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1. Introduction 

The term orientation refers to the position of any object 

relative to a reference point. Real-time orientation tracking is 

used in many areas of our lives. Especially since aerial 

vehicles are now utilized in numerous aspects of our lives 

(Konar et al. ,2024), this term is frequently used in the field 

of aviation, particularly in relation to autonomous vehicles. 

The most well-known examples are autonomous vehicles 

(Kim & Golnaraghi, 2004). Autonomous vehicles do not 

require a user inside and can be guided by artificial 

intelligence or remotely. The orientation of an autonomous 

vehicle is often referred to as “attitude” (Munguia & Grau, 

2011). The attitude information of an autonomous vehicle is 

calculated using an algorithm called Attitude and Heading 

Reference Systems (AHRS) using data from accelerometer, 

gyroscope and magnetometer sensors (Diaz, Müller, Jiménez, 

& Zampella, 2015). Sensors containing these three 

(accelerometer, gyroscope and magnetometer) or two 

(accelerometer, gyroscope) measuring instruments are called 

Inertial Measurement Unit (IMU). IMU sensors are mostly 

used with the Kalman Filter (KF) for AHRS. The Kalman 

Filter is a recursive filter consisting of a set of mathematical 

equations that allows the position of vehicles to be calculated 

efficiently (Welch, 2020). For Kalman filter-based AHRS 

systems, models with different mathematical interpretations 

such as Euler angles and quaternions have been developed 

(Shuster, 1993). In this study, the calculation speed and 

measurement values of different mathematical models were 

compared. 

The data obtained from IMU sensors are measurements 

that can be used to calculate the movement or position of the 

object at certain time intervals. Their low cost and versatility 

make them a good choice for many applications (Saraf, 

Moon, & Madotto, 2023). IMUs are often used in 

combination with a microcontroller (Ferdinando, Khoswanto, 

& Purwanto, 2012; Nagui, Attallah, Zaghloul, & Morsi, 2020; 

Vigrahala, Ramesh, Devanaboyina, & Reddy, 2021). 

Microcontrollers have been used in many applications other 

than IMUs because of their compact size and low power 

requirements (Samiullah, Irfan, & Rafique). 

Microcontroller selection has been an important issue for 

system designers and a subject that needs to be decided 

carefully (Parai, Das, Das, & Engineering, 2013). In making 

this choice, designers consider, among other things, how long 

it takes the microcontroller to perform the planned action 

(Gelsinger, 2001). In real-time position tracking, fast 

calculations are required. Any slow calculation may cause 

situations such as accidents and loss of control. The 

possibility of loss of control and accidents cannot be ignored 

for vehicles used in critical areas such as unmanned aerial 

vehicles (UAVs). The areas of use of UAVs include border 
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security, search and rescue, wildlife research, firefighting, 

precision agriculture, surveying and mapping (Couturier & 

Akhloufi, 2021). It also covers critical areas such as the 

military. In addition, the complexity, cost and required 

qualifications of projects are increasing day by day (Menghal 

& Laxmi, 2010). This trend also affects UAV projects.  

In this study, among the characteristics of 

microcontrollers in projects, the computation speed is 

emphasized.  Limited computing capabilities of 

microcontrollers (Immonen & Hämäläinen, 2022) are a 

known problem. Although it is known that the selection of 

more advanced microcontrollers in the selection of 

microcontrollers in projects can be a solution to this problem, 

it is predicted that models with simple mathematical models 

will work more performance independent of the 

microcontroller and will be a solution.  When this solution is 

evaluated for the drones given in Table 1, it is seen that only 

changing the model used will have a positive effect on the 

product. 

 

Table 1. Drone Types and Qualifications (Emimi, Khaleel, & Alkrash, 2023) 

Drones Type US$ price Drawbacks Advantages Applications 

Rotary Wing 

(helicopter) 
$20-150k High price Hovering, large payload Supply drops, inspection 

Rotary Wing 

(multicopter) 
$3-50k 

Short flight time, small 

payload 

Hovering availability, low 

price 

Photography, filmography, 

inspection 

Fixed Wing $20-150k 
Launching, landing 

High price 

Large area coverage, long 

endurance, high speed 

Structural inspection, area 

survey 

There are several known ways to calculate orientation in 

UAVs. In this study, two different models on the Kalman filter 

are discussed, namely Euler angles and quaternion-based 

models.  

Euler angles (Kang & Park, 2011) and quaternion-based 

models (Wang, Zhang, & Sun, 2015) are available in the 

literature.  Euler angles and quaternion-based models have 

respective advantages and disadvantages. Euler angles have a 

clear physical interpretation and do not contain unnecessary 

parameters (Hasan et al., 2018). However, Euler angles have a 

singularity problem in some angles (Fan, Zhu, & Ren, 2016). 

Quaternions, on the other hand, do not have a singularity 

problem but do not have a clear physical interpretation (Hasan 

et al., 2018). 

In this study, the performance of Euler angles and 

quaternion-based AHRS models, which are frequently used in 

autonomous control applications, is compared. The 

performance comparisons of the models are tested on the 

ATmega2560 embedded system. The advantages and 

disadvantages of these two models are also mentioned in the 

study. A comparison of the two models in terms of computation 

speed is also made. 

2. Materials and Methods 

2.1. Hardware Used 
In this study, Arduino Mega 2560 (ATmega2560) was used 

as microcontroller and MPU-9255 10 DOF (Degrees of 

Freedom) sensor was used. The sensor specifications are given 

in Table 2 and the microcontroller specifications are given in 

Table 3. 

 

 

 

 

 

 

 

 

 

 

 

Table 2. MPU-9255 Sensor Specifications 

Driver IC 

The MPU-9255 is a sensor 

that includes a 3-axis 

accelerometer, a 3-axis 

gyroscope, and a 3-axis 

digital compass. 

BMP280, a digital barometric 

pressure sensor 

 

 

Incorporates a 16-bit ADC. 

The gyroscope has 

selectable full-scale ranges 

of ±250, ±500, ±1000, and 

±2000°/sec. The 

accelerometer offers full-

scale ranges of ±2g, ±4g, 

±8g, and ±16g. The 

compass provides a full-

scale range of ±4800 µT 

Includes an integrated temperature 

sensor for compensation of 

temperature measurements. The 

pressure measurement range spans 

from 300 to 1100 hPa, which 

corresponds to altitudes from 

+9000m to -500m relative to sea 

level. The accuracy is ±0.12 hPa 

(±1m) within the range of 700 hPa to 

900 hPa and temperatures from 

25°C to 40°C 

 

Table 3. Arduino Mega 2560 (ATmega2560) Specifications 

Feature Description 

Core 8-bit AVR 

Performance 16 MHz 

Flash Memory 256 KB 

RAM 8 KB 

Digital I/O Pins 54 

ADC Channels 16-channel 

PWM Output Pins 15 

Serial Communication Ports 4 (UART) 

I2C  1 (TWI) 

SPI  1 

Operating Voltage 5V 

 

Sensor used in this study is MPU-9255 10 Degrees of 

Freedom (DOF) sensor is given in figure 1. 
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Figure 1. MPU-9255 10 DOF Sensor 

It is a frequently used sensor for Inertial Navigation 

Systems (INS) as a 10 DOF sensor composed of a 3-axis 

accelerometer, 3-axis gyroscope, 3-axis magnetometer, and 

one pressure sensor. 

The sensor and microcontroller wiring were done as 

illustrated in Figure 2 and the microcontroller and sensor were 

powered via USB. 

 

 
Figure 2. Sensor and Microcontroller Connections 

 

Figure 3. Block Diagram of Experimental System

3. Magnetometer Calibration, Calculation of Euler 
Angles and Calculation of Quaternions 

This section outlines the procedures for magnetometer 

calibration, as well as the mathematical approaches used to 

calculate orientation in terms of Euler angles and quaternions. 

These steps are essential for ensuring accurate and reliable 

Attitude and Heading Reference System (AHRS) 

performance. 

3.1. Magnetometer Calibration and Gyroscope 
Measurement Model 
A three-axis gyroscope will measure the angular rate about 

the x, y and z axes of the sensor frame, labeled p, q and r 

respectively and given in equation 1. The gyroscope values are 

divided by the scale factor specified in the datasheet before 

use. The gyroscope measurement model used in this paper is 

given in equation 2 (Lam, Stamatakos, Woodruff, & Ashton, 

2003). 

𝜔 = [
𝑝
𝑞
𝑟
] (1) 

𝜔𝑢𝑠𝑒𝑑 =
𝜔

𝑠𝑐𝑎𝑙𝑒𝑓𝑎𝑐𝑡𝑜𝑟
+ 𝑏 + 𝑛 (2) 

Where b is the gyroscope bias and n is the white noise that 

distorts the gyroscope rate measurement.  

The magnetometer scale factor is determined according to 

the sensor data sheet and the offset values are calculated as 

indicated below. The sensitivity adjustment data for each axis 

is saved in the sensor ROM during production and is indicated 

by adding ASA (Asahi Sensitivity Adjustment) to the 

beginning of the relevant axis 

ASAX: Value to be used in magnetometer X axis 

sensitivity adjustment. 
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ASAY: Value to be used in magnetometer Y axis sensitivity 

setting. 

ASAZ: Value to be used in magnetometer Z axis sensitivity 

setting. The equation used to calculate the magnetometer scale 

factor is given in equation 3. 

 𝑆𝑐𝑎𝑙𝑒 𝐹𝑎𝑐𝑡𝑜𝑟𝑖 =
(𝐴𝑆𝐴𝑖 − 128) × 0.5

128
+ 1 (3) 

 In Equation 1, 𝑖 represented the x, y or z axis. The 

calculated scale factors are shown in the study as Xsf, Ysf or Zsf 

for the three axes. 

The magnetometer offset values were found using 

Equations 4, 5 and 6 for the three axes (Poulose, Kim, & Han, 

2019). 

𝑋𝑜𝑓𝑓 = (
𝑀𝑥𝑚𝑎𝑥−𝑀𝑥min

2
) − 𝑀𝑥𝑚𝑎𝑥𝑋𝑠𝑓 (4) 

𝑌𝑜𝑓𝑓 = (
𝑀𝑦𝑚𝑎𝑥 − 𝑀𝑦min

2
) − 𝑀𝑦𝑚𝑎𝑥𝑌𝑠𝑓 (5) 

𝑍𝑜𝑓𝑓 = (
𝑀𝑧𝑚𝑎𝑥 − 𝑀𝑧min

2
) − 𝑀𝑧𝑚𝑎𝑥𝑍𝑠𝑓 (6) 

In Equations 2, 3 and 4, the offsets in the three axes are 

denoted by Xoff, Yoff and Zoff. Mx, My and Mz represent the 

raw magnetometer readings for the three axes. The calibrated 

values of the magnetometer readings for the X, Y and Z axes 

are calculated in equations 7, 8 and 9 (Poulose et 

al.,2019).

𝑀𝑋 = 𝑋𝑠𝑓 × 𝑀𝑥 + 𝑋𝑜𝑓𝑓 (7) 

𝑀𝑌 = 𝑌𝑠𝑓 × 𝑀𝑦 + 𝑌𝑜𝑓𝑓 (8) 

𝑀𝑍 = 𝑍𝑠𝑓 × 𝑀𝑧 + 𝑍𝑜𝑓𝑓 (9) 

 Here MX, MY, MZ are used as calibrated magnetometer 

data in this study. 

3.2. Calculation of Euler Angles 
Euler angles were calculated with accelerometer and 

magnetometer data in equations 10, 11 and 12 (Hanafi, 

Abozied, Elhalwagy, & Elfarouk, 2019; Tomaszewski, 

Rapiński, Pelc-Mieczkowska, & Geoinformatics, 2017). 

𝑅𝑜𝑙𝑙(∅) = arctan (
𝐴𝑦

𝐴𝑧
) (10) 

𝑃𝑖𝑡𝑐ℎ(𝜃) = arctan(
−𝐴𝑥

√𝐴𝑦2 + 𝐴𝑧2
) (11) 

𝑌𝑎𝑤(𝜑) = arctan (
cos(∅)𝑀𝑌 − sin(∅)𝑀𝑍

cos(𝜃)𝑀𝑋 + sin(𝜃) sin(∅)𝑀𝑌 + sin(𝜃) cos(∅)𝑀𝑍
) (12) 

Ax, Ay and Az correspond to accelerometer measurements 

for all three axes, MX, MY and MZ are calibrated 

magnetometer measurements along the three axes. 

3.3. Calculation of Quaternions 
Quaternions are tools used to represent three-dimensional 

rotations. Quaternions are found in equation 13 (P. Kim & 

Huh, 2011) using Euler angles. 

(

𝑞1

𝑞2

𝑞3

𝑞4

) =

[
 
 
 
 
 
 𝑐𝑜𝑠

∅

2
𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

𝜑

2
+ 𝑠𝑖𝑛

∅

2
𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

𝜑

2

𝑠𝑖𝑛
∅

2
𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

𝜑

2
− 𝑐𝑜𝑠

∅

2
𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

𝜑

2

𝑐𝑜𝑠
∅

2
𝑠𝑖𝑛

𝜃

2
𝑐𝑜𝑠

𝜑

2
+ 𝑠𝑖𝑛

∅

2
𝑐𝑜𝑠

𝜃

2
𝑠𝑖𝑛

𝜑

2

𝑐𝑜𝑠
∅

2
𝑐𝑜𝑠

𝜃

2
𝑠𝑖𝑛

𝜑

2
+ 𝑠𝑖𝑛

∅

2
𝑠𝑖𝑛

𝜃

2
𝑐𝑜𝑠

𝜑

2]
 
 
 
 
 
 

(13) 

 

Here q1 is the scalar component, q2, q3 and q4 are the 

vectorial components of the quaternions. 

3.4. Kalman Filter 
Kalman Filter based AHRS is used in this paper. The 

Kalman Filter was created by Rudolf Emil Kalman to solve 

the filtering problem in aerospace and aircraft (Kalman, 

1960). The algorithm of the Kalman Filter is provided in 

figure 4 (P. Kim & Huh, 2011).

 

 

 

 

 

Q: Process Noise Covariance Matrix           P: Error Covariance Matrix 

R: Measurement Covariance Matrix            H: Observation Matrix 

A: State Transition Matrix                    Z: Measurements Vector 

X: State Vector       I: Identity Matrix 

K: Kalman Gain 
 

Figure 4. Kalman Filter Algorithm 

2. Calculate Estimating State 

𝑥𝑘
− = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1        

 3. Calculate Error Covariance 

�̂�𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄      

 

 

 

 

 

                                   

4. Calculate the Kalman Gain 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 

        5. Update estimate with measurement zk 

𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘

−) 

          6. Update the Error Covariance 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘
− 

 

7. Next Loop 

1. Initial State Conditions 

 𝑥𝑘−1  and  𝑃𝑘−1 
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Step 1 is based on determining the initial conditions of the 

filter. The error covariance (P), the process noise matrix (Q) 

and the measurement error matrix (R) are also determined 

here. 

Step 2 is the first step of the estimation part. The 

measurements at time k-1 are approximated with the state 

transition matrix and the measurements at time k are 

approximated with the system control variables.  

In step 3, the error covariance matrix is updated, while the 

Q matrix takes into account biases and uncertainties due to 

model inaccuracies and integrates them into the error 

covariance update. 

In step 4, the Kalman gain is calculated. The Kalman gain 

allows to add or subtract the amount of error according to the 

accuracy of the measurements, which take values between 0-

1. 

In step 5, the previously calculated (step 1) measurements 

are updated with the changes due to the error and the new value 

is obtained with these values in the next iteration. 

In step 6 the error covariance matrix is updated again and 

used to update the new error covariance matrix in step 2. 

In step 7 the Kalman filter starts repeating all these steps 

for the next measurements. 

  The Kalman Filter (KF) is one of the structures frequently 

used in AHRS algorithms (Pourtakdoust, Ghanbarpour Asl, & 

Technology, 2007). AHRS is an algorithm used to define the 

orientation of a device. KF is one of the filters that allows us 

to calculate the orientation with data from multiple sensors for 

AHRS.      

3.5. Euler-based AHRS Model 
The state vector x in the model consists of roll (∅), pitch 

(θ) and yaw (φ) values and is given as a vector in Equation 14.  

𝑥 = (
∅
𝜃
𝜑

) (14) 

The initial error covariance matrix and the process noise 

covariance matrix of the estimated state are identical. The roll, 

pitch and yaw covariances are represented on the diagonal 

respectively and given in equations 15 and 

16.

𝑃0 = [

𝜎∅
2 0 0

0 𝜎𝜃
2 0

0 0 𝜎𝜑
2

] (15) 

𝑄 = [

𝜎∅
2 0 0

0 𝜎𝜃
2 0

0 0 𝜎𝜑
2

] (16) 

The sensor measurement error is represented on the 

diagonal of the measurement covariance matrix and is given in 

equation 17. 

𝑅 = [

𝜎𝑠𝑒𝑛𝑠𝑜𝑟 𝑒𝑟𝑟𝑜𝑟
2 0 0

0 𝜎𝑠𝑒𝑛𝑠𝑜𝑟 𝑒𝑟𝑟𝑜𝑟
2 0

0 0 𝜎𝑠𝑒𝑛𝑠𝑜𝑟 𝑒𝑟𝑟𝑜𝑟
2

] (17) 

The state transfer matrix is used to calculate the next (k) 

measurements with the previous (k-1) measurements and is 

given in equation 18 as a 3x3 unit matrix in this model. 

𝐴 = [
1 0 0
0 1 0
0 0 1

] (18)   

The control matrix is used to add the effect of the gyro 

measurements on the system. The control matrix is given in 

equation 19.                         

𝐵 = [
𝑑𝑡 0 0
0 𝑑𝑡 0
0 0 𝑑𝑡

] (19) 

 

‘dt’ in matrix B is the discrete time.  The input vector 

consists of gyroscope measurements and is given in equation 

20. 

 

𝑈 = (
𝑝
𝑞
𝑟
) (20) 

‘p, q and r’ represent the gyroscope measurements in 3 

axes.  The measurement pattern vector is used to correct the 

measurements and is given in equation 21.  

 

𝑍𝑘 =

(

 
 
 
 

arctan (
𝐴𝑦

𝐴𝑧
)

arctan (
−𝐴𝑥

√𝐴𝑦2 + 𝐴𝑧2
)

arctan (
cos(∅)𝑀𝑌 − sin(∅)𝑀𝑍

cos(𝜃)𝑀𝑋 + sin(𝜃) sin(∅)𝑀𝑌 + sin(𝜃) cos(∅)𝑀𝑍
)
)

 
 
 
 

(21) 

 

The measurement transfer matrix H is a 3x3 unit matrix 

that allows us to correct the measurements by subtracting the 

measurements obtained in the estimation step from the 

measurement vector and is given in Equation 22. 

 

𝐻 = [
1 0 0
0 1 0
0 0 1

] (22) 

3.6. Quaternion Based AHRS Model 
The state vector x contains the four-quaternion data used 

to compute the orientation and is given in equation 23. 

𝑥 = (

𝑞1

𝑞2

𝑞3

𝑞4

) (23) 

The relationship between the angular velocity and the rate 

of change in quaternion is given in equation 24(Wen-shu, 

Liao-ni, & Qi, 2010). 

�̇� =
1

2
[

0 −𝑝 −𝑞 −𝑟
𝑝 0 𝑟 −𝑞
𝑞 −𝑟 0 𝑝
𝑟 𝑞 −𝑝 0

] [

𝑞1

𝑞2

𝑞3

𝑞4

] =
1

2
Ω𝑘𝑞𝑘−1 (24) 

The dynamic update function representing the quaternions 

is given in equation 25. 

𝑞�̂� = f(𝑞𝑡−1, 𝜔𝑡) = (𝐼4 +
𝑑𝑡

2
Ω𝑘) 𝑞𝑘−1 (25) 

In the model used in this study, the state transfer matrix is 

a vector and nonlinear. It is linearized by calculating the 

Jacobian of the transfer matrix. The nonlinear transfer matrix 
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is given in equation 26. 

f(q, ω) =  

[
 
 
 
 
 𝑞1 −

𝑑𝑡

2
𝑝𝑞2 −

𝑑𝑡

2
𝑞𝑞3 −

𝑑𝑡

2
𝑟𝑞4

𝑞2 +
𝑑𝑡

2
𝑝𝑞1 −

𝑑𝑡

2
𝑞𝑞4 +

𝑑𝑡

2
𝑟𝑞3

𝑞3 +
𝑑𝑡

2
𝑝𝑞𝑧 +

𝑑𝑡

2
𝑞𝑞1 −

𝑑𝑡

2
𝑟𝑞2

𝑞4 −
𝑑𝑡

2
𝑝𝑞3 +

𝑑𝑡

2
𝑞𝑞2 +

𝑑𝑡

2
𝑟𝑞1]

 
 
 
 
 

(26) 

Equations 27 and 28 give the linearization operations by 

taking the Jacobian matrix. The linearized transfer matrix is 

given in equation 29.  

▽ f(𝑞𝑡−1, 𝜔𝑡) =
𝜕f(𝑞𝑡−1,𝜔𝑡)

𝜕𝑞
(27)

= [
𝜕f(𝑞𝑡−1,𝜔𝑡)

𝜕𝑞1
  

𝜕f(𝑞𝑡−1,𝜔𝑡)

𝜕𝑞2
  

𝜕f(𝑞𝑡−1,𝜔𝑡)

𝜕𝑞3
  

𝜕f(𝑞𝑡−1,𝜔𝑡)

𝜕𝑞4
] (28)

 

▽ 𝑓 =

[
 
 
 
 
 1

−𝑑𝑡

2
𝑝

−𝑑𝑡

2
𝑞

−𝑑𝑡
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= 𝐴     (29)    

The measurement model vector will help us to correct the 

measurements and is given in equation 30. 

𝑧𝑘 =
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(30) 

The measurement transfer matrix H is a 4x4 unit matrix 

that allows us to correct the measurements by subtracting the 

measurements obtained in the estimation step from the 

measurement vector and is given in equation 31. 

𝐻 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] (31)                 

The AHRS models, whose mathematical models are given 

above, were operated and compared in the experimental setup 

in Figure 5. 

 

 

Figure 5. Experimental Setup 

4. Results and Discussion 

In this study, two different AHRS models were compared 

on the embedded system under the same conditions. Before the 

comparison, the model outputs at specific angles were 

recorded. Graphs and tables below show the readings from the 

two distinct models used in the study at identical angles. To 

ensure methodological alignment between graphical and 

tabular representations, both formats were prepared using the 

same 15 measurements, which were considered sufficient for 

an accurate comparison of model performance. 

 
Figure 6. Roll at -90-degree Euler Model 

 

Figure 7. Roll at -90-degree Quaternion Model 

 

Figures 6 and 7 illustrate the results of two different AHRS 

models for roll angle at -90 degrees. Table 4 presents the values 

of the two different AHRS models at -90 degrees. 

 
Table 4. Roll Angle Values at -90 Degrees 

Reading 

Order 

Quaternion 

Based 

AHRS 

Euler Angles 

Based Model 

AHRS 

Time(s) 

1 7.73 0.04 0.1 

2 -89.85 -89.86 0.2 

3 -90.40 -90.26 0.3 

4 -90.42 -90.40 0.4 

5 -90.18 -90.18 0.5 

6 -90.07 -90.06 0.6 

7 -90.40 -90.38 0.7 

8 -89.82 -89.83 0.8 

9 -90.35 -90.32 0.9 

10 -90.39 -90.38 1 

11 -90.22 -90.22 1.1 

12 -90.08 -90.08 1.2 

13 -89.98 -89.98 1.3 

14 -90.29 -90.27 1.4 

15 -90.00 -90.00 1.5 
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Figure 8. Pitch degree at 0-degree Euler Model 

   
Figure 9. Pitch degree at 0-degree Quaternion Model 

 

Figures 8 and 9 illustrate the results of two different AHRS 

models for pitch angle at 0 degrees. Table 5 shows the values 

of two different AHRS models at 0 degrees.  

 

Table 5. 0 Degree Pitch Angle Values 

Reading 

Order 

Quaternion 

Based 

AHRS 

Euler Angles 

Based Model 

AHRS 

Time(s) 

1 84.10 90.29 0.1 

2 -0.40 3.16 0.2 

3 -0.14 0.63 0.3 

4 -0.29 -0.30 0.4 

5 -0.17 -0.19 0.5 

6 -0.23 -0.23 0.6 

7 -0.28 -0.09 0.7 

8 -0.46 -0.35 0.8 

9 -0.17 -0.18 0.9 

10 -0.29 -0.33 1 

11 -0.32 -0.10 1.1 

12 -0.24 -0,18 1.2 

13 -0.16 -0.17 1.3 

14 -0.20 -0.29 1.4 

15 -0.02 0.10 1.5 

 

 

 

 

 

 

 

 
Figure 10. Yaw at 0-degree Quaternion Model 

 
Figure 11. Yaw at 0-degree Euler Model 

Figures 10 and 11 illustrate the results of two different 

AHRS models for a yaw angle at 0 degrees. Table 6 shows the 

values of two different AHRS models at 0 degrees.  

 

Table 6. Yaw Angle Values at 0 Degree 

Reading 

Order 

Quaternion 

Based AHRS 

Euler Angles 

Based Model 

AHRS 

Time(s) 

1 1.79 0.18 0.1 

2 0.16 0.17 0.2 

3 0.18 0.19 0.3 

4 0.16 0.17 0.4 

5 0.18 0.19 0.5 

6 0.19 0.19 0.6 

7 0.18 0.19 0.7 

8 0.18 0.18 0.8 

9 0.18 0.19 0.9 

10 0.13 0.14 1 

11 0.19 0.20 1.1 

12 0.15 0.15 1.2 

13 0.18 0.18 1.3 

14 0.20 0.21 1.4 

15 0.17 0.18 1.5 
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 Figure 12. Roll Angle Comparison 

Figure 13. Pitch Angle Comparison 
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 Figure 14. Yaw Angle Comparison 

According to Tables 4, 5 and 6, it is observed that two 

different models give close values for the roll angle in terms of 

experimental values to the expected theoretical value in 

measurements made in the same environment and conditions. 

This shows that both models can calculate the roll angle with 

a certain accuracy. However, the results of the models do not 

completely coincide with the theoretical value and contain 

some margin of error. 

For the pitch angle, significant differences were observed 

between iterations, especially at the fifteenth iteration, where 

the quaternion-based model gave the closest value to the 

theoretical value. These findings show that the quaternion-

based model shows higher accuracy at certain iteration 

numbers. Nonetheless, it is essential to recognize that the 

calculated values have a certain degree of error. 

For the yaw angle, although the two models give similar 

results, it is observed that the precision is high and the 

accuracy is relatively low when compared to other angles in 

converging to the theoretical value. The accuracy of the yaw 

angle is lower than the other angles and there are significant 

error margins in the calculated results. This finding shows that 

the models may have certain limitations in the calculation of 

the yaw angle and are open to improvement. 

Figures 12, 13 and 14 illustrate the AHRS models and how 

far the unfiltered measurements deviate from the true value, 

i.e., the amount of error they have. According to the graphs, 

the two different AHRS models are closer to the true value 

with smaller errors than the unfiltered measurements. 

The performances of the Euler and quaternion models were 

compared using various metrics: 

Computation Time: The calculations for the quaternion-

based AHRS model, though inherently more complex, 

demonstrated comparable performance to the Euler angles-

based model when optimized for computation time. 

Measurement of computation times using the embedded 

system timer indicated that the quaternion-based model had a 

time of 15 milliseconds, while the Euler angles-based model 

achieved a time of 5 milliseconds. The difference in 

computation times between the two models was quantified as 

10 milliseconds. 

Memory Utilization: Euler angles-based model used less 

memory while quaternions required more memory. 

Accuracy: It was observed that the quaternion-based model 

approached the theoretical value more successfully than the 

Euler angles-based model in advanced iterations. 

In addition, the quadrotor control law may affect the results 

depending on the characteristics of the model used. Euler 

angles, although a simple and straightforward method, can 

lead to singularity problems such as the gimbal lock problem, 

which can adversely affect computational accuracy and system 

stability. In contrast, quaternions avoid such problems and 

provide more stable and accurate control. The Kalman filter 

can be effectively used with both models for noise reduction 

and state estimation. However, quaternion-based control laws 

offer higher accuracy and system stability than Euler angles 

because quaternions perform better without encountering 

transformation problems like Euler angles. In the literature, it 

is emphasized that quaternion-based control laws are more 

robust and accurate than Euler angles (Lei, Liu, & Wang, 2024; 

Zhi, Li, Song, Yu, & Zhang, 2017). 

5. Conclusion 

This paper presents a comparative analysis of the Euler and 

quaternion models for embedded systems in real-time 
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applications, emphasizing their significance in aviation, where 

AHRS plays a vital role in ensuring precise attitude estimation 

for navigation, stability, and control. The study recommends 

quaternions for applications requiring higher accuracy and 

stability, while Euler angles are more suitable for simpler, 

lightweight implementations. Significant findings contribute 

to enhancing the accuracy and reliability of AHRS models in 

aviation systems. By adapting mathematical models to an 

embedded system and conducting performance tests, the study 

provides valuable insights into algorithm optimization and 

sensor calibration. The impact of computation time differences 

on system performance was measured at 10 ms using the 

experimental setup, with fifteen measurements taken for each 

angle to compare the models. While both models produced 

similar results for the roll angle, the quaternion-based model 

demonstrated superior alignment with theoretical values for 

the pitch angle after multiple iterations, confirming its 

advantage in long-term accuracy. Additionally, the study 

underscores the importance of computation speed, particularly 

for autonomous aircraft and other aviation applications. To 

further enhance AHRS performance, the paper proposes 

models that can serve as benchmarks for future tests on 

different embedded platforms. Moreover, the development or 

integration of alternative algorithms to improve yaw angle 

accuracy will further increase the reliability and effectiveness 

of AHRS in aviation. This research provides a crucial 

reference for engineers and researchers working on real-time 

orientation calculations in embedded aviation systems, 

guiding advancements in flight control and navigation 

technologies. 
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