓 (𝑥) = 𝑥3 − 𝑥2 − 𝑥 = 0, 𝑓 (𝑥) = 𝑥3 − 𝑥2 − 𝑥 − 1 = 0, and 𝑓 (𝑥) = 𝑥3 − 𝑥2 − 𝑥 − 3 = 0.

Figure 2.Tribonacci sequences progression and comparison
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3. IDENTITIES

Theorem 3.1. If 𝑛 ≥ 𝑚, then on employing the result of theorem (2.6)

𝑉𝑛𝑉𝑛+𝑚 =

©«
3∑︁
𝑗=1


𝐴1𝛼

2
𝑗
+ 𝐴2𝛼 𝑗 + 𝐴3∏

1≤𝑖≤3
𝑖≠ 𝑗

(
𝛼 𝑗 − 𝛼𝑖

)

ª®®®®¬
𝛼𝑛
𝑗 .

©«
3∑︁
𝑗=1


𝐴1𝛼

2
𝑗
+ 𝐴2𝛼 𝑗 + 𝐴3∏

1≤𝑖≤3
𝑖≠ 𝑗

(
𝛼 𝑗 − 𝛼𝑖

)

ª®®®®¬
𝛼𝑛+𝑚
𝑗 .

Proof. Using

𝑉𝑛 (𝑥) =
3∑︁
𝑗=1


𝐴1𝛼

2
𝑗
+ 𝐴2𝛼 𝑗 + 𝐴3𝑘∏

1≤𝑖≤3
𝑖≠ 𝑗

(
𝛼 𝑗 − 𝛼𝑖

)

𝛼𝑛
𝑗 .

On simplifying the RHS, we obtain

𝑉𝑛𝑉𝑛+𝑚 = 𝑉2𝑛+𝑚 +𝑉𝑛𝑉𝑚 −
3∑︁
𝑗=1

©«
𝐴1𝛼

2
𝑗
+ 𝐴2𝛼 𝑗 + 𝐴3∏

1≤𝑖≤3
𝑖≠ 𝑗

(
𝛼 𝑗 − 𝛼𝑖

) ª®®®®¬
2

𝛼2𝑛+𝑚
𝑗 .

3.1. Special cases:Identities

If we replace 𝑛 by 𝑛 − 1 and taking 𝑚 = 1, in (3.1) then we obtain

𝑉𝑛−1𝑉𝑛 = 𝑉2𝑛−1 +𝑉𝑛−1𝑉1 −
3∑︁
𝑗=1

©«
𝐴1𝛼

2
𝑗
+ 𝐴2𝛼 𝑗 + 𝐴3∏

1≤𝑖≤3
𝑖≠ 𝑗

(
𝛼 𝑗 − 𝛼𝑖

) ª®®®®¬
2

𝛼2𝑛−1
𝑗 .

If we take 𝑚 = 𝑛 then we get

𝑉𝑛𝑉2𝑛 = 𝑉3𝑛 +𝑉𝑛𝑉𝑛 −
3∑︁
𝑗=1

©«
𝐴1𝛼

2
𝑗
+ 𝐴2𝛼 𝑗 + 𝐴3∏

1≤𝑖≤3
𝑖≠ 𝑗

(
𝛼 𝑗 − 𝛼𝑖

) ª®®®®¬
2

𝛼3𝑛
𝑗 .

If we take 𝑚 = 0 in (3.1) then we get

𝑉𝑛
2 = 𝑉2𝑛 +𝑉𝑛𝑉0 −

3∑︁
𝑗=1

©«
𝐴1𝛼

2
𝑗
+ 𝐴2𝛼 𝑗 + 𝐴3∏

1≤𝑖≤3
𝑖≠ 𝑗

(
𝛼 𝑗 − 𝛼𝑖

) ª®®®®¬
2

𝛼2𝑛
𝑗

𝑉𝑛
3 = 𝑉𝑛

2𝑉𝑛 = 𝑉2𝑛𝑉𝑛 +𝑉𝑛2𝑉0 −𝑉𝑛
3∑︁
𝑗=1

©«
𝐴1𝛼

2
𝑗
+ 𝐴2𝛼 𝑗 + 𝐴3∏

1≤𝑖≤3
𝑖≠ 𝑗

(
𝛼 𝑗 − 𝛼𝑖

) ª®®®®¬
2

𝛼2𝑛
𝑗 𝑉𝑛

.

In general from (3.1), we have

𝑉𝑛𝑉𝑛𝑚 = 𝑉𝑚𝑛+𝑛 +𝑉𝑛𝑉𝑛𝑚−𝑛 −
3∑︁
𝑗=1

©«
𝐴1𝛼

2
𝑗
+ 𝐴2𝛼 𝑗 + 𝐴3∏

1≤𝑖≤3
𝑖≠ 𝑗

(
𝛼 𝑗 − 𝛼𝑖

) ª®®®®¬
2

𝛼𝑛𝑚−𝑛
𝑗 .
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4. DISCUSSION AND CONCLUSION

This study investigates a generalized third-order recurrence relation. After defining the initial terms in general form, we present a
graphical representation in Figure 1 to illustrate the progression of Tribonacci numbers for various cases considered by previous
authors. Figure 2 depicts the ratio of consecutive terms as the number of terms approaches infinity. We observe that the Tribonacci
constant is solely influenced by the coefficients 𝑝 𝑗 of the recurrence relation and is unaffected by the terms 𝑎 𝑗 .We derive the
generating function and Binet formula in their general forms. By applying these results, we show that many existing results
from previous studies emerge as special cases. Future research could delve deeper into this generalized third-order sequence,
extending the analysis to explore additional properties and applications. Employing alternative approaches, such as matrix
methods, combinatorial arguments, or number theory, may lead to the discovery of new identities and theorems.
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