

RESEARCH ARTICLE

A New Liu-Ratio Estimator For Linear Regression Models

İ. M. Giresunlu¹, K. U. Akay^{1*}, and E. Ertan¹

¹İstanbul University, Faculty of Science, Department of Mathematics, Vezneciler, 34134, İstanbul, Türkiye

ABSTRACT

In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable and one or more independent variables. Although there are various methods for estimating parameters, the most popular is the Ordinary Least Squares (OLS) method. However, in the presence of multicollinearity and outliers, the OLS estimator may give inaccurate values and also misleading inference results. There are many modified biased robust estimators for the simultaneous occurrence of outliers and multicollinearity in the data. In this paper, a new estimator called the Liu-Ratio Estimator (LRE), which can be used as an alternative to the Least Squares Ratio (LSR) estimator and the Ridge Ratio estimator (RRE), is proposed to mitigate the effect of y-direction outliers and multicollinearity in the data. The performance of the proposed estimator is examined in two Monte Carlo simulation studies in the presence of multicollinearity and y-direction outliers. According to the simulation results, LRE is a strong alternative to LSR and RRE in the presence of multicollinearity and y-direction outliers in the data.

Mathematics Subject Classification (2020): 62J05,62J07

Keywords: Least Squares Ratio Estimator, Liu Estimator, Multicollinearity, Ridge Estimator.

1. INTRODUCTION

Regression analysis is a statistical technique for investigating and modeling the relationship between variables. Applications for regression models are numerous and occur in almost every field, including engineering, the physical and chemical sciences, economics, management, life and biological sciences, and social sciences. The classical linear regression model assumes a relation of the form:

$$y_i = \beta_0 + \sum_{j=1}^p x_{ij}\beta_j + \varepsilon_i, \quad i = 1, 2, ..., n$$
 (1)

where n is the number of observations, $x_{ij} = 1, 2, ..., p$ are the independent variables for observation i, y_i the observed response variable, the ε_i is the error term for the observation i and β_i are the coefficients to be estimated, representing the relationship between each independent variable and the dependent variable.

The most popular way of estimating β is to minimize the Ordinary Least Squares (OLS) criterion. Unfortunately, the wellknown problem of multicollinearity in regression analysis due to high correlation between independent variables affects the OLS estimator. As a result of multicollinearity between explanatory variables, the variance of OLS becomes so large that estimates become unstable (Montgomery et al. 2001). Many biased estimators have been proposed for the multicollinearity problem, but the Ridge Estimator (RE) proposed by Hoerl and Kennard (1970) and the Liu Estimator (LE) proposed by Liu (1993) are some of the most widely used estimators.

In addition, there are many situations where the distribution of errors is nonnormal. In the case of nonnormal distributions, particularly heavy-tailed distributions, the OLS estimator no longer has the desirable properties. These heavy-tailed distributions tend to generate outliers, which may have an improper effect on the OLS estimates (Montgomery et al. 2001). Numerous robust estimating techniques, including the M-estimator, the least squares median estimator, the least truncated sum of squares estimator, the S-estimator, and the MM-estimator, have been presented to generate parameter estimates in the presence of outliers (Rousseeuw and Leroy 1987), (Maronna et al. 2006). However, while robust estimators are robust techniques for obtaining parameter estimates that are not affected by outliers, some unstable estimates may still be obtained due to the presence of multicollinearity between variables. Therefore, to mitigate the effects of both outliers and multicollinearity to some extent is to use biased-robust estimators.

Corresponding Author: K. U. Akay E-mail: kulas@istanbul.edu.tr

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

Submitted: 17.09.2024 • Revision Requested: 27.12.2024 • Last Revision Received: 30.12.2024 • Accepted: 31.12.2024

For example, various modifications of RE and LE, which are used for the multicollinearity problem, are widely used to address both outliers and multicollinearity (Silvapulle 1991), (Arslan and Billor 2000), (Maronna 2011), (Kan et al. 2013), (Jadhav and Kashid 2016), (Ertaş et al. 2017), (Filzmoser and Kurnaz 2018).

Recently, Akbilgic and Akinci (2009) proposed the Least Squares Ratio (LSR) as an alternative for OLS in order to estimate the beta parameter vector in the presence of *y*-direction outliers. On the other hand, Jadhav and Kashid (2018) developed an estimator called the Ridge Ratio Estimator (RRE) as an alternative to RE and LSR in the presence of outliers and multicollinearity in the data. Therefore, one of the objectives of this paper is to propose a new estimator as an alternative to LSR and RRE to overcome the simultaneous occurrence of outliers and multicollinearity in the data, based on the fact that LE is always an alternative to RE as known from the multicollinearity problem. Another objective is to investigate the performance of the proposed estimator with respect to LSR and RRE through extensive simulation studies.

The organization of the paper is as follows: The main ideas underlying the proposed estimator are highlighted in Section 2. In Section 3, two separate Monte Carlo simulation studies are conducted to evaluate the performance of the proposed estimator with respect to LSR and RRE. In Section 4, the performance of the proposed estimator is evaluated against that of other estimators on artificial data. Finally, the conclusions of the study are presented in Section 5.

2. A NEW ROBUST LIU RATIO ESTIMATOR

For the regression model given by (1), OLS minimizes the sum of squares of the distances between the observed value y_i and the fitted value \hat{y}_i where i = 1, 2, ..., n. As an alternative to OLS, LSR method starts with the same goal $y_i = \hat{y}_i$, or $y_i - \hat{y}_i = 0$, i = 1, 2, ..., n as in OLS. Note that the OLS approach satisfies this aim by finding the regression parameters minimizing the sum of $(y_i - \hat{y}_i)^2$. However, LSR proceeds by dividing through by y_i and so $\frac{\hat{y}_i}{y_i} = 1$ is obtained under an assumption of $y_i \neq 0$ where i = 1, 2, ..., n (Akbilgic and Akinci 2009). Hence, it is obvious that, equations $\frac{\hat{y}_i}{y_i} - 1 = 0$ and thus $\frac{y_i - \hat{y}_i}{y_i} = 0$ where i = 1, 2, ..., n are obtained by basic mathematical operations. As a result, the LSR estimator is obtained by minimizing the objective function as follows:

$$\min_{\beta} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{y_i} \right)^2 \quad \text{or} \quad \min_{\beta} \sum_{i=1}^{n} \left(1 - \hat{\beta}_j \frac{x_{ij}}{y_i} \right)^2 \tag{2}$$

where $\hat{y}_i = \beta_0 + \sum_{j=1}^{p} \hat{\beta}_j x_{ij}$, i = 1, 2, ..., n. Taking the partial derivatives of (2) with respect to the β components and setting them equal to zero, Akbilgic and Akinci (2009) defined the LSR estimator as follows:

$$\hat{\beta}_{LSR} = \left(\left(\frac{X}{Y} \right)' \left(\frac{X}{Y} \right) \right)^{-1} \left(\frac{X}{Y^2} \right)' Y \tag{3}$$

where X/Y matrix is obtained by dividing the values x_{ij} by y_i , and X/Y^2 is computed by dividing the values x_{ij} by y_i^2 where j = 1, 2, ..., p.

On the other hand, Jadhav and Kashid (2018) developed an estimator called RRE as an alternative to RE and LSR. Note that RRE using RE and LSR estimator is proposed to tackle the problem of outliers and multicollinearity. For the parameters β in Equation (1), the RRE is defined as:

$$\hat{\beta}_{RRE} = \left(\left(\frac{X}{Y}\right)' \left(\frac{X}{Y}\right) + kI \right)^{-1} \left(\frac{X}{Y^2}\right)' Y, \quad k > 0,$$
(4)

where *k* is a biasing parameter.

Let us state that the LSR and RRE given by (3) and (4) are obtained by minimization of the objective function given below:

$$S(\beta) = (1 - \underline{X}\beta) \ (1 - \underline{X}\beta) + k\beta'\beta$$
⁽⁵⁾

where 1 is the $n \times 1$ dimensional matrix of 1s, \underline{X} is obtained by dividing the values x_{ij} by y_i for j = 1, ..., p and the parameter $k \ge 0$ controls the amount of shrinkage. Note that minimization of the objective function given by (5) with respect to the parameter vector β yields the LSR estimator given by (3) when k = 0 and the RRE given by (4) when k > 0.

As an alternative to the objective function (5), which yields the LSR and RRE given by (3) and (4), consider the following penalized objective function:

$$S(\beta) = \left(1 - \underline{X}\beta\right)' \left(1 - \underline{X}\beta\right) + \left(d\hat{\beta}_{LSR} - \beta\right)' \left(d\hat{\beta}_{LSR} - \beta\right), \qquad 0 < d < 1$$
(6)

where $\hat{\beta}_{LSR}$ is the LSR estimator given in (3) and \underline{X} is obtained by dividing the values x_{ij} by y_i for j = 1, ..., p. When $S(\beta)$ in (6) is differentiated with respect to β , the following equation is obtained:

$$\frac{\partial S}{\partial \beta}\Big|_{\hat{\beta}} = -2\underline{X}' + 2\underline{X}'\underline{X}\beta - 2d\hat{\beta}_{LSR} + 2\beta = 0.$$
⁽⁷⁾

Solving the system given in (7) with respect to β defines the Liu Ratio Estimator (LRE) as follows:

$$\hat{\beta}_{LRE} = \left(\underline{X}'\underline{X} + I\right)^{-1} \left(\underline{X}' + d\hat{\beta}_{LSR}\right), \qquad 0 < d < 1,$$
(8)

where d is a biasing parameter. If the estimator (8) is restated in the structure of (3) or (4), LRE is obtained as follows:

$$\hat{\beta}_{LRE} = \left(\left(\frac{X}{Y}\right)' \left(\frac{X}{Y}\right) + I \right)^{-1} \left(\left(\frac{X}{Y^2}\right)' Y + d\hat{\beta}_{LSR} \right) , \qquad 0 < d < 1$$
(9)

where X/Y matrix is obtained by dividing the values x_{ij} by y_i , and X/Y^2 is computed by dividing the values x_{ij} by y_i^2 where j = 1, 2, ..., p.

3. THE MONTE CARLO SIMULATION STUDIES

J

In this section, the performance of LRE is compared with other existing estimators, OLS, RE, LE, LSR and RRE using two different Monte Carlo simulation designs. In the first design, we investigated the effects of sample size (*n*), the degree of the collinearity (ρ), the number of the explanatory variables (*p*) and the variance (σ^2) on the performances of the considered estimators. In the second simulation design, we examined LSR, RRE and LRE performances for each of *n*, *p*, ρ and σ^2 values at certain values of *k* and *d*. For both simulation designs, we generate the explanatory variables by the following McDonald and Galarneau (1975) as

$$x_{ij} = \left(1 - \rho^2\right)^{1/2} u_{ij} + \rho u_{ip+1}, \quad i = 1, 2, ..., n, \quad j = 1, 2, ..., p$$
(10)

where u_{ij} are independent standard normal pseudo-random numbers. ρ is specified so that the correlation between any two variables is given by ρ^2 . These variables are standardized such that X'X is a correlation matrix. Investigations are conducted on three distinct sets of correlations that correspond to $\rho = 0.8, 0.9$ and 0.95. The response variable is generated by

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi} + \varepsilon_i, \quad i = 1, 2, \dots, n$$
(11)

where $\varepsilon_i \sim N(0, \sigma^2)$ and β_0 is equal to zero. The values of σ^2 are 1, 5, and 10 for various comparisons of the error term. For each set of explanatory variables, the parameter vector β is chosen as the normalized eigenvector corresponding to the largest eigenvalue of X'X so that $\beta'\beta = 1$. The sample sizes *n* are 50, 100 and 200. The number of explanatory variables is chosen as p = 4, 8, and 12.

We examine the effects of y-direction outliers on the estimators by considering three different cases such as no outlier, one outlier and two outliers. When there is no outlier, dependent variables are taken into consideration as in Equation (11). In the case of one outlier, the *n* observation is changed as y(n) = 500. For two outlier case, y(1) = 500 and y(n) = 500 altered observations are used.

In order to estimate the biasing parameters in the simulation, based on the studies of Kibria (2003) and Qasim et al. (2020), the biasing parameters for RE, LE, RRE, and LRE are taken as follows:

RE:
$$\hat{k}_{RE} = \frac{\hat{\sigma}_{OLS}}{\left(\prod_{j=1}^{p+1} \hat{\beta}_{OLS(j)}^2\right)^{\frac{1}{p+1}}}$$
 where $\hat{\sigma}_{OLS}^2 = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_{OLS(i)})}{n-p-1}$
LE: $\hat{d}_{LE} = \max\left(0, \min\left(\frac{\hat{\beta}_{OLS(j)}^2 - \hat{\sigma}_{OLS}^2}{\max\left(\frac{\hat{\sigma}_{OLS}^2}{A_j}\right) + \max\left(\hat{\beta}_{OLS(j)}^2\right)}\right)\right)$ where λ_j is the *j*th eigenvalues of $X'X, j = 1, 2, ..., p + 1$.
RRE: $\hat{k}_{RRE} = \frac{\hat{\sigma}_{LSR}^2}{\left(\prod_{j=1}^{p+1} \hat{\beta}_{LSR(j)}^2\right)^{\frac{1}{p+1}}}$ where $\hat{\sigma}_{LSR}^2 = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_{LSR(i)})^2}{n-p-1}$
LRE: $\hat{d}_{LRE} = \max\left(0, \min\left(\frac{\hat{\beta}_{LSR(j)}^2 - \hat{\sigma}_{LSR}^2}{\max\left(\frac{\hat{\sigma}_{LSR}^2}{A_j}\right) + \max\left(\hat{\beta}_{LSR(j)}^2\right)}\right)\right)$ where λ_j is the *j*th eigenvalues of $\underline{X'X}, j = 1, 2, ..., p + 1$.

As a measure of performance we use the estimated Mean Squared Error (MSE) between the estimated parameters in the *l*-th repetition, $\hat{\beta}^{(l)}$, and the true parameters β :

$$MSE = \frac{1}{m} \sum_{l=1}^{m} \frac{1}{p} \left\| \beta - \hat{\beta}^{(l)} \right\|^2$$
(12)

where p is the number of explanatory variables. The simulation experiment is replicated m = 2000 times by generating new pseudo-random numbers. The R programming language was used to carry out the calculations. The results are given in Tables 1-3 where the lowest estimated MSE values in each row are indicated by bold.

In all 81 scenarios in Tables 1-3, the LSR, RRE and LRE outperformed other estimators according to criterion (12). With the

	I	I										I						I				1	I	I			I		
10 200 0.95	5 200 0.95	1 200 0.95	10 200 0.9	5 200 0.9	1 200 0.9	10 200 0.8	5 200 0.8	1 200 0.8	10 100 0.95	5 100 0.95	1 100 0.95	10 100 0.9	5 100 0.9	1 100 0.9	10 100 0.8	5 100 0.8	1 100 0.8	10 50 0.95	5 50 0.95	1 50 0.95	10 50 0.9	5 50 0.9	1 50 0.9	10 50 0.8	5 50 0.8	1 50 0.8	σ^2 n		
									_									_									ρ	No	
13.452	54.636	10.419	56.529	29.047	5.757	39.446	18.474	3.846	29.272	71.713	13.699	49.678	23.743	4.788	34.438	17.474	3.34	42.487	72.727	14.332	81.964	42.251	985.8	39.375	18.756	3.874	OLS	No outlier	
38.663	17.793	3.527	19.381	10.274	2.24	14.739	6.78	1.639	41.231	23.493	4.709	17.979	8.541	1.916	12.756	6.768	1.471	46.331	25.501	4.986	27.041	14.49	3.144	14.953	7.000	1.731	RE		
23.827	10.267	1.636	10.749	5.329	0.964	8.691	3.755	0.774	24.767	14.264	2.265	9.756	4.500	0.851	7.631	3.864	0.720	28.765	15.425	2.313	14.999	7.867	1.367	8.504	3.602	0.836	LE		
2.237	1.58	1.096	1.645	1.276	1.04	1.406	1.203	1.01	3.997	2.583	1.262	2.015	1.432	1.062	1.771	1.396	1.036	6.875	4.03	1.565	4.822	3.02	1.33	2.547	1.796	1.104	LSR		
1.359	1.154	1.018	1.185	1.072	1.003	1.125	1.062	0.993	1.865	1.463	1.058	1.312	1.109	1.003	1.233	1.121	0.996	2.787	1.88	1.159	2.097	1.605	1.072	1.466	1.243	1.008	RRE		Tab
1.337	1.197	1.058	1.219	1.124	1.029	1.176	1.114	1.006	1.656	1.378	1.104	1.281	1.147	1.035	1.225	1.169	1.02	2.124	1.614	1.178	1.629	1.443	1.102	1.324	1.229	1.043	LRE		le 1.The es
40655.728	40580.392	40589.394	1771.988	1741.125	1723.361	7985.94	7965.217	7926.64	16270.935	16206.98	16134.448	6314.094	6287.381	6251.16	10251.047	10203.427	10198.92	110708.454	110530.006	110682.31	10387.775	10412.218	10400.479	66525.692	66755.55	66639.985	OLS	One outlier	timated M
		4 15480.793				Ţ	7 1	7	_		_					7 2151.653		4 22374.722						2 33542.163	5 33738.42	5 33649.654	s		SE value
.057	.929	.793	495.737	488.224	483.201	998.333	981.025	957.891	124.121	1099.17	079.382	384.904	.356	362.017	.151	.653	.602			.457 1	283.39	279.069	275.513				RE		s of the
8562.385	8503.168	8489.903	634.393	633.732	632.332	1381.326	1363.837	1343.945	529.387	516.107	504.879	279.665	270.937	264.557	1018.585	999.082	984.846	6479.652	16397.836	6422.522	273.565	271.616	271.375	10818.309	10868.439	0840.251	LE		considere
2.299	1.595	1.099	1.651	1.279	1.040	1.420	1.206	1.010	4.054	2.598	1.264	2.021	1.442	1.063	1.795	1.404	1.038	7.279	4.228	1.595	4.875	3.058	1.340	2.753	1.893	1.115	LSR		d estimator
1.377	1.157	1.02	1.188	1.073	1.003	1.130	1.064	0.993	1.879	1.462	1.059	1.31	1.113	1.003	1.237	1.123	0.996	2.878	1.94	1.167	2.116	1.611	1.076	1.53	1.266	1.011	RRE		Table 1. The estimated MSE values of the considered estimators for the mc
1.346	1.199	1.06	1.221	1.125	1.029	1.18	1.115	1.006	1.663	1.378	1.104	1.28	1.151	1.036	1.228	1.171	1.021	2.203	1.646	1.181	1.637	1.444	1.104	1.345	1.242	1.045	LRE		odel when $p = 2$
38665.172	38592.549	38599.933	14577.619	14504.736	14523.593	5435.076	5415.279	5383.217	3910.352	3838.046	3786.59	1644.439	1625.594	1603.233	505.923	496.307	480.365	25391.9	25272.394	25303.971	334751.03	335134.31	335131.132	47403.547	47585.798	47482.474	OLS	Two outliers	p=2
	9 8082.718	3 8068.549	9 4691.152	6 4667.649		6 581.752	9 572.762		2 688.784	6 669.735								9 321.936		1 310.034	334751.036 160565.563	335134.314 160891.027	2 160914.664	7 13909.209	8 13989.384	4 13934.638	s	rs	
565	718	549	152	649	841	752	762	529	784	735	659.29	87.799	85.726	83.091	3.628	3.431	3.225	936	313.56	034		1		209	384	638	RE		
3237.893	3204.612	3190.09	2204.976	2204.356	2203.649	530.902	529.15	526.902	1606.804	1598.714	1599.82	661.543	662.281	659.89	89.693	87.961	85.917	253.227	245.276	239.406	89372.943	89610.788	89564.179	6374.627	6389.664	6376.756	LE		
2.297	1.604	1.099	1.652	1.285	1.040	1.419	1.207	1.010	4.083	2.615	1.272	2.045	1.449	1.065	1.818	1.421	1.042	7.340	4.375	1.619	5.368	3.364	1.392	2.781	1.906	1.119	LSR		
1.376	1.164	1.020	1.189	1.076	1.002	1.129	1.063	0.993	1.886	1.470	1.062	1.319	1.114	1.004	1.243	1.127	0.998	2.865	1.981	1.175	2.259	1.699	1.088	1.534	1.27	1.012	RRE		
1.344	1.202	1.059	1.223	1.127	1.029	1.178	1.116	1.006	1.662	1.382	1.107	1.286	1.153	1.037	1.233	1.175	1.024	2.200	1.663	1.188	1.711	1.499	1.114	1.340	1.245	1.048	LRE		

ſ		LRE	1.220	1.497	1.509	1.410	1.514	1.533	1.432	1.492	1.538	1.143	1.420	1.534	1.250	1.491	1.520	1.375	1.531	1.561	1.094	1.338	1.460	1.152	1.423	1.526	1.277	1.529	1.528
		RRE	1.073	1.763	2.242	1.444	3.018	5.238	1.582	4.322	6.674	1.025	1.291	1.697	1.097	1.578	2.127	1.217	2.124	3.322	1.018	1.170	1.342	1.034	1.296	1.663	1.110	1.689	2.136
		LSR	1.505	4.154	6.501	2.949	9.589	18.564	3.587	14.358	24.527	1.224	2.349	3.811	1.496	3.531	5.898	2.011	5.862	10.69	1.120	1.743	2.447	1.220	2.261	3.728	1.523	3.868	6.125
		LE	0069.709	0070.666	0074.035	05601.218	05852.306	05688.226	3624.173	3634.782	3646.722	3139.145	3137.823	3144.359	4777.114	4780.66	4792.289	4475.914	4477.368	479.598	3735.021	3734.765	3736.432	201.213	201.764	205.384	870.807	863.449	854.619
		RE	8211.508 10		18228.755 10	E	418678.157 105	_	4					9973.805 3	-			657	88479.119 4	88419.736 4				9553.022 1	9546.238]	9583.597 1	33503.082 1	6	33700.271 1
	Two onniers	OLS	69474.34 182		69527.885 182				378257.454 623	378000.4 622				49165.728 99	_			2	381755.21 1884	381791.619 1884		13 79		~	44615.021 95	44693.284 95	24111.006 335		124527.453 337
		LRE			1.509 695						m	1.140 491						1	1.529 381							-	-	1	1.530 1245
		RRE	1.069 1		~			5.085 1			6.522 1			1.692 1			2.06 1						1.339						2.129 1
		LSR	.490 1				9.110 2							3.773 1		3.422 1	.654		5.726 2	0.369 3	~				2.225				6.078 2
		LE	166.6862		2797.552 (8198.149 5	2	[318.697 3	[318.486 12	5			114.098					1407.93								638.058	2	643.211 (
		RE	9414.94 1298		Γ		0		_			[785.804 110	Ξ	111 285.585					_					9		-			5671.806 64
		s		Γ	2 19429.209	L	7 123954.81	5 123804.205	-	6 62984.916						~			2 29054.883	3 29170.418	+	m	4	Ľ					
	Olle outlier	OLS	44899.659	44931.556	44959.982	271966.879	272216.47	272119.315	259525.725	259308.276	259489.553	14856.18	14857.174	14892.954	49290.511	49375.88	49387.91	97667.155	97701.742	97951.323	1707.0	1740.71	1780.684	22948.37	22950.016	23038.95	35295.806	35410.954	35640.676
		LRE	1.21	1.481	1.501	1.393	1.515	1.542	1.436	1.497	1.539	1.138	1.416	1.532	1.238	1.488	1.520	1.364	1.529	1.550	1.092	1.336	1.461	1.151	1.419	1.525	1.276	1.528	1.531
		RRE	1.064	1.693	2.173	1.366	2.783	4.793	1.532	4.054	6.208	1.023	1.285	1.686	1.090	1.536	2.050	1.199	2.085	3.199	1.018	1.167	1.336	1.035	1.276	1.660	1.110	1.681	2.125
		LSR	1.471	3.907	6.154	2.657	8.52	16.46	3.376	13.223	22.63	1.211	2.308	3.739	1.458	3.355	5.571	1.942	5.633	10.147	1.118	1.728	2.425	1.217	2.211	3.704	1.517	3.817	6.052
		LE	0.908	4.247	8.414	0.703	3.429	6.668	0.761	3.455	6.899	006.0	4.317	8.529	0.782	3.67	7.265	0.729	3.433	6.700	0.895	4.313	8.524	0.738	3.692	7.195	0.702	3.637	6.875
		RE	2.658	12.939	25.567	6.951	32.634	65.53	10.103	47.601	90.852	2.682	12.628	25.239	4.531	20.61	41.436	8.287	38.539	82.078	2.668	13.247	26.201	4.537	21.798	43.559	9.17	47.719	89.211
Ma andlau	INO OULIEF	OLS	8.284	42.778	85.032	22.801	110.602	223.867	33.631	163.61	319.828	8.016	40.411	80.741	14.385	69.687	140.746	27.765	135.335	279.99	8.202	42.141	84.549	14.696	73.322	147.872	31.562	162.176	314.547
F	-	υb	50 0.8	50 0.8	50 0.8	50 0.9	50 0.9	50 0.9	50 0.95	50 0.95	50 0.95	100 0.8	100 0.8	100 0.8	100 0.9	100 0.9	100 0.9	100 0.95	100 0.95	100 0.95	200 0.8	200 0.8	200 0.8	200 0.9	200 0.9	200 0.9	200 0.95		200 0.95
		σ^{7}	-	S	10	-	S	10	-	5	10		S	10	-	S	10		S	10		5	10	F	5	10		5	10

Table 2. The estimated MSE values of the considered estimators for the model when p = 4

10	S	1	10	s	1	10	s	1	10	s	1	10	s	1	10	s	1	10	S	1	10	S	1	10	S	_	σ^2		
	200 0.95	200 0.95	10 200 0.9	200 0.9	200 0.9	10 200 0.8	200 0.8	200 0.8	10 100 0.95	100 0.95	100 0.95	100 0.9	100 0.9	100 0.9	100 0.8	100 0.8	100 0.8	50 0.95	50 0.95	50 0.95	50 0.9	50 0.9	50 0.9		50 0.8	50 0.8	ρ n		
806.223	398.392	80.118	364.599	180.901	35.310	220.731	108.547	21.895	799.35	387.956	76.929	400.159	203.455	41.298	218.515	112.031	21.952	1016.342	506.765	102.571	360.535	183.061	35.800	208.961	106.443	21.089	OLS	No outlier	
215.746	106.157	21.452	98.811	48.881	9.526	60.855	29.233	6.134	213.639	103.51	20.342	104.894	54.211	11.274	59.876	31.04	6.325	272.293	134.981	27.969	95.785	49.255	9.638	55.83	28.954	5.793	RE	Ť	
6.852	3.443	0.692	11.02	5.537	1.098	14.441	7.085	1.463	7.16	3.498	0.703	10.413	5.328	1.090	14.193	7.279	1.459	6.258	3.114	0.664	11.446	5.776	1.161	15.185	7.558	1.509	LE		
25.588	13.267	3.538	12.313	6.55	2.132	7.742	4.42	1.654	49.689	25.797	6.198	26.425	13.419	3.62	14.36	7.852	2.345	127.465	66.258	15.941	46.145	23.738	6.039	27.613	14.335	3.755	LSR		
6.081	3.517	1.510	3.367	2.130	1.215	2.390	1.683	1.111	10.981	6.187	2.035	6.337	3.55	1.504	3.682	2.422	1.243	27.21	14.882	4.263	10.312	5.628	2.017	6.508	3.739	1.507	RRE		
2.094	2.191	1.952	2.225	2.148	1.638	2.203	2.031	1.444	1.92	2.092	2.106	2.060	2.167	1.911	2.148	2.156	1.665	1.704	1.861	2.131	1.931	2.025	2.013	2.052	2.097	1.835	LRE		
	96094.469					10		· 10012.152	126764.214	126070.222	_	56883.601	56732.487	56569.198			35509.399			479567.128	242981.461	242939.822	242807.428			139147.844	OLS	One outlier	
	9 20689.105	9 20585.028		1 1316.061	7 1290.932		9 857.11		4 13228.797			1 7234.105		8 7152.557			9 6622.481	3 101827.648		8 101864.307	1 55032.333	2 55058.251	8 54992.036		5 39785.071	4 39737.4	S RE		
	679.066	676.354		630.099			875.245	870.751	743.915	730.481			1804.164	1800.411		3298.547	3294.372		2985.231	2984.616	4748.732	4749.194	4742.136		9474.007	. 9468.393	LE		
25.801	13.345	3.572	12.421	6.584	2.139	7.773	4.440	1.656	50.439	26.149	6.276	26.822	13.66	3.655	14.624	7.977	2.375	132.843	69.592	16.385	49.155	25.179	6.431	29.249	15.044	3.926	LSR		
6.122	3.526	1.519	3.390	2.141	1.217	2.394	1.688	1.111	11.154	6.243	2.049	6.413	3.612	1.509	3.743	2.453	1.248	28.202	15.601	4.331	10.892	5.919	2.103	6.814	3.876	1.539	RRE		
2.092	2.188	1.958	2.226	2.149	1.640	2.203	2.033	1.445	1.918	2.084	2.107	2.055	2.167	1.914	2.146	2.160	1.674	1.689	1.845	2.119	1.920	2.012	2.021	2.040	2.093	1.848	LRE		out man P o
221089.695	220860.583	220670.252	127877.033	127685.158	127540.396	29050.204	28875.314	28849.262	191033.781	190356.293	190278.589	129052.864	129042.961	128857.612	90108.298	89975.62	89907.325	1142611.687	1142701.658	1142542.861	497814.968	497559.784	497556.099	388525.391	388623.289	388397.223	OLS	Two outliers	r o
	57326.758	57282.291	38929.171	38866.985	38822.079	3361.629	3316.304	3309.752	17772.868	17629.49	17611.911	20854.859	20856.726	20803.63	3 19967.624	19911.924	19893.191	252799.378		252811.176	497814.968 121686.567	121571.713	121583.337	388525.391 139172.257	388623.289 139237.387	3 139159.787	RE	52	
_	1762.045	1760.579	3365.18	3359.624	3355.094	2095.271	2084.089	2082.147	1542.641	1537.948	1537.059	41 19.762	4118.128	4113.459	7608.083	7593.955	7589.355	5957.66	5953.948	5952.728	13524.012	13513.03	13511.857	24155.227	24149.224	24145.655	LE		
26.000	13.542	3.599	12.616	6.691	2.150	7.812	4.459	1.661	51.127	26.723	6.358	27.291	13.878	3.706	15.140	8.195	2.413	138.349	72.775	16.856	50.782	26.199	6.555	30.819	15.918	4.155	LSR		
6.158	3.557	1.524	3.420	2.170	1.218	2.398	1.690	1.112	11.354	6.389	2.064	6.512	3.645	1.520	3.869	2.505	1.255	29.28	16.400	4.397	11.185	6.149	2.126	7.109	4.042	1.592	RRE		
2.090	2.188	1.961	2.225	2.153	1.643	2.201	2.035	1.447	1.916	2.082	2.111	2.053	2.165	1.921	2.150	2.163	1.687	1.682	1.832	2.111	1.925	2.022	2.026	2.027	2.089	1.864	LRE		

ıble
ü
The
es
tima
ted
\leq
SE
va
lues
$\mathbf{o}_{\mathbf{f}}$
the
COI
ısid
lere
de
sti
nat
ors
for
the
m
)del
ble 3. The estimated MSE values of the considered estimators for the model when $p = 8$
q
∞

inclusion of the *y*-direction outliers, the performance of the commonly used OLS, RE and LE is quite poor. On the other hand, LSR, RRE and LRE exhibited different behaviors in different scenarios. The following observations can be obtained from Tables 1-3:

1. When the number of outliers is gradually increased along with the number of variables in the model by keeping ρ , *n*, and σ^2 constant, an increase in the estimated MSE values of all estimators is observed.

2. When *n*, *p* and σ^2 are held constant, we observe that the estimated MSE values of LSR generally increase as the correlation between variables is increased, while the estimated MSE values of RRE and LRE remain almost constant. On the other hand, when the correlation between the variables and the outliers in the data are increased, the estimated MSE values of the LSR and RRE estimators increase. On the other hand, for *p* = 8, the estimated MSE value of LRE decreases when the model variance is large.

3. When *n*, *p* and ρ are kept constant and the variance σ^2 is increased, the MSE values of the LSR, RRE and LRE estimators generally increase. When the model variance increases with the number of outliers, the estimated MSE values of the LSR and RRE increase. On the contrary, for *p* = 8, the estimated MSE values of LRE decrease at high correlation and small sample size.

4. When p, ρ and σ^2 are kept constant and the number of observations in the model is increased, a decrease is observed in the estimated MSE values of all estimators. When the number of outliers and the number of variables in the model are increased, a decrease is observed in the estimated MSE values of the LSR and RRE. On the other hand, the estimated MSE values of the LRE for p = 8 show an increase at high correlation and large variance values.

As a result, we can conclude that the estimated MSE values for LSR, RRE and LRE for variables such as n, p, ρ , and σ^2 with the change in the number of outliers are considerably lower than OLS, RE and LE.

In the second simulation scheme, we investigate the performance of LSR, RRE and LRE in the presence of y-direction outliers for each *n*, *p*, ρ , and σ^2 . The purpose of this simulation is to investigate the performance of LSR, RRE and LRE with respect to MSE values given in (12) with various values of the biasing parameter *k* and *d* and the presence of outliers in the *y*-direction. The biasing parameters *k* and *d* are not estimated in the second simulation scheme. Only the MSE values obtained by increasing *k* and *d* values in the range [0, 1] by 0.1 are compared. We only consider the cases $\rho = 0.8$, 0.95, n = 50, 200, and p = 2, 8, and $\sigma^2 = 1$, 10. Depending on these *n*, ρ , *p*, and σ^2 values, the explanatory variables are generated according to equation (10). Similar to the previous simulation scheme, we examine the effects of outliers in the *y*-direction on the estimators considering three different cases: no outliers, one outlier and two outliers. For every values of *k* and *d*, the simulation is run 2000 times. The results are collectively presented graphically in Figures 1-6.

Figures 1-6 clearly show the effects of varying the biasing parameter k and d between 0 and 1 on the estimated MSE values of the estimators. According to the figures, we can obtain the following results depending on each(n, ρ, p, σ^2).

1) The LSR estimator showed an increase in the estimated MSE values in the presence of none, one and two outliers in the *y*-direction, but generally showed a stable behavior.

2) Although the MSE values estimated for RRE decreased with increasing values of the biasing parameter k, it did not affect the MSE values estimated from the outliers in the *y*-direction.

3) Although the MSE values estimated for LRE increased with increasing values of the biasing parameter d, it did not affect the MSE values estimated from the outliers in the y-direction.

As a result, no dramatic change is observed in the MSE values estimated by comparing LSR, RRE and LSR among themselves as OLS, RE and LE. On the other hand, for large values of the biasing parameter k, RRE and for small values of the biasing parameter d, LRE stand out due to their performance.

4. AN EMPIRICAL APPLICATION

In this section, we created an experimental dataset to study the performance of LSR, RRE and LRE. To do this, we created a dataset using Equation (10) with n = 100, p = 4 and $\rho = 0.95$. We used set.seed(4) in the R Program. Using equation (11) to create the response variable with $\sigma^2 = 5$. Modified observations y(1) = 500 and y(n) = 500 were used to create two outliers. In this case, the eigenvalues of the X'X matrix were calculated as 100.000, 3.738, 0.106, 0.092, and 0.064. The condition number is approximately 39.410, therefore the matrix X is moderate ill-conditioned. The eigenvalues of the $\underline{X'X}$ matrix were calculated as 164.869, 5.437, 0.122, 0.077, and 0.060. The condition number is approximately 52.593, therefore the matrix \underline{X} is moderate ill-conditioned. The numerical results are summarized in Table 4.

From Table 4, it can be observed that the estimated MSE values of LSR, RRE, and LRE give smaller values compared to OLS, RE, and LE. As a result, RRE and LRE outperform LSR in the presence of multicollinearity and *y*-direction outliers. It also seems that LRE can be a strong alternative to RRE.

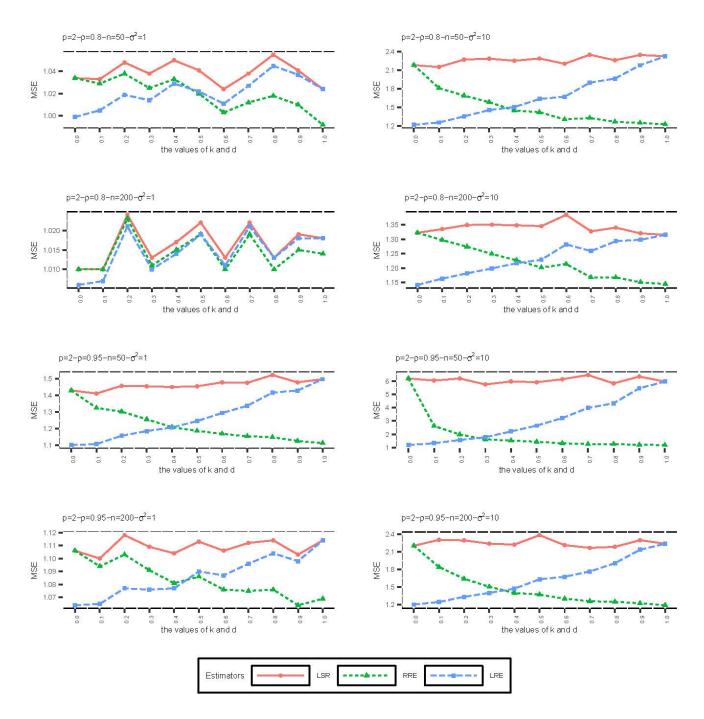


Figure 1.The estimated MSE values of LSR, RRE and LRE as a function k and d where p = 2 with no outlier

	\hat{eta}_0	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	\hat{eta}_4	$MSE(\hat{\beta})$
$\hat{\beta}_{OLS}$	11.0549	59.8429	455.3388	26.2779	-451.0035	83022.074
$\hat{\beta}_{RE} \left(\hat{k}_{RE} = 0.7087 \right)$	10.9771	14.8855	67.4696	22.2895	-30.0934	1255.141
$\hat{\beta}_{LE} \left(\hat{d}_{LE} = 0 \right)$	10.9454	14.598	53.2606	20.1941	-18.1441	777.143
$\hat{\beta}_{LSR}$	0.1297	6.8485	-4.443	-5.1036	1.8292	19.359
$\hat{\beta}_{RRE} \left(\hat{k}_{RRE} = 0.2234 \right)$	4) 0.1239	1.2467	-1.202	-1.4109	0.6017	1.224
$\hat{\beta}_{LRE} \left(\hat{d}_{LRE} = 0 \right)$	0.1253	0.2183	-0.439	-0.5042	0.0808	0.253

Table 4.The estimated parameter values and the estimated MSE values of the estimators

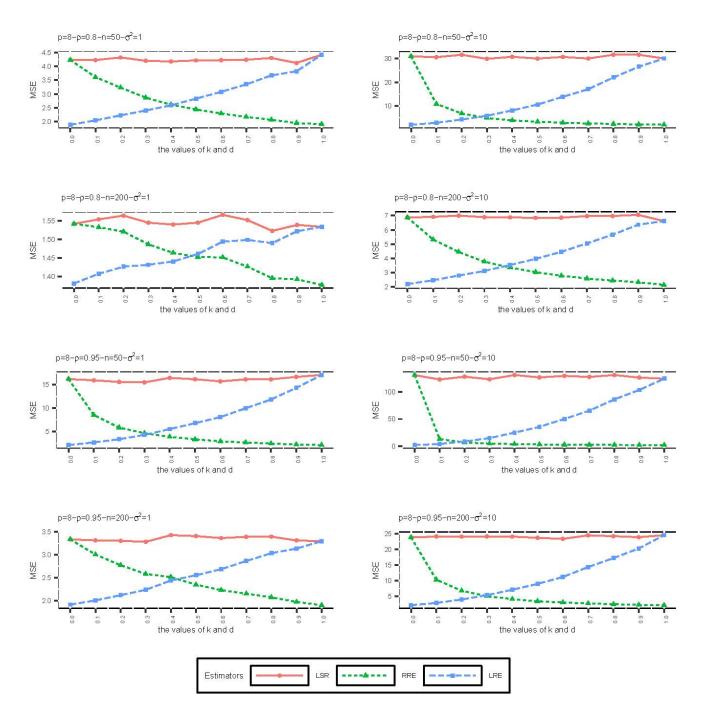


Figure 2. The estimated MSE values of LSR, RRE and LRE as a function k and d where p = 8 with no outlier

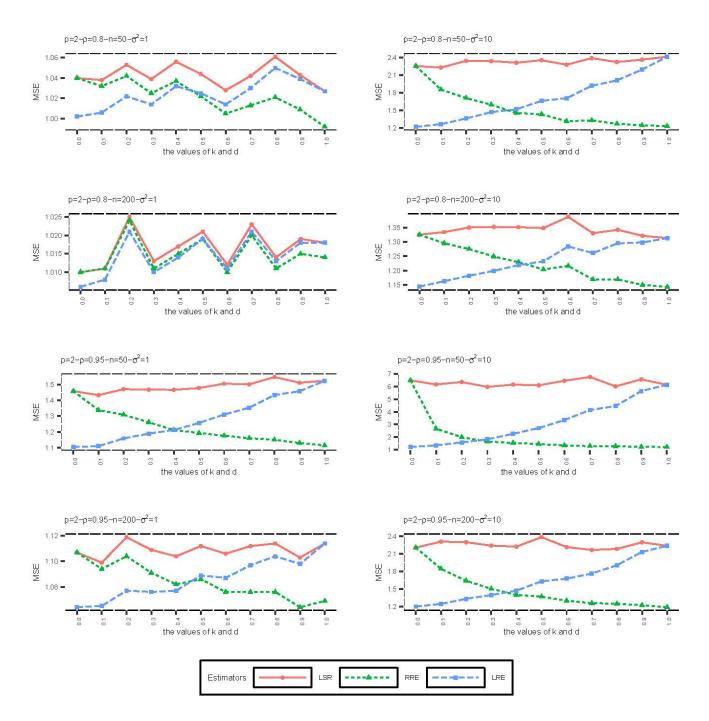


Figure 3.The estimated MSE values of LSR, RRE and LRE as a function k and d where p = 2 with one outlier

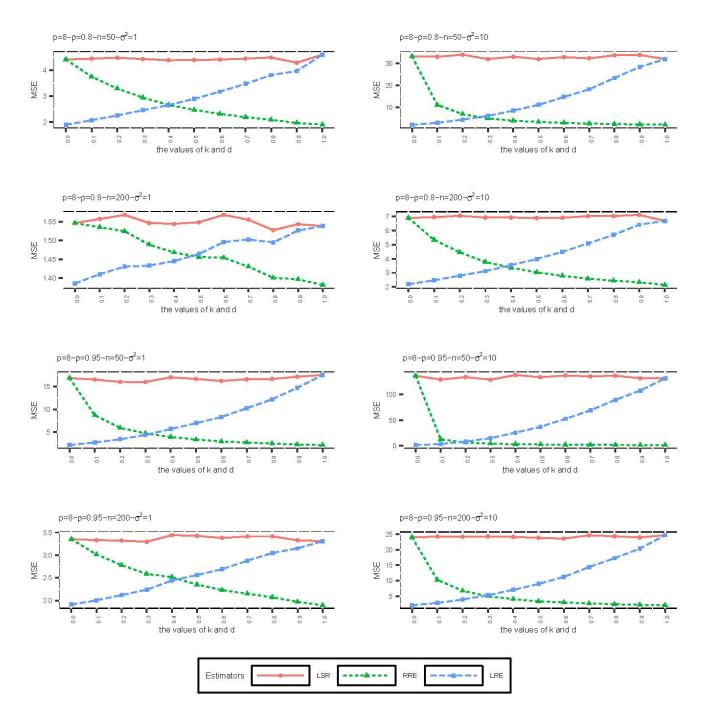


Figure 4.The estimated MSE values of LSR, RRE and LRE as a function k and d where p = 8 with one outlier

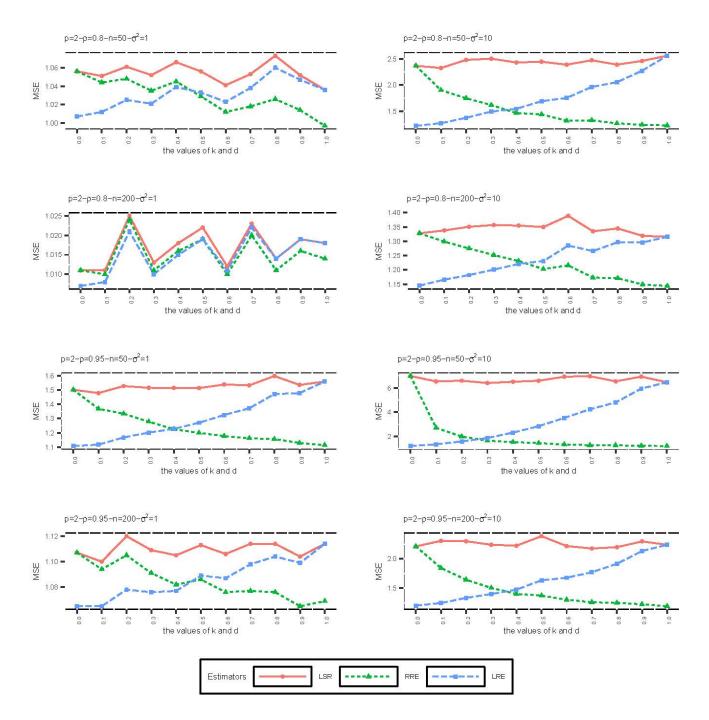


Figure 5.The estimated MSE values of LSR, RRE and LRE as a function k and d where p = 2 with two outliers

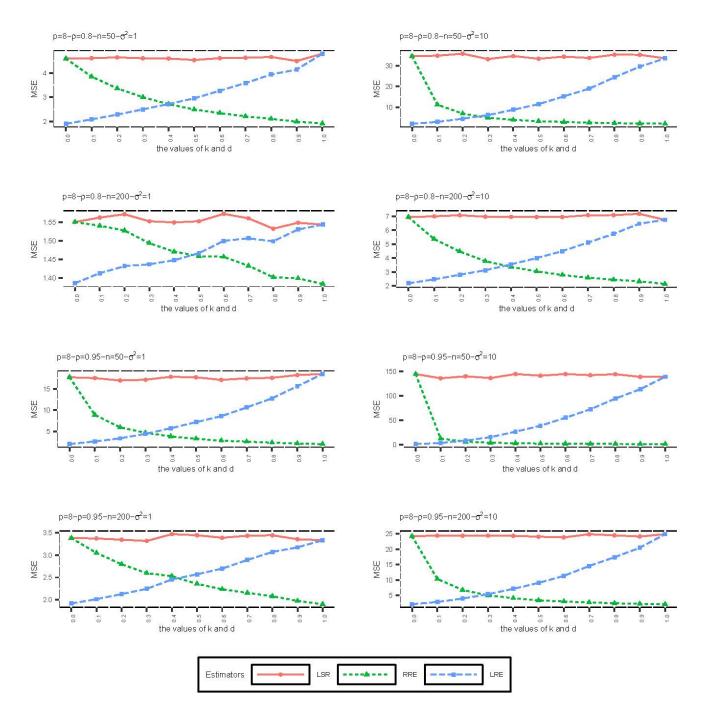


Figure 6. The estimated MSE values of LSR, RRE and LRE as a function k and d where p = 8 with two outliers

5. CONCLUSION

In this article, we proposed a new estimator named the LRE as an alternative to LSR and RRE in the presence of multicollinearity and y-direction outliers. Two separate Monte Carlo simulation study are conducted to examine the performance of LRE. In the first simulation study, we compared the considered estimators together with the estimates of the biasing parameters k and d. When the y-direction outliers are taken into account, the performance of OLS, RE and LE is considerably poor, while the performance of LSR, RRE and LRE is more stable. In the second simulation study, the performance of LSR, RRE and LRE are analyzed by choosing k and d values as fixed and equally spaced. According to the simulation results, LRE performs better for small values of d and RRE performs better for large values of k. According to the simulation results and the analysis of synthetic data, we recommend LRE as an alternative to RRE in the presence of y-direction outliers and multicollinearity between variables.

ACKNOWLEDGMENTS

The authors would like to thank the editor and reviewers for their valuable comments and suggestions that contributed to the improvement of the manuscript.

Peer Review: Externally peer-reviewed.

Conflict of Interest: Authors declared no conflict of interest. **Financial Disclosure:** Authors declared no financial support.

LIST OF AUTHOR ORCIDS

I. M. Giresunlu	https://orcid.org/0009-0006-8737-1016
K. U. Akay	https://orcid.org/0000-0002-8668-2879
E. Ertan	https://orcid.org/0000-0002-6020-8749

REFERENCES

Akbilgic O., Akinci E. D., 2009, A Novel Regression Approach: Least Squares Ratio, Communications in Statistics-Theory and Methods, 38, 1539–1545.

Arslan, O., Billor, N., 2000, Robust Liu Estimator for Regression based on an M-estimator, Journal of Applied Statistics, 27, 1, 39-47.

Ertaş, H., Kaçıranlar, S., Güler, H., 2017, Robust Liu-type estimator for regression based on M-estimator, Communications in Statistics-Simulation and Computation, 46, 5, 3907–3932.

Filzmoser, P., Kurnaz, F. S., 2018, A robust Liu regression estimator, Communications in Statistics-Simulation and Computation, 47, 2, 432–443.

Hoerl A.E., Kennard R.W., 1970, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 1, 55–67.
Jadhav, N. H., Kashid, D. N., 2016, Robust Linearized Ridge M-estimator for Linear Regression Model, Communication in Statistics–Simulation and Computation, 45, 3, 1001–1024.

Jadhav, N. H., Kashid, D. N., 2018, Ridge Least Squares Ratio Estimator For Linear Regression Model, International Journal of Agricultural & Statistical Sciences, 14, 2, 439–447.

Kan, B., Alpu, O., Yazici, B., 2013, Robust Ridge and Robust Liu Estimator for Regression based on the LTS Estimator, Journal of Applied Statistics, 40, 3, 644–655.

Kibria, B. G., 2003, Performance of some new ridge regression estimators, Communications in Statistics: Simulation and Computation, 32, 2, 419–435.

Liu, K., 1993, A new class of biased estimate in linear regression, Communications in Statistics-Theory and Methods, 22, 2, 393-402.

Maronna, R. A., Martin, R. D., Yohai, V. J., 2006, Robust Statistics Theory and Methods, Wiley, U.K.

Maronna, R.A., 2011, Robust ridge regression for high-dimensional data, Technometrics, 53, 1, 44-53.

McDonald G.C., Galarneau D.I., 1975, A Monte Carlo evaluation of some ridge-type estimators, Journal of the American Statistical Association, 70, 350, 407–416.

Montgomery, D. C., Peck, E. A., Vinig, G. G., 2001, Introduction to Linear Regression Analysis, 3th. Ed. John Wiley & Sons, Inc., USA.

Qasim, M., Amin, M., Omer, T., 2020). Performance of some new Liu parameters for the linear regression model, Communications in Statistics-Theory and Methods, 49, 17, 4178–4196.

Rousseeuw P.J., Leroy, A.M., 1987, Robust Regression and Outlier Detection, Wiley, New York.

Silvapulle, M. J., 1991, Robust Ridge Regression based on an M-estimator, Australian Journal of Statistics, 33, 3, 319–333.