
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 74, Number 2, Pages 333–345 (2025)
https://doi.org/10.31801/cfsuasmas.1632865
ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr

Research Article; Received: February 5, 2025; Accepted: February 13, 2025

Comparison of performances of heteroskedasticity tests under measurement error
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Abstract. While measurement error has an impact on the unbiasedness of the ordinary least squares

(OLS) estimator, the heteroskedastic error term causes inefficient OLS estimators and biased variance
estimates. Although the econometric literature has answers to these two fundamental concerns, such as

applying measurement error correction methods and heteroskedasticity-robust standard errors, they do

not directly address testing heteroskedasticity. This paper investigates the power of the most commonly
used heteroskedasticity tests in the presence of error-in-variables. Monte Carlo simulations under differ-

ent heteroscedasticity forms and sample sizes show that since measurement error inflates the variance of

the explanatory variable and the response variable, heteroskedasticity tests lose their power in detecting
heteroskedasticity. Simulations also show that the Glejser test is the most powerful one while the White

test is weak, and the other tests lie in between them.
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1. Introduction

Homoskedasticity assumption of classical linear regression models (CLRM) represents that conditional
variance of unobservable error term on explanatory variable(s) are constant. This assumption, as in
highlighted in Wooldridge [29], fails whenever the variance of the unobservables changes across different
segments of the population, which are determined by the different values of the explanatory variables.
Then, the usual ordinary least squares (OLS) standard errors are invalid and so hypothesis testing and
constructing confidence intervals. A number of tests have been proposed to determine if error terms are
homoskedastic or not. A significant part of these tests does not directly test whether the variance of the
unobservable error term remains constant with respect to the values of the explanatory variable(s). For
example, White [26] is an indirect heteroskedasticity test since it is based on the idea that the variance of
the error terms will be constant if the squares of the errors are independent of the explanatory variables,
the squares of the explanatory variables, and the products of the explanatory variables. Glejser [9]
proposed a test that relates absolute values of the error terms of the model to explanatory variable(s) that
might lead to heteroskedasticity. Heteroskedasticity tests employing the squares and/or absolute values of
the error terms need the most exact estimation of the error term since error terms cannot be observed even
in the population and must be indirectly estimated. If there are no endogenous explanatory variables or
omitted variable bias, the parameters of a CLRM are unbiased even if the error terms are heteroskedastic.
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Another important assumption for unbiased parameter estimations is that the regression variables are
measured without error. This assumption is mostly neglected in applied analysis by researchers.

As it is well-documented by the econometric theory, ordinary least squares estimators are biased
when the explanatory variables are measured with error [8, 19, 27]. Therefore, when the variables in the
regression model are observed with measurement error, the results of the heteroskedasticity tests may not
be valid, even if the error term is homoskedastic. In addition, it can be expected that the co-existence
of both measurement error variables and heteroskedastic errors will significantly affect the reliability of
the test results. Small or large measurement error variation, as well as a small or large sample size,
are critical factors that determine these expectations. As a result, in terms of applied analysis, mutual
evaluation of the performances of heteroskedasticity tests under the presence of error-in-variables is a
critical problem. The purpose of this paper is to conduct Monte Carlo simulations to compare the results
of the most preferable heteroskedasticity tests in the presence of error-in-variables in the CLRM.

Recent econometric literature is lack of studies comparing performances heteroskedasticity tests1. For
different sample sizes, Uyanto [24] investigated the performance of seven different heteroskedasticity
tests. The author concluded that the Goldfelt-Quandt and Harrison-McCabe tests performed better than
the others and the White test which is mostly used one has a weaker performance. Like Uyanto [24],
Adamec [1] compared the performances of heteroskedasticity tests under different mathematical forms
of heteroskedasticity. Results of Adamec [1] show that Bartlett, White, Harrison and Godlfelt-Quandt
tests have better performances than the other tests. The power of heteroskedasticity tests increases with
increasing sample size under different heteroskedasticity forms, according to Adamec [1].

Even though the recent literature did not pay attention in comparing the results of heteroskedasticity
tests in the presence of measurement error in the explanatory and/or response variables, Wallentin and
Agren [25] investigated the behavior of heteroscedasticity tests statistics in a simple regression model
when the regressor is measured with error 2. They calculated three different sets of residuals; the least
squares residuals, residuals calculated by using observed regressor values and residuals calculated using
fitted values of the regressor. Their simulations are for 50, 200 and 800 sample sizes. According to
their results, while the White test is the weakest one, the Glejser [9] and the Pesaran and Taylor [22]
tests perform better when they applied to three different residuals. Unlike Wallentin and Agren [25], we
compared the results of six commonly used heteroskedasticity tests for different levels of measurement
error variance under distinct forms of heteroskedasticity. We looked at their performance not just in
terms of error in the explanatory variable, but also in terms of error in the response variable and error
in both variables. As a result, this research offers a thorough comparison of heteroskedasticity tests.

According to the study described above, the Glejser test performs better when the regressor is measured
with error. In our study, we also concluded that the Glejser test performs better in most cases. However,
because the Glejser test allows us to apply alternative auxiliary regressions, we used different auxiliary
regressions to expand our results.

In Monte Carlo simulations, random variables taken from normal distribution. In addition, we make
assumptions about the mathematical form of heteroskedasticity, the degree of measurement error variance,
and sample size. For six heteroskedasticity tests, Monte Carlo simulation study is performed for comparing
the performances of these tests in the presence of heteroskedastic errors and variables with and without
measurement error. According to Monte Carlo simulation results based on simple regression, the power
of the tests is low in small samples under a linear heteroskedasticity form when the variables are not
observed truly. The power of these tests increases as the sample size increases. The results reveal that
measurement error in the explanatory variable impacts the power of the tests more than measurement

1Earlier studies comparing the performances of the heteroskedasticity tests are Harvey and Phillips [17] (the recursive
test has a better performance than the Goldfelt-Quandt test), Griffiths and Surekha [13] (the Szroter test is more powerful

one ), Lyon and Tsai [20] (the Koenker test is the powerful one). Results of Dufour et al. [7] confirms the results of Griffiths

and Surekha [13], and the Szroter test seems to be the best choice in terms of power.
2In Econometric Theory journal, Wooldridge [28] demonstrated a theoretical conclusion for the asymptotic performances

of heteroskedasticity tests in the presence of measurement error. The author defined the expected value of y (response

variable) conditional on x (explanatory variable) without error is the product of expected value of x with measurement
error (x*) and slope term (b) and showed that this is not related to derive the asymptotic properties of heteroskedasticity

tests. According to the author, the consistently estimated parameter is g, which is the coefficient of the x* in the presence

of an explanatory variable measured with error, rather than b, which is the coefficient of the true x. In addition to,
Wooldridge [28] showed that nR2 statistics, for testing heteroskedasticity, calculated from a regression with mismeasured x

does not have a finite chi-square distribution.
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error in the response variable, and the behavior of the tests is also controlled by measurement error in
the explanatory variable when both variables are measured with error. Simulation results show that the
Glejser test has the highest power among the six popular types of heteroscedasticity tests, while the
White test has the least power.

The remainder of this paper is organized as follows. Section 2 discusses measurement error and
heteroskedasticity tests. Section 3 presents the results of Monte Carlo simulations. Finally, Section 4
provides the conclusion.

2. Heteroskedasticity Tests and Measurement Error

Even though estimating the parameters of the CLRM suppresses the error terms in the estimation
procedure, testing the assumptions of it are based on the estimated error terms. There are several
potential obstacles to obtaining accurately estimated parameters: endogenous explanatory variables,
omitted variables and measurement error. These issues also affect hypothesis testing. Both econometrics
and statistics have provided strategies to address these challenges such as using heteroskedasticity-robust
standard errors for hypothesis testing and estimating the parameters with the use of techniques that
adjust the estimates for endogenous explanatory variables and measurement error. However, among
these robust-standard errors, in particular, should be employed in a variety of conditions; if the model
is specified correctly or parameters are estimated consistently [30]. Therefore, it is important to test
whether error terms are homoskedastic or not. Most of the heteroskedasticity tests are commonly based
on auxiliary regressions using explanatory variables. As a result, the null hypothesis asserts that the
coefficients of these explanatories are all equal to 0 simultaneously, reducing the auxiliary model to a
constant term model. Intuitively, it can be said that the coefficients of the test regression are also biased
if the variables are measured with error, resulting in inaccurate heteroskedasticity conclusions. However,
it is important to show that which heteroskedasticity test has a better performance in the presence of
mismeasured explanatory and/or response variables.

As a hidden assumption of the CLRM, no measurement error assumption states that differences be-
tween theoretical (correct or true) value of a variable and its observed value is the same. If there is
difference between these two, then a mismeasured variable is a “substitute” measure of a true variable.
Within the context of regression, Carroll et al. [5] noted that “the substitute variable is not merely mis-
measured version of the explanatory variable but is a separate variable acting as a type of proxy for
the explanatory variable”. In other words, measurement error is taken as a “surrogate variable” not
as a “manifest variable” which is mostly used in the path analysis. In this paper, we use simple linear
regression framework.

Yi = β0 + β1Xi + ui (1)

ui are error terms with zero mean and σ2
i variances which are heteroskedastic.

Suppose that we observe X∗ instead of X as below:

X∗
i = Xi + ϵi. (2)

Substituting Equation (2) into Equation (1) yields

Yi = β0 + β1Xi + (ui + β1ϵi). (3)

The error terms of Equation (3) (say ui1) includes both heteroskedastic errors and measurement errors.
Since most of the heteroskedasticity tests use the squared or absolute values of error terms as dependent
variable, testing heteroskedasticity will result in inaccurate in terms of mismeasured X. When dependent
variable is measured with error (Y ∗

i = Yi + ϵ
′

i), Equation (1) will be

Yi = β0 + β1Xi + (ui − ϵ
′

i) (4)

with the error term, ui2. A similar situation will be observed if both Y and X have measurement error.

Yi = β0 + β1Xi + (ui + β1ϵi − ϵ
′

i) (5)

where the new error term is ui3.
A number of tests for homoskedasticity have been proposed in the literature: some of them are Goldfeld

and Quandt [12], Glejser [9], Park [21], Harvey and Phillips [17], Hedayat and Robson [18], Szroeter [23],
Harrison and McCabe [15], Harvey [16], Bickel [3], Breusch and Pagan [4], and White [26]. The most
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employed heteroskedasticity tests in applied research are summarized in the following section based on
the model given in Equation (1).

2.1. Goldfeld-Quandt Test. Goldfeld and Quandt [12] proposed a test that can be used if the variance
of error is related to one of the explanatory variables in the main regression model. The underlying idea
of the test is to sort the data according to the explanatory variable that is thought to be related to the
variance of the error term, divide it into two separate parts after taking c observations from the middle,
to reveal change in variances clearly. The main model is estimated for the first n−c

2 and the last n−c
2

observations, and the respective residual sums of squares (RSS) are obtained. These sums are used to
compute the Goldfeld-Quandt test ratio which is expressed below:

λ =

RSSthe last obs

df

RSSthe first obs

df

. (6)

The λ statistics is distributed as F with df = n−c
2 − k degrees of freedoms under the assumptions of

normally distributed errors of the main regression. k expresses the number of parameters in the model
including the intercept term.

This test relies on correctly selecting the number of observations to need to be excluded (c) because of
the power of the test. Goldfeld and Quandt recommended that c=8 when working with 30 observations
in a two-explanatory model, and c=16 when working with 60 observations. These numbers correspond to
approximately 27% of the sample size. The sample sizes in this paper are 30, 50 and 200 and we omitted
observations accordingly following Goldfeld and Quandt’s recommendation.

2.2. Park Test. Park [21] defines the form of auxiliary regression as follows, based on the assumption
that error term variance is a function of explanatory variable(s):

σ2
i = σ2Xβ

i e
ui . (7)

Equation (8) is obtained by taking natural logarithms of both sides of Equation (7):

lnσ2
i = lnσ2 + β lnXi + ui. (8)

Since σ2
i is usually unknown, [21] replaces σ2

i by û2
i . Therefore, Equation (8) can be written as in Equation

(9):

ln û2
i = lnσ2 + β lnXi + vi. (9)

If β = 0, then logarithm of squared error terms equals to lnσ2 that is a constant value (say α). The Park
test is testing the significance of the estimated β. A statistically significant β points out heteroskedasticity
in the error term. In a multiple regression, the Park test turns to completely significance of the auxiliary
regression. Godlfeldt and Quandt [11] as cited in Gujarati [14] criticized this test in terms of the possibility
of violations of the CLRM assumptions in the test regression.

2.3. Glejser Test. Glejser [9] proposed a test that relates absolute values of the error terms of the model
to explanatory variable(s) that might lead to heteroskedasticity. This test relies on different mathematical
forms of the relation between the error variance and the explanatory variable.

The default mathematical form is |ûi| = a0 + a1Xi + vi and we also examined test’s performance by
using the following forms:

|ûi| = a0 + a1
√
Xi + vi, (10)

|ûi| = a0 + a1
1

Xi
+ vi, (11)

|ûi| = a0 + a1
1√
Xi

+ vi. (12)

Godlfeldt and Quandt [11] pointed out that error terms of the auxiliary regression might not have
zero mean, might be autocorrelated and/or heteroskedastic. Besides some of auxiliary regressions cannot
be estimated by OLS method since they are nonlinear according to their parameters. Under the null
hypothesis of homoscedasticity, the test statistic, nR2, is asymptotically distributed as χ2

(k) where k is

the number of variables of the estimated model. Here, R2 is the coefficient of determination from the
test regression. The Glejser test is only valid when the errors are conditionally symmetrical.
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2.4. Harvey Test. The Harvey test assumes that error variance is an exponential function of explanatory
variable(s) [16]. The auxiliary regression is

σ2
i = ea0+a1Xi+wi . (13)

Estimating this model by OLS requires taking the logarithm of both sides of the equation which is
expressed below:

lnu2
i = a0 + a1Xi + wi. (14)

The test statistic, nR2, is distributed as χ2
(k) where k is the number of variables of the estimated model.

2.5. Breusch-Pagan Test. According to Breusch and Pagan [4], error variance can be a function of
some or all explanatory variables. Variance of error term of Equation (1) can be written as follows:

σ̂2
i = a0 + a1Xi. (15)

Under a1 = 0 assumption, variance of the error term of the model given in Equation (1) is constant. To

test the null of the error terms being homoskedastic, σ̂2 =
û2
i

n is defined. The test regression is

pi = a0 + a1Xi + vi (16)

where pi =
û2
i

σ̂2 .

This test is a Lagrange multiplier test, and the test statistic is distributed χ2 with p − 1 degrees of
freedom under the assumption of error term ui being normal and homoskedastic. p is the number of
explanatory variables in the model of interest.

2.6. White Test. White’s test [26] is based on a regression of the squared residuals from the original
regression on the original X variables or regressors, their squared values, and the cross product(s) of the
regressors if there are more than one regressor. The auxiliary regression of Equation (1) for the White
test is given by Equation (17):

û2
i = a0 + a1Xi + a2X

2
i + vi. (17)

Unlike the other tests for a simple regression, the null hypothesis is α1 = α2 = 0. Under the null
hypothesis test statistics is nR2 that is distributed χ2 with 2 degrees of freedom for Equation (17).
Although the White test is preferable because it is not based on the assumption of normality and is
easy to apply, it has the disadvantage that it creates a degree of freedom problem because there are too
many regressors in the auxiliary regression model. The reason for the rejection of the null hypothesis in
the White test may not be that there is a heteroskedasticity problem in the model, but that there is a
specification error. In other words, the White test can be used not only to test for heteroskedasticity but
also model specification errors.

In sum, the logic behind the heteroskedasticity tests is similar. An auxiliary regression shows whether
the error variance is a function of explanatory variable(s) of the model. Unlike the other tests, the test
proposed in Goldfelt and Quandt [12] is based on ordering the observations beginning with the lowest X
value.

3. Monte Carlo Simulations and Performances of Heteroskedasticity Tests

Monte Carlo simulations are used to assess comparing the performances of heteroskedasticity tests
in the presence of heteroskedastic errors and variables with and without error. R-project programming
language is used for all statistical simulations and analyses. The variables of the simple regression
model, Y and X, are generated from a multivariate normal distribution. Sample sizes are chosen to
be comparable to those common in the social sciences as 30, 50 and 200 [6, 10]. Two mathematical
forms of heteroskedasticity are used: σ2

i = σ2Xi and σ2
i = σ2X2

i . In each loop, 10,000 repetitions are
run. Standard deviations of measurement errors for X and Y are taken values in a sequence 0.5 to 5
in an increasing order by 0.5. We reported results when measurement error variance is 0.5 (small), 2.0
(medium) and 5 (large). Throughout the experiment, b in Equation (1) was set at β0 = 1 and β1 = 0.5.

The power of each heteroskedasticity test is obtained in this study to examine the efficacy of the
heteroskedasticity test techniques. As is well known, the power of a test is defined as the probability of
rejecting the null hypothesis (homoskedastic errors) when it is false (i.e., in the presence of heteroskedastic
errors). Hence, in both tables and figures, the ratios (%) of rejection of the null hypothesis as determined
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by the heteroskedasticity tests are utilized to assess the simulation findings in comparison to the nominal
type I error rates (α = [0.01; 0.05; 0.10]).

Table 1. Performances of heteroskedasticity tests with/without measurement error in X

Name of the Test Het. Form: Linear Het. Form: Quadratic Het. Form: Linear Het. Form: Quadratic Het. Form:Linear Het. Form:Quadratic

n = 30 n = 50 n = 200
Without Measurement Error Without Measurement Error Without Measurement Error
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Goldfeld-Quandt 0.046 0.157 0.250 0.229 0.458 0.580 0.104 0.270 0.384 0.507 0.739 0.829 0.643 0.834 0.899 0.998 1,000 1,000
Park 0.042 0.135 0.211 0.149 0.319 0.440 0.063 0.186 0.282 0.275 0.516 0.639 0.317 0.586 0.708 0.945 0.990 0.996
Glejser 0.059 0.184 0.278 0.273 0.512 0.637 0.127 0.308 0.427 0.557 0.778 0.863 0.719 0.884 0.933 1,000 1,000 1,000
Harvey 0.039 0.124 0.201 0.143 0.311 0.430 0.066 0.188 0.284 0.298 0.532 0.653 0.369 0.612 0.723 0.963 0.991 0.997
Breusch-Pagan 0.045 0.167 0.268 0.179 0.441 0.591 0.102 0.284 0.411 0.419 0.713 0.828 0.709 0.890 0.940 0.999 1,000 1,000
White 0.041 0.110 0.181 0.141 0.305 0.434 0.080 0.190 0.288 0.305 0.545 0.692 0.565 0.807 0.895 0.997 1,000 1,000

With Measurement Error (small) With Measurement Error (small) With Measurement Error (small)
Goldfeld-Quandt 0.047 0.156 0.253 0.229 0.459 0.579 0.103 0.267 0.380 0.507 0.739 0.829 0.636 0.827 0.895 0.999 1,000 1,000
Park 0.046 0.131 0.208 0.149 0.319 0.437 0.059 0.179 0.272 0.276 0.513 0.639 0.310 0.582 0.709 0.943 0.990 0.996
Glejser 0.059 0.181 0.275 0.273 0.511 0.637 0.124 0.303 0.422 0.557 0.778 0.862 0.713 0.880 0.931 1,000 1,000 1,000
Harvey 0.040 0.122 0.195 0.143 0.311 0.430 0.067 0.181 0.276 0.298 0.530 0.652 0.358 0.607 0.719 0.963 0.992 0.997
Breusch-Pagan 0.044 0.165 0.265 0.179 0.441 0.591 0.100 0.281 0.411 0.419 0.713 0.829 0.700 0.886 0.939 0.999 1,000 1,000
White 0.042 0.110 0.180 0.141 0.305 0.434 0.080 0.189 0.284 0.305 0.545 0.693 0.560 0.804 0.893 0.997 1,000 1,000

With Measurement Error (medium) With Measurement Error (medium) With Measurement Error (medium)
Goldfeld-Quandt 0.046 0.150 0.248 0.229 0.459 0.580 0.098 0.259 0.371 0.507 0.738 0.829 0.620 0.819 0.888 0.999 1,000 1,000
Park 0.043 0.130 0.204 0.150 0.318 0.438 0.058 0.172 0.268 0.274 0.513 0.641 0.299 0.564 0.699 0.943 0.990 0.996
Glejser 0.056 0.177 0.273 0.272 0.512 0.637 0.118 0.296 0.410 0.556 0.778 0.862 0.695 0.869 0.925 1,000 1,000 1,000
Harvey 0.041 0.117 0.194 0.144 0.312 0.430 0.060 0.174 0.268 0.298 0.532 0.651 0.345 0.594 0.713 0.964 0.991 0.996
Breusch-Pagan 0.042 0.160 0.263 0.179 0.441 0.590 0.099 0.271 0.402 0.420 0.712 0.828 0.682 0.877 0.933 0.999 1,000 1,000
White 0.041 0.107 0.177 0.141 0.305 0.435 0.078 0.184 0.280 0.306 0.545 0.693 0.544 0.792 0.883 0.997 1,000 1,000

With Measurement Error (large) With Measurement Error (large) With Measurement Error (large)
Goldfeld-Quandt 0.045 0.145 0.239 0.229 0.459 0.581 0.090 0.248 0.357 0.508 0.737 0.828 0.586 0.794 0.871 0.999 1,000 1,000
Park 0.042 0.120 0.201 0.148 0.317 0.438 0.060 0.170 0.261 0.274 0.510 0.642 0.273 0.536 0.669 0.944 0.989 0.996
Glejser 0.053 0.169 0.266 0.271 0.512 0.637 0.112 0.282 0.397 0.555 0.777 0.862 0.660 0.848 0.911 1,000 1,000 1,000
Harvey 0.040 0.114 0.189 0.143 0.312 0.428 0.061 0.173 0.264 0.297 0.532 0.652 0.316 0.564 0.682 0.965 0.991 0.996
Breusch-Pagan 0.040 0.155 0.254 0.179 0.440 0.592 0.092 0.261 0.386 0.419 0.712 0.829 0.651 0.856 0.919 0.999 1,000 1,000
White 0.041 0.104 0.169 0.141 0.304 0.435 0.074 0.178 0.268 0.305 0.545 0.694 0.511 0.762 0.864 0.997 1,000 1,000

Table 1 shows the simulation results if the variable X is measured with and without error. When the
type of heteroskedasticity is linear and the sample size is small, the power of the tests ranges between
4% and 28%. For example, at a 10% significance level, the Glejser test’s performance increases from
28% to 43% for a sample size of 50. If the sample size is 200, the test’s power increases to 86%. When
heteroskedasticity is a nonlinear function of variable X, the power of the tests is substantially higher,
even for small sample sizes. When the sample size is 200, all tests strongly reject the null hypothesis
of homoskedastic errors, when it is false. When the variable X has a small measurement error, the test
results change slightly from those obtained when there is no measurement error in the variables. If the
type of heteroskedasticity is linear, however, there are significantly larger declines in the performance of
the tests as the variance of the measurement error increases. In the nonlinear heteroskedasticity version,
this decline is not as high as in the linear form. In other words, if the form of heteroskedasticity is
squared and the significance level is kept high, the large measurement error variance in X decreases the
test performance less. When the tests are ordered according to their performances, the Glejser test is
followed by the Glodfelt-Quandt test and the Breusch-Pagan test. The White test is found to be weak
compared to other tests in rejecting the false null hypothesis when the sample size is large, and variance
of measurement error is high.

Table 2 summarized the simulation results when the response variable Y is measured with error. The
existence of an error-prone response variable with small size in the regression has almost no effect on
the performances of the heteroskedasticity tests. Their power is very small even at the 10% significance
levels when the form of heteroskedasticity is σ2Xi. While the power of the tests ranges between 14%
and 27% at the 1% significance level, their powers significantly increase at the 5% and 10% significance
levels when the form of heteroskedasticity is dependent on the square of X and the measurement error
variance of it is at a medium level. In brief, powers of the heteroskedasticity tests are lower for the small
sample sizes when the error term is heteroskedastic. Their performances increase with the increase in the
sample size and measurement error in variable Y does not have a dramatic effect on the powers of the
tests especially when the form of heteroskedasticity is σ2X2

i .
We also evaluated how the tests would perform if the measurement error variances of X and Y were

in the reverse direction. The graphics are used to present these findings for the sample sizes 30 and
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Table 2. Performances of heteroskedasticity tests with/without measurement error in Y

Name of the Test Het. Form: Linear Het. Form: Quadratic Het. Form: Linear Het. Form: Quadratic Het. Form: Linear Het. Form: Quadratic

n = 30 n = 50 n = 200
Without Measurement Error Without Measurement Error Without Measurement Error
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Goldfeld-Quandt 0.046 0.157 0.250 0.229 0.458 0.580 0.104 0.270 0.384 0.507 0.739 0.829 0.643 0.834 0.899 0.998 1,000 1,000
Park 0.042 0.135 0.211 0.149 0.319 0.440 0.063 0.186 0.282 0.275 0.516 0.639 0.317 0.586 0.708 0.945 0.990 0.996
Glejser 0.059 0.184 0.278 0.273 0.512 0.637 0.127 0.308 0.427 0.557 0.778 0.863 0.719 0.884 0.933 1,000 1,000 1,000
Harvey 0.039 0.124 0.201 0.143 0.311 0.430 0.066 0.188 0.284 0.298 0.532 0.653 0.369 0.612 0.723 0.963 0.991 0.997
Breusch-Pagan 0.045 0.167 0.268 0.179 0.441 0.591 0.102 0.284 0.411 0.419 0.713 0.828 0.709 0.890 0.940 0.999 1,000 1,000
White 0.041 0.110 0.181 0.141 0.305 0.434 0.080 0.190 0.288 0.305 0.545 0.692 0.565 0.807 0.895 0.997 1,000 1,000

With Measurement Error (small) With Measurement Error (small) With Measurement Error (small)
Goldfeld-Quandt 0.047 0.156 0.253 0.229 0.459 0.579 0.103 0.267 0.380 0.507 0.739 0.829 0.636 0.827 0.895 0.999 1,000 1,000
Park 0.046 0.131 0.208 0.149 0.319 0.437 0.059 0.179 0.272 0.276 0.513 0.639 0.310 0.582 0.709 0.943 0.990 0.996
Glejser 0.059 0.181 0.275 0.273 0.511 0.637 0.124 0.303 0.422 0.557 0.778 0.862 0.713 0.880 0.931 1,000 1,000 1,000
Harvey 0.040 0.122 0.195 0.143 0.311 0.430 0.067 0.181 0.276 0.298 0.530 0.652 0.358 0.607 0.719 0.963 0.992 0.997
Breusch-Pagan 0.044 0.165 0.265 0.179 0.441 0.591 0.100 0.281 0.411 0.419 0.713 0.829 0.700 0.886 0.939 0.999 1,000 1,000
White 0.042 0.110 0.180 0.141 0.305 0.434 0.080 0.189 0.284 0.305 0.545 0.693 0.560 0.804 0.893 0.997 1,000 1,000

With Measurement Error (medium) With Measurement Error (medium) With Measurement Error (medium)
Goldfeld-Quandt 0.046 0.150 0.248 0.229 0.459 0.580 0.098 0.259 0.371 0.507 0.738 0.829 0.620 0.819 0.888 0.999 1,000 1,000
Park 0.043 0.130 0.204 0.150 0.318 0.438 0.058 0.172 0.268 0.274 0.513 0.641 0.299 0.564 0.699 0.943 0.990 0.996
Glejser 0.056 0.177 0.273 0.272 0.512 0.637 0.118 0.296 0.410 0.556 0.778 0.862 0.695 0.869 0.925 1,000 1,000 1,000
Harvey 0.041 0.117 0.194 0.144 0.312 0.430 0.060 0.174 0.268 0.298 0.532 0.651 0.345 0.594 0.713 0.964 0.991 0.996
Breusch-Pagan 0.042 0.160 0.263 0.179 0.441 0.590 0.099 0.271 0.402 0.420 0.712 0.828 0.682 0.877 0.933 0.999 1,000 1,000
White 0.041 0.107 0.177 0.141 0.305 0.435 0.078 0.184 0.280 0.306 0.545 0.693 0.544 0.792 0.883 0.997 1,000 1,000

With Measurement Error (large) With Measurement Error (large) With Measurement Error (large)
Goldfeld-Quandt 0.045 0.145 0.239 0.229 0.459 0.581 0.090 0.248 0.357 0.508 0.737 0.828 0.586 0.794 0.871 0.999 1,000 1,000
Park 0.042 0.120 0.201 0.148 0.317 0.438 0.060 0.170 0.261 0.274 0.510 0.642 0.273 0.536 0.669 0.944 0.989 0.996
Glejser 0.053 0.169 0.266 0.271 0.512 0.637 0.112 0.282 0.397 0.555 0.777 0.862 0.660 0.848 0.911 1,000 1,000 1,000
Harvey 0.040 0.114 0.189 0.143 0.312 0.428 0.061 0.173 0.264 0.297 0.532 0.652 0.316 0.564 0.682 0.965 0.991 0.996
Breusch-Pagan 0.040 0.155 0.254 0.179 0.440 0.592 0.092 0.261 0.386 0.419 0.712 0.829 0.651 0.856 0.919 0.999 1,000 1,000
White 0.041 0.104 0.169 0.141 0.304 0.435 0.074 0.178 0.268 0.305 0.545 0.694 0.511 0.762 0.864 0.997 1,000 1,000

Table 3. Performances of heteroskedasticity tests with/without measurement error in
X and Y

Name of the Test Het. Form: Linear Het. Form: Quadratic Het. Form: Linear Het. Form: Quadratic Het. Form: Linear Het. Form: Quadratic

n = 30 n = 50 n = 200
Without Measurement Error Without Measurement Error Without Measurement Error
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Goldfeld-Quandt 0.046 0.157 0.250 0.229 0.458 0.580 0.104 0.270 0.384 0.507 0.739 0.829 0.643 0.834 0.899 0.998 1,000 1,000
Park 0.042 0.135 0.211 0.149 0.319 0.440 0.063 0.186 0.282 0.275 0.516 0.639 0.317 0.586 0.708 0.945 0.990 0.996
Glejser 0.059 0.184 0.278 0.273 0.512 0.637 0.127 0.308 0.427 0.557 0.778 0.863 0.719 0.884 0.933 1,000 1,000 1,000
Harvey 0.039 0.124 0.201 0.143 0.311 0.430 0.066 0.188 0.284 0.298 0.532 0.653 0.369 0.612 0.723 0.963 0.991 0.997
Breusch-Pagan 0.045 0.167 0.268 0.179 0.441 0.591 0.102 0.284 0.411 0.419 0.713 0.828 0.709 0.890 0.940 0.999 1,000 1,000
White 0.041 0.110 0.181 0.141 0.305 0.434 0.080 0.190 0.288 0.305 0.545 0.692 0.565 0.807 0.895 0.997 1,000 1,000

With Measurement Error (small) With Measurement Error (small) With Measurement Error (small)
Goldfeld-Quandt 0.041 0.135 0.220 0.185 0.402 0.525 0.090 0.240 0.346 0.429 0.659 0.763 0.552 0.768 0.846 0.992 0.999 1,000
Park 0.042 0.122 0.197 0.123 0.285 0.397 0.053 0.163 0.254 0.221 0.453 0.577 0.260 0.517 0.646 0.892 0.974 0.990
Glejser 0.053 0.162 0.258 0.228 0.457 0.581 0.103 0.267 0.384 0.475 0.709 0.806 0.628 0.822 0.893 0.998 1,000 1,000
Harvey 0.039 0.112 0.185 0.123 0.280 0.396 0.056 0.160 0.253 0.247 0.469 0.595 0.308 0.542 0.660 0.925 0.980 0.991
Breusch-Pagan 0.039 0.146 0.246 0.145 0.383 0.528 0.086 0.245 0.368 0.344 0.628 0.756 0.609 0.823 0.896 0.994 0.999 1,000
White 0.037 0.103 0.164 0.120 0.265 0.380 0.068 0.165 0.256 0.251 0.465 0.610 0.465 0.723 0.832 0.980 0.998 1,000

With Measurement Error (medium) With Measurement Error (medium) With Measurement Error (medium)
Goldfeld-Quandt 0.028 0.106 0.183 0.124 0.304 0.417 0.060 0.181 0.272 0.289 0.508 0.620 0.361 0.596 0.705 0.939 0.981 0.991
Park 0.035 0.100 0.166 0.083 0.209 0.308 0.038 0.129 0.204 0.140 0.324 0.448 0.422 0.661 0.765 0.970 0.994 0.997
Glejser 0.037 0.126 0.207 0.151 0.342 0.462 0.070 0.195 0.297 0.322 0.557 0.675 0.157 0.380 0.509 0.710 0.893 0.946
Harvey 0.032 0.099 0.164 0.088 0.218 0.319 0.042 0.126 0.208 0.170 0.355 0.474 0.191 0.398 0.519 0.788 0.917 0.956
Breusch-Pagan 0.024 0.113 0.196 0.088 0.275 0.407 0.057 0.181 0.287 0.209 0.463 0.601 0.394 0.654 0.768 0.923 0.985 0.994
White 0.027 0.081 0.135 0.085 0.191 0.283 0.050 0.124 0.201 0.161 0.328 0.449 0.278 0.522 0.661 0.849 0.959 0.984

With Measurement Error (large) With Measurement Error (large) With Measurement Error (large)
Goldfeld-Quandt 0.023 0.087 0.153 0.084 0.222 0.322 0.041 0.129 0.208 0.180 0.362 0.474 0.192 0.397 0.518 0.751 0.886 0.925
Park 0.029 0.084 0.139 0.054 0.149 0.227 0.027 0.094 0.161 0.081 0.213 0.313 0.081 0.236 0.353 0.422 0.687 0.801
Glejser 0.023 0.094 0.167 0.090 0.242 0.347 0.041 0.138 0.223 0.187 0.392 0.510 0.226 0.445 0.568 0.828 0.939 0.966
Harvey 0.023 0.083 0.141 0.062 0.162 0.253 0.028 0.094 0.163 0.101 0.251 0.358 0.100 0.251 0.364 0.552 0.755 0.839
Breusch-Pagan 0.016 0.085 0.156 0.051 0.181 0.291 0.034 0.125 0.211 0.112 0.300 0.434 0.205 0.427 0.561 0.688 0.874 0.931
White 0.021 0.065 0.109 0.056 0.135 0.198 0.033 0.092 0.153 0.095 0.211 0.309 0.141 0.315 0.443 0.545 0.785 0.874

200. Figure 1 and 4 illustrate the results. Figures 1 and 2 show bar graphs in the following order: no
measurement error in X and Y , small measurement error in Y , medium measurement error in Y , and
large measurement error in Y , where measurement error of X is set at a small size that is 0.5. Figures 3
and 4 has the same order when measurement error of Y is set this small size.
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Figure 1. Performances of heteroskedasticity tests: M. E. in Y is small, medium, and
large while M. E. in X is small (n = 30)

Figure 13 shows how adjusting the magnitude of the dependent variable’s measurement error affects
test results when the explanatory variable’s measurement error is set to a small value with the results
of simulations when both variables are at their true values. The tests reject the false null hypothesis
(type II) in less than 10% of 10,000 trials under the conditions n = 30, α = 0.01 and the assumption of
σ2
i = σ2Xi. This result does not change when the variables take their error-free values. Even though the

tests’ power increases as type I error increases, it is still less than 40%. The results also reveal that when
variable X is adjusted to a small measurement error, the amount of the measurement error of Y has no
bigger effect on the power of the tests. As the previous simulation results showed, the power of the tests
grows even with a small sample size when the assumption of σ2

i = σ2X2
i . According to the results in

Figure 1, the Glejser test outperforms rather than the others, it is followed by the Goldfelt-Quandt and
the Breusch-Pagan tests.

Figure 2. Performances of heteroskedasticity tests: M. E. in Y is small, medium, and
large while M. E. in X is small (n = 200)

Figure 2 shows the simulation results under the identical conditions as in Figure 1 except for the sample
size. In a larger sample size, performances of the tests increased in rejecting the false null hypothesis and
this increase is greater when the form of heteroskedasticity is σ2

i = σ2X2
i than σ2

i = σ2Xi. The Glejser
test and the Breusch-Pagan tests show the best performance if the sources of heteroskedasticity is Xi

instead of X2
i . The Park and the Harvey tests are the weakest tests under measurement error in Y and

X.

3The values shown on the y-axis represent the ratios (%) of rejection of heteroskedasticity tests while x-axis represent
the form of the heteroskedasticity.
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Figure 3. Performances of heteroskedasticity tests: M. E. in X is small, medium, and
large while M. E. in Y is small (n = 30)

Figure 3 presents the results when variance of measurement error of Y is set at a small value. In
other words, the magnitude of measurement error variance of variable X has been modified. Modifying
the amount of the measurement error variance of X has a higher influence on the power of the het-
eroskedasticity tests when n = 30, as seen in Figures 1 and 3. The performance of the tests decreases
as the measurement error variance of X increases, and this conclusion is independent of the form of
heteroskedasticity. As can be seen from Figure 4, increasing the sample size does not improve the per-
formances of the heteroskedasticity tests if the measurement error variance of the explanatory variable
is large. It should be noted that even if X and Y are measured at their true values, the power of the
tests is less than 70%. This result is consistent with the findings of previous studies. In brief, simulation
results showed that the magnitude of measurement error variance of X has the greatest impact on the
power of the tests, independent of the magnitude of measurement error variance of Y .

Figure 4. Performances of heteroskedasticity tests: M. E. in X is small, medium, and
large while M. E. in Y is small (n = 200)

In this paper, we also looked at how well the heteroskedasticity tests performed when the heteroskedas-
ticity was in the form of σ2

i = E(Yi). Simulation results were summarized in Table 4. If the sample size
is 30 or 50 and the significance level is 1%, the power of the tests is roughly 4% and 8% when there is
no measurement error in the variables. When the sample size is 200, their power is less than 52% at the
same significance level. In comparison to the Glejser test, the Breusch-Pagan test performs better. The
power of the tests rises as the Type I error increases, ranging from 57 percent to 86 percent in the large
sample.
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Table 4. Performances of heteroskedasticity tests with/without measurement error in
X and Y when the heteroskedasticity form is σ2

i = σ2E(Yi)

n = 30 n = 50 n = 200
1% 5% 10% 1% 5% 10% 1% 5% 10%
No measurement error

Goldfeld-Quandt 0.034 0.125 0.207 0.069 0.197 0.304 0.453 0.690 0.787
Park 0.033 0.110 0.182 0.045 0.142 0.226 0.190 0.428 0.569
Glejser 0.041 0.142 0.229 0.080 0.227 0.339 0.520 0.755 0.843
Harvey 0.034 0.104 0.173 0.047 0.139 0.224 0.232 0.457 0.584
Breusch-Pagan 0.032 0.131 0.222 0.070 0.215 0.329 0.522 0.764 0.856
White 0.031 0.091 0.151 0.059 0.148 0.229 0.384 0.648 0.772

Small measurement error
Goldfeld-Quandt 0.031 0.103 0.181 0.056 0.174 0.271 0.362 0.609 0.717
Park 0.033 0.102 0.170 0.038 0.127 0.209 0.152 0.376 0.510
Glejser 0.037 0.126 0.209 0.070 0.193 0.300 0.429 0.669 0.775
Harvey 0.032 0.093 0.158 0.041 0.126 0.201 0.190 0.392 0.520
Breusch-Pagan 0.027 0.113 0.203 0.058 0.188 0.291 0.424 0.684 0.784
White 0.029 0.085 0.139 0.051 0.127 0.207 0.304 0.555 0.688

Medium measurement error
Goldfeld-Quandt 0.021 0.082 0.151 0.039 0.129 0.214 0.212 0.430 0.555
Park 0.029 0.087 0.148 0.029 0.102 0.174 0.093 0.267 0.395
Glejser 0.025 0.098 0.171 0.045 0.147 0.230 0.251 0.482 0.606
Harvey 0.024 0.082 0.143 0.029 0.100 0.168 0.112 0.271 0.387
Breusch-Pagan 0.018 0.091 0.164 0.040 0.138 0.224 0.249 0.486 0.618
White 0.021 0.068 0.117 0.037 0.099 0.163 0.170 0.367 0.499

Large measurement error
Goldfeld-Quandt 0.017 0.069 0.130 0.026 0.097 0.167 0.105 0.261 0.370
Park 0.024 0.075 0.130 0.021 0.080 0.142 0.052 0.174 0.273
Glejser 0.018 0.073 0.137 0.026 0.101 0.174 0.121 0.286 0.404
Harvey 0.021 0.074 0.121 0.020 0.078 0.137 0.058 0.169 0.262
Breusch-Pagan 0.012 0.068 0.132 0.024 0.095 0.169 0.116 0.290 0.404
White 0.017 0.056 0.099 0.027 0.074 0.128 0.082 0.206 0.315

While the power of the tests is similar when the dependent variable has a small measurement error
variance, a small measurement error in the explanatory variable lowers the power of the tests. Small
measurement error in both variables has the same effect with small measurement error in the explanatory
variable. The power of the tests grows as the sample size and Type I error increase, and the Breusch-Pagan
test has a greater power. Although the tests have a better performance in the large sample, increases
in measurement error variance in both variables reduces the power of the tests which is irrespective of
the significance level. Under this circumstance, both Breusch-Pagan and Glejser tests perform better
than the other tests. The Harvey and the Park tests are the weakest tests in rejecting the wrong null
hypothesis if the measurement error variances are large. We only reported simulation results when both
variables have small, medium, and large measurement error. All other results are available upon request.

Ali and Giaccotto [2] showed that the statistical power of the Glejser test depends on the true form
of heteroscedasticity. However, the loss of power due to the type of auxiliary regression tends to be low
especially in reciprocal values of X and

√
X. In this paper, we also examined performance of the Glejser

test under different types of auxiliary regressions with error-in-variables and reached relatively different
results. The results were reported in Table 5 and Table 6. Even though the power of the Glejser test does
not appear to be strongly dependent on the type of auxiliary regression for n = 30, rejection rates differ
in both heteroskedasticity form and significance level when there is no measurement error in X and/or Y
(Table 5). For example, while the test rejects the wrong null hypothesis 6% of 10,000 samples when it is
|ûi| = α0+α1Xi) (default), the rejection rate becomes 4% if the auxiliary regression is |ûi| = α0+α1

1
Xi

.

The gap between the rejection rates is broader at the 5% significance level when the heteroskedasticity
form is σ2Xi, compared to the default auxiliary regression. Interestingly, this similar result is obtained
at the 1% significance level when the form of heteroskedasticity is σ2X2

i

The gap between the rejection rates of the performances of the test under different type of auxiliary
regression can be negligible at the 1% significance level under σ2Xi, heteroskedasticity form which is
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irrespective of the amount of measurement error variance of variable X, However, this gap is relatively
extended when the significance levels is taken as 5% and 10%. Under the form of σ2X2

i , power of the
Glejser test has the lowest value among the others if the auxiliary regression is |ûi| = α0 + α1

1
Xi

at the

1% significance level, and it decreases as the measurement error variance of X increases. The power of
the Glejser test does not strongly depend on the type of auxiliary regression neither measurement error
in the response variable nor the amount of it. As it is shown before, power of the Glejser test decreases
when both X and Y are measured with error. However, this power depends on the form of auxiliary
regression. The test has always a better performance when it is |ûi| = α0 + α1Xi since the estimated
model is Yi = β0 + β1Xi + ui.

As it was shown before, even though the power the Glejser test is higher under the nonlinear het-
eroskedasticity form than the linear form, its power decreases as measurement error variance of X and
Y increase in a larger sample (n = 200). A similar result is obtained when the auxiliary regression
is changed. As the form of heteroskedasticity is σ2X2

i and the significance level is 10%, the disparity
between the powers of the test under different auxiliary regressions widens whenever compared to the
default one (Table 6).

Table 5. Performance of the Glejser test under different type of auxilary regressions (n=30)

Het. Form: Het. Form: Het. Form: Het. Form: Het. Form: Het. Form:

Without Measurement Error Without Measurement Error Without Measurement Error
Func. Form 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
α0 + α1

√
Xi 0.052 0.169 0.269 0.231 0.477 0.611

The results are the same.
α0 + α1

1
Xi

0.037 0.146 0.250 0.170 0.432 0.590

α0 + α1
1√
Xi

0.043 0.154 0.255 0.193 0.452 0.602

α0 + α1Xi 0.059 0.184 0.278 0.273 0.512 0.637
Small Measurement Error in X Medium Measurement Error in X Large Measurement Error in X

α0 + α1

√
Xi 0.046 0.153 0.243 0.183 0.412 0.550 0.032 0.117 0.201 0.111 0.293 0.411 0.021 0.088 0.160 0.058 0.194 0.299

α0 + α1
1
Xi

0.030 0.128 0.227 0.125 0.359 0.521 0.018 0.090 0.172 0.060 0.228 0.371 0.010 0.054 0.122 0.023 0.119 0.218

α0 + α1
1√
Xi

0.035 0.139 0.235 0.148 0.381 0.536 0.023 0.103 0.184 0.079 0.256 0.392 0.012 0.066 0.137 0.031 0.144 0.252

α0 + α1Xi 0.051 0.164 0.257 0.229 0.457 0.580 0.037 0.132 0.214 0.150 0.341 0.463 0.026 0.103 0.175 0.090 0.242 0.346
Small Measurement Error in Y Medium Measurement Error in Y Large Measurement Error in Y

α0 + α1

√
Xi 0.052 0.167 0.266 0.231 0.476 0.611 0.051 0.164 0.263 0.230 0.476 0.611 0.047 0.156 0.256 0.229 0.476 0.611

α0 + α1
1
Xi

0.037 0.143 0.249 0.170 0.432 0.590 0.035 0.139 0.246 0.169 0.431 0.590 0.034 0.133 0.236 0.168 0.430 0.590

α0 + α1
1√
Xi

0.042 0.153 0.259 0.193 0.451 0.602 0.041 0.149 0.252 0.192 0.452 0.602 0.039 0.142 0.244 0.192 0.450 0.602

α0 + α1Xi 0.059 0.181 0.275 0.273 0.511 0.637 0.056 0.177 0.273 0.272 0.512 0.637 0.053 0.169 0.266 0.271 0.512 0.637
Small Measurement Error in X and Y Medium Measurement Error in X and Y Large Measurement Error in X and Y

α0 + α1

√
Xi 0.044 0.151 0.243 0.182 0.410 0.611 0.031 0.112 0.199 0.110 0.294 0.421 0.019 0.084 0.153 0.057 0.194 0.299

α0 + α1
1
Xi

0.030 0.127 0.225 0.125 0.360 0.521 0.017 0.088 0.170 0.060 0.228 0.370 0.010 0.054 0.119 0.023 0.118 0.219

α0 + α1
1√
Xi

0.035 0.136 0.233 0.148 0.380 0.535 0.021 0.098 0.181 0.079 0.256 0.391 0.013 0.063 0.133 0.031 0.145 0.252

α0 + α1Xi 0.053 0.162 0.258 0.228 0.457 0.581 0.037 0.126 0.207 0.151 0.342 0.462 0.023 0.094 0.167 0.090 0.242 0.347

Table 6. Performance of the Glejser test under different type of auxiliary regressions
(n = 200)

Het. Form: Het. Form: Het. Form: Het. Form: Het. Form: Het. Form:

Without Measurement Error Without Measurement Error Without Measurement Error
Func. Form 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
α0 + α1

√
Xi 0.652 0.870 0.931 0.999 1,000 1,000

The results are the same.
α0 + α1

1
Xi

0.621 0.867 0.883 0.999 1,000 1,000

α0 + α1
1√
Xi

0.638 0.871 0.935 0.999 1,000 1,000

α0 + α1Xi 0.719 0.884 0.933 1,000 1,000 1,000
Small Measurement Error in X Medium Measurement Error in X Large Measurement Error in X

α0 + α1

√
Xi 0.556 0.805 0.888 0.999 1,000 1,000 0.359 0.638 0.762 0.948 0.991 0.997 0.184 0.429 0.572 0.727 0.913 0.956

α0 + α1
1
Xi

0.510 0.792 0.885 0.994 0.999 1,000 0.271 0.582 0.724 0.906 0.982 0.992 0.075 0.279 0.422 0.445 0.731 0.830

α0 + α1
1√
Xi

0.535 0.803 0.891 0.995 1,000 1,000 0.310 0.618 0.749 0.933 0.989 0.996 0.114 0.350 0.502 0.590 0.846 0.921

α0 + α1Xi 0.633 0.829 0.896 0.998 1,000 1,000 0.439 0.678 0.779 0.970 0.994 0.997 0.253 0.482 0.601 0.827 0.939 0.967
Small Measurement Error in Y Medium Measurement Error in Y Large Measurement Error in Y

α0 + α1

√
Xi 0.643 0.866 0.928 0.999 1,000 1,000 0.623 0.852 0.921 0.999 1,000 1,000 0.572 0.588 0.829 0.999 1,000 1,000

α0 + α1
1
Xi

0.611 0.863 0.931 0.999 1,000 1,000 0.591 0.849 0.925 0.999 1,000 1,000 0.554 0.824 0.906 0.999 1,000 1,000

α0 + α1
1√
Xi

0.630 0.866 0.933 0.999 1,000 1,000 0.610 0.854 0.926 0.999 1,000 1,000 0.502 0.830 0.908 0.999 1,000 1,000

α0 + α1Xi 0.713 0.880 0.931 1,000 1,000 1,000 0.695 0.869 0.925 1,000 1,000 1,000 0.660 0.848 0.911 1,000 1,000 1,000
Small Measurement Error in X and Y Medium Measurement Error in X and Y Large Measurement Error in X and Y

α0 + α1

√
Xi 0.548 0.799 0.886 0.996 0.999 1,000 0.340 0.619 0.748 0.948 0.991 0.997 0.161 0.394 0.535 0.728 0.913 0.956

α0 + α1
1
Xi

0.503 0.786 0.883 0.994 0.999 1,000 0.254 0.560 0.708 0.906 0.982 0.992 0.065 0.249 0.395 0.444 0.731 0.830

α0 + α1
1√
Xi

0.528 0.799 0.888 0.995 1,000 1,000 0.297 0.596 0.737 0.933 0.989 0.996 0.102 0.321 0.472 0.589 0.845 0.920

α0 + α1Xi 0.628 0.822 0.893 0.998 1,000 1,000 0.422 0.661 0.765 0.970 0.994 0.997 0.226 0.445 0.568 0.828 0.939 0.966
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In multiple regressions, the Glejser test may not be favored since it necessitates determining the
explanatory variable or variables that induce heteroskedasticity, as well as the auxiliary regression form.
By keeping potential multicollinearity in mind, the findings produced here can be used as a reference for
multiple regression.

4. Conclusion

In teaching basic econometrics, the learners are, in general, told that the homoskedasticity assumption
of classical linear regression model will not most probably be satisfied in real time data applications, and
therefore needs to be tested. They are also told that measurement error in the variables is an implicit
assumption of it and generally is ignored in applications. Even though related literature provides different
heteroskedasticity tests and correction methods for measurement error, performances of these tests under
measurement error have not been comprehensively evaluated. In real-time data, even though we expect
a sort of measurement error, we cannot exactly know the magnitude of it. Therefore, a simulation
study helps us to compare performances of different heteroskedasticity tests in various scenarios of the
magnitude of measurement error with the cases of measurement error in the explanatory and/or outcome
variables.

In this paper, we evaluated performances of heteroskedasticity tests under measurement error by using
Monte Carlo simulations. Simulations are done for the most used six tests with three sample sizes of
30, 50, and 200 at the 1%, 5%, and 10% significant levels. Power of the tests are evaluated under three
mathematical forms of heteroskedasticity; error variance is a linear and nonlinear function of explanatory
variable X and a linear function of expected value of the response variable.

There are several main conclusions obtained from the simulation results. First of all, when the true
values of the variables are used, heteroskedasticity tests evaluated in this study are weak in failing the
wrong null hypothesis when the form of heteroskedasticity is linear function of the explanatory variable
and this result is irrespective of significance levels. However, power of the tests is higher when the error
variance is a function of squared X and their power increases as sample size increases. The Glejser test
and the Breusch-Pagan and/or the Goldfelt-Quandt test have the most power and the White test has
the least power. The powers of the other tests are comparable and lie between the Glejser test and the
White test. These results are compatible with the results of Uyanto [24] when there is no measurement
error.

Simulation results show that power of the tests is lower when the variables are measured with error
when the form of heteroskedasticity is the linear function of explanatory variable. Moreover, their power
decreases as the measurement error variance increases and increases in sample size does not guaranty
increases in tests’ power. The results also show that measurement error in the explanatory variable has a
greater impact on power of the tests than measurement error in the outcome variable. Measurement error
in variables did not change the order of the tests according to their power. The Glejser test is the most
powerful one while the White test is weak, and the other tests lie in between them. In brief, since measure-
ment error inflates the variance of the explanatory variable and response variable, heteroskedasticity tests
lose their power in detecting heteroskedasticity. Our results imply that using heteroskedasticity-robust
inference after OLS estimation which weights the heteroskedastic errors by the explanatory variable, this
type of inference might not solve the problem when the explanatory variable is measured with error. The
methods correcting measurement error are suggested to use in the estimations; however, they might not
be the final solutions for testing the heteroskedasticity.
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