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Abstract— Early detection of diseases is critical to the success of the treatment process, especially in life-

threatening conditions such as cancer. In diseases such as breast cancer, early mass detection can be decisive for 

the effectiveness of the treatment process. This study compares the performance of YOLOv8 (You Only Look Once) 

and U-Net models for mass detection in breast images. In the first stage, both models are evaluated on CBIS-

DDSM and INbreast datasets. The results show that the YOLOv8 model outperforms U-Net in precision metrics. 

In the CBIS-DDSM dataset, YOLOv8 achieved a precision value of 0.800123, while U-Net achieved 0.762345. 

In the INbreast dataset, YOLOv8 achieved a precision value of 0.785234, while U-Net achieved a value of 

0.742345. These findings show that YOLOv8 provides more successful and faster results, especially in object 

detection tasks, and is more efficient in areas where fast decisions need to be made, such as medical imaging. 

Future studies can develop hybrid solutions by combining the strengths of both models and optimize model speeds 

to achieve faster and more accurate results in medical diagnostics. 
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1. Introduction 

Breast cancer is one of the most common types of cancer among women worldwide and is one of the leading 

causes of cancer-related deaths. Millions of women are diagnosed with breast cancer every year and genetic 

factors, environmental factors, lifestyle changes and hormonal factors are effective in the development of the 

disease (Desantis et al. 2019). Early detection is a factor that directly affects the success rates in the treatment of 

breast cancer, and detection of cancer in the early stages makes the treatment process more effective (Bleyer and 

Welch 2012). Early detection significantly increases the life expectancy of patients and ensures a rapid response 

to treatment. 

The most commonly used methods for early detection of breast cancer include mammography, ultrasound, 

magnetic resonance imaging (MRI) and physical examination. Mammography is the most common screening 

method that uses low doses of X-rays to visualize breast tissue and is generally recommended for women aged 40 

years and older (Giaquinto et al. 2024). However, mammography may have lower accuracy rates in women with 

dense breast tissue and may lead to false negative results (Houssein et al. 2022). In addition, other screening 

modalities such as ultrasound and MRI can be used to obtain more accurate results than mammography, but these 

modalities are usually limited to specific patients (Wang et al.2013). Traditional screening methods can produce 

false positive results, leading to unnecessary biopsies and psychological stress for patients (Humphrey et al. 2002). 

In recent years, deep learning methods offer significant potential in the early detection of breast cancer. Deep 

learning has revolutionized the field of medical imaging with its ability to analyze large data sets and recognize 

complex patterns (Esteva et al. 2017). Convolutional neural networks (CNN) have been widely used to detect 

abnormalities in medical images such as mammography, ultrasound and MRI, and these methods achieve high 

accuracy rates in detecting early stages of breast cancer (Litjens et al. 2017). By analyzing medical images, deep 

learning systems accurately recognize cancer symptoms that vary in each individual's breast and produce faster 
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results than traditional methods (Nasser and Yusof 2023).Deep learning-based systems can continuously improve 

themselves through databases and achieve higher accuracy rates over time (Russakovsky et al. 2015). 

In addition to these developments, in recent years, object detection models, especially models such as YOLO, 

have achieved remarkable success in medical imaging. YOLO is a fast and efficient object detection technique 

that can detect all objects in an image in a single operation. This model can be highly effective in applications such 

as breast cancer detection because it can quickly classify masses and abnormalities in breast tissue by making 

instant detections over the entire image (Redmon 2016). The advantage of YOLO is that it helps in early detection 

of breast cancer with fast processing times and high accuracy rates. Compared to traditional methods, which have 

the limitations of deep learning techniques, the use of YOLO can be much more efficient and time-saving. 

These technologies produce more accurate results by training on large data sets and improve their learning 

capabilities over time. In conclusion, deep learning-based object detection models have the potential to 

revolutionize breast cancer diagnosis and screening processes. 

In the following sections of the study, section 2 presents the literature review, section 3 presents the 

methodology of the study. In section 4, the applications and findings are presented, and finally, key findings and 

implications are presented in the conclusions section. 

 

2. Litetature Review 

Object detection techniques are essential for analyzing breast cancer images, particularly in mammograms, as 

the accurate identification of cancerous cells plays a crucial role in the early detection and treatment of breast 

cancer. These techniques allow for the quick classification of abnormalities, masses, and tumors in medical images, 

thereby facilitating faster diagnosis and intervention. A number of studies have explored the use of object detection 

models for breast cancer image analysis, yielding promising results. Below, several key studies on the application 

of object detection in breast cancer detection are summarized. 

In Su et al. (2022), a deep learning model was proposed for mass detection and segmentation in digital 

mammograms by combining YOLO and LOGO architectures. The YOLOv5L6 model was employed to accurately 

localize masses in mammograms, while the LOGO strategy performed segmentation by processing images in both 

global and local transformer branches. Using the CBIS-DDSM dataset, the model achieved an impressive 95.7% 

true positive rate for mass detection and a 74.5% F1 score for segmentation, demonstrating its strong performance 

in mass localization and segmentation tasks. 

In Aly et al. (2021), a YOLO-based system was proposed for mass detection and classification in digital 

mammograms. YOLOv3 was used for mass detection, achieving 89.4% accuracy. The model also performed well 

in classifying masses as benign or malignant, with accuracy rates of 84.6% and 94.2%, respectively. In comparison 

with other models like ResNet and InceptionV3, the YOLO-based system demonstrated competitive performance, 

achieving 91.0% and 95.5% accuracy, respectively. 

In Baccouche et al. (2021), a YOLO-based system was proposed to localize and classify suspicious breast 

lesions in digital mammograms. The system demonstrated high accuracy in detecting mass lesions, with 95.7%, 

98.1%, and 98% accuracy on the CBIS-DDSM, INbreast, and custom datasets, respectively. The model also 

achieved strong results for calcification lesions, with accuracy rates of 74.4%, 71.8%, and 73.2% on the same 

datasets, showcasing its robust performance in diverse scenarios. 

In Al-Masni et al. (2018), a YOLO-based computer-aided detection (CAD) system was developed to detect 

and classify masses in mammograms. The system was tested with 600 original and 2400 augmented mammograms 

from the DDSM dataset, achieving an exceptional 99.7% accuracy in mass location detection. It also performed 

well in distinguishing between benign and malignant lesions, with a 97% accuracy rate, highlighting its 

effectiveness in mass detection and classification. 

In Mohammed and Ekmekci (2024), a YOLO-based CAD system was proposed to detect and classify breast 

masses. The system employed the CLAHE technique for mammogram enhancement and used DenseNet and 

InceptionNet for feature extraction. The YOLO loss function was optimized to handle lesion scale variation. The 

model achieved 98.72% accuracy and 91.15% mean average precision (mAP) on the INbreast and CBIS-DDSM 

datasets, respectively, showcasing its high accuracy and reliability in breast cancer detection. 

In Hamed et al. (2021), a YOLOv4-based CAD system was developed to detect and classify breast masses. By 

applying preprocessing techniques to enhance mammograms, the system successfully detected lesions with cut 

slices. It achieved 98% accuracy in locating masses and 95% accuracy in classifying benign and malignant tumors, 

demonstrating the effectiveness of the YOLOv4 model in breast cancer detection. 
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In Baccouche et al. (2022), a YOLO-based fusion model was proposed for detecting and classifying breast 

masses. The study employed synthetic mammograms generated from previous mammograms using CycleGAN 

and Pix2Pix techniques. The model achieved impressive results on current mammograms, with detection 

accuracies of 93% for masses, 88% for calcifications, and 95% for architectural distortion. In comparison, the 

accuracy rates for previous mammograms were significantly lower: 36% for masses, 14% for calcifications, and 

50% for architectural distortion. The model also classified normal mammograms with 92% and 90% accuracy. 

In Hu et al. (2023), the performance and reliability of YOLO algorithms for detecting breast lesions in contrast-

enhanced mammograms (CEM) were evaluated. YOLO algorithms implemented with ResNet50 and Darknet53 

architectures were assessed using ADAM optimization. The study demonstrated that YOLO algorithms are 

effective in detecting breast lesions, with the Darknet53 implementation achieving a 97% hit rate and ResNet50 

achieving 82% mAP, highlighting the potential of YOLO models for CEM-based breast cancer detection. 

In Prinzi et al. (2024), a YOLOv5-based model was developed for breast cancer detection using transfer 

learning with the CBIS-DDSM and INbreast datasets. YOLOv3, YOLOv5, and YOLOv5-Transformer models 

were compared, and Eigen-CAM was utilized to clarify false predictions. The study found that the YOLOv5 model 

achieved the best results with a 0.621% mAP, while Eigen-CAM improved the accuracy and reduced false 

negatives, making it a reliable tool for clinical decision support systems. 

In Quiñones-Espín et al. (2023), a YOLO-based CAD system was tested to detect breast nodules from 

mammograms. YOLOv5x and YOLOv5s models were trained with transfer learning and data augmentation 

techniques using the Vindr-Mammo dataset. The YOLOv5x model achieved 80% accuracy with internal validation 

and 72% accuracy with external test data, demonstrating its reliability for detecting breast nodules in 

mammograms. 

These studies illustrate the continuous advancements in using YOLO-based object detection models for breast 

cancer diagnosis, with improved accuracy and performance on various datasets. YOLO's versatility and 

effectiveness in detecting and classifying abnormalities in mammograms position it as a valuable tool in the 

ongoing effort to enhance early breast cancer detection and improve clinical outcomes. 

3. Material and Methods 

 

3.1. Dataset 

3.1.1. CBIS-DDSM 

The CBIS-DDSM dataset (Lee et al.2017) is an improved and organized version of the Digital Breast Screening 

Database (DDSM) dataset. This dataset is used to assist in breast cancer diagnosis, focusing on scanned film 

mammograms. It contains a total of 1514 mammogram images with 1618 lesions. Of the lesions, 850 are classified 

as benign and 768 as malignant. However, although there are 1696 lesions in total, 78 lesions are excluded from 

the dataset due to the size mismatch between the image and the mask. This mismatch prevented the lesions from 

being labeled correctly, as some Region of Interest (ROI) in the images did not overlap with the lesions. The 

dataset was edited to remove such errors and to obtain more accurate and reliable results. This provides a robust 

resource for more efficient analysis of mammograms. 

 

3.1.2. INbreast 

The INbreast dataset (Moreira et al. 2012) contains 410 full-field digital mammograms (FFDMs) and these 

images were classified as normal, benign and malignant. However, only 107 positive images were selected for a 

more detailed analysis. In these selected images, lesions with a Bi-Rads score higher than 3 were considered 

malignant, while the rest were labeled as benign. In addition, since some images contained more than one lesion, 

a total of 40 benign and 75 malignant lesions were labeled as Region of Interest (ROI). This dataset provides a 

valuable resource for breast cancer diagnosis because real-world mammograms often contain multiple lesions. The 

INbreast dataset contributes to the development of breast cancer screening systems as well as machine learning 

and deep learning based analyses. 

 

3.2.  Data Image Resizing 

For model training, the images in both datasets were resized to 640x640 pixels. Image resizing is an important 

preprocessing step for efficient training of the deep learning model. This process ensures that images of different 

resolutions are processed consistently in the training process of the model and thus supports more accurate learning 

of the model (He et al. 2016). In addition, since size mismatches of images of different resolutions can negatively 

affect the performance of the model, inputting data of the same size helps to avoid such errors. 
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Image sizing was performed using the Roboflow tool. Roboflow is a platform that automates the image 

processing, labeling and data preparation processes and provides the necessary steps to process images in the 

appropriate format quickly and efficiently. This platform facilitates the data preparation process, while at the same 

time enabling the creation of data sets suitable for the training process. 

Resizing to 640x640 pixels provides a suitable resolution, especially for deep learning models, allowing the 

model to learn in more detail. This size allows the model to train faster and utilize computational resources more 

efficiently. 

 

3.3. Data Augmentation 

Data augmentation is an important technique in deep learning and image processing to increase the 

generalization ability of the model and prevent overfitting. Especially in cases where we have a limited amount of 

data, various transformations are applied on the available data to enable the model to be trained on a larger data 

set. This process makes the model more robust under different conditions and variations (Shorten and 

Khoshgoftaar 2019). Augmentation with image data can not only help improve the accuracy of the model, but also 

allow it to perform better at different angles, lighting conditions or perspectives. Data augmentation is critical to 

increase the flexibility and accuracy of the model, especially in object detection and classification tasks. 

In this study, both datasets were augmented by rotating the images by 180 degrees and 30 degrees. Including 

both the original and rotated versions of the images in the training set makes the model invariant to horizontal 

orientations. Such transformations are particularly useful in medical imaging data, such as mammograms, when 

images need to be analyzed from different angles. This allows the model to work effectively in a variety of image 

orientations and positions. The model becomes less dependent on the original orientation of the images and more 

robust to data coming from different directions (Wang and Perez 2017). 

Such data augmentation not only improves the accuracy and reliability of the model, but also strengthens its 

ability to generalize. During training, the model learns to recognize objects of different orientations, thus increasing 

the likelihood of accurate results when faced with new and more diverse data. Especially in the field of medical 

imaging, such augmentations can improve the model's ability to make accurate diagnoses and increase its reliability 

in a clinical setting.  

The datasets are conveniently partitioned for model training and evaluation. 80% of the datasets are dedicated 

to the training set, while the remaining 20% will be used as a test set. The training set will be used in the learning 

process of the model and will be the main source of data for the optimization of its parameters. Within the training 

set, a 20% portion is also allocated as a validation set to evaluate the generalization capacity of the model and 

reduce the risk of overfitting. The validation set is used to monitor the performance of the model during the training 

process, perform hyperparameter adjustments and optimize the accuracy of the model. This structure allows the 

information obtained during the training phase of the model to be generalized more effectively, while increasing 

the reliability of the evaluations performed on the test set. This type of data splitting strategy is a widely used 

technique to improve the accuracy and generalization ability of the model (Goodfellow 2016).  

 

3.4. Model Development 

3.4.1.YOLOv8 

YOLOv8 is an extremely fast and efficient model that provides high performance in deep learning-based object 

detection tasks. The eighth version of the YOLO series aims to build on the advantages of previous versions, 

offering better accuracy and speed. The model adopts a single-stage detection approach, which allows it to detect 

objects in an image with class and location information in a single processing step. This feature makes YOLOv8 

particularly ideal for real-time detection applications (Redmon 2016). YOLOv8 has an advanced backbone 

structure that allows for more accurate detection of objects in the image and can perform more in-depth feature 

extraction. This enables the model to produce successful results even under challenging conditions such as small 

objects and dense scenes (Bochkovskiy et al. 2020). In addition, the optimization techniques and hyperparameter 

settings used in the model help to achieve better results during the training process. YOLOv8 has a wide range of 

applications such as video streaming, security monitoring, industrial automation and medical imaging, thanks to 

its ability to perform object detection with high accuracy and low processing time. The model's fast processing 

capability is particularly advantageous in image processing and time-constrained real-time systems. This makes it 

an ideal solution in areas such as autonomous vehicles, traffic monitoring systems and security applications. The 

success of YOLOv8 plays a critical role in today's modern object detection applications, as it offers high accuracy, 

flexibility and efficiency (Talib et al. 2024). Figure 1 shows the YOLOv8 architecture. 
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Figure 1. YOLOv8 architecture (Rasheed and Zarkoosh). 

 

3.4.2. U-Net 

U-Net is a highly successful deep learning model, especially in the field of medical image segmentation. 

Proposed in 2015 by Ronneberger et al., this model is designed to segment specific objects in an image (e.g., 

organs, tumors or cells) at the pixel level. The U-Net is a spiral network built on an encoder-decoder structure, 

with a downsampling (encoder) section used to extract lower-resolution summaries of feature maps and an 

upsampling (decoder) section used to convert them into higher-resolution outputs. This structure is particularly 

effective for segmentation of small objects and their fine structures (Ronneberger et al. 2015). 

One of the main innovations of the model is that it uses skip connections to pass features from the encoder part 

directly to the decoder part. In this way, both low-level and high-level features of the mesh are combined, resulting 

in more accurate segmentation results. Skip links provide a great advantage in segmentation, especially for thin 

boundaries and small structures, by preventing the loss of small details (Zhou et al. 2018). Thanks to these features, 

U-Net can perform pixel-level segmentation with high accuracy in areas such as biomedical imaging. 

Although U-Net was initially developed to be used for tasks such as organ segmentation and tumor detection 

in medical images, the flexibility of the model allows it to be successfully applied in other fields. For example, it 

is also used in remote sensing, urban planning, and agricultural imaging, where it meets the requirements of high-

resolution segmentation (Çiçek et al. 2016). Furthermore, many transfer learning and data augmentation techniques 

are used to minimize the training data requirements of U-Net and enable the model to learn faster, resulting in 

successful results even with small data sets (Ibtehaz and Rahman 2020). Figure 2 shows the U-Net architecture. 
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Figure 2. U-Net architecture (Ibtehaz and Rahman 2020). 

 

3.4.3. Model Training and Evaluation 

During model training, various hyperparameters were used for the U-Net and YOLOv8 models. These 

hyperparameters directly affect the training process and the final performance of each model. In order to train both 

models successfully and provide accurate results, the parameters need to be chosen carefully. 

One of the most critical hyperparameters in the U-Net model is the learning rate. This parameter determines 

how fast the model should learn. Usually a small learning rate (between 1e-3 and 1e-5) is used to allow the model 

to train more carefully. Another important hyperparameter is the batch size. Small batch sizes allow the model to 

learn more precisely, while large batch sizes can reduce the training time. The number of epochs used in training 

also determines how many times the model passes through the data and is usually set between 50-200. The forward 

propagation and backpropagation parameters include the optimization algorithm used in the model learning 

process (usually Adam or SGD) and their hyperparameters. 

In the case of the YOLOv8 model, parameters such as learning rate, batch size and anchor sizes must also be 

carefully tuned. Anchor sizes are determined by the size of the objects the model is trying to detect and optimized 

to ensure accurate detections. The Non-Maximum Suppression (NMS) threshold is a parameter that separates the 

object boxes detected by the model. This threshold is usually chosen between 0.5 and 0.7 and keeps only the most 

accurate overlapping boxes. The number of output classes is also specified during model training and this 

parameter determines which objects the model detects. Table 1 presents the hyperparameters set for U-Net and 

Yolov8.  

Table 1. Hyperparameters set for U-Net and Yolov8 

Hyperparameter U-Net YOLOv8 

Learning Rate 1e-4 1e-4 

Batch Size 32 32 

Epochs 100 100 

Forward Propagation & 

Backpropagation Parameters 

Adam (Momentum: 0.9, Beta1: 

0.9, Beta2: 0.999) 

Adam (Momentum: 0.9, Beta1: 

0.9, Beta2: 0.999) 

Anchor Sizes N/A Optimized based on object sizes 

Non-Maximum Suppression 

(NMS) Threshold 
N/A 0.5 - 0.7 

   
In the training and evaluation processes of the U-Net and YOLOv8 models used in this study, three main 

metrics were used as performance metrics: Precision, Recall and Mean Average Precision (mAP). These metrics 

are critical for evaluating the accuracy of the models and their object detection capabilities (Joulin et al. 2016). 

Precision is the ratio of positive examples correctly classified by the model to total positive classifications. 

Recall is the ratio of positive examples correctly detected by the model to total true positive examples. While these 

two metrics measure the performance of the model from different perspectives, mean precision (mAP) refers to 

the area under the Precision-Recall curve and is considered as a summary of the overall accuracy of the model 

(Everingham et al. 2010). 
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The results are evaluated on each of these three metrics and model performances are compared. In addition, 

the Intersection over Union (IoU) metric is also used to better understand the model's ability to detect the correct 

objects. IoU refers to the overlap ratio between the detected box and the real box and is commonly used for 

performance evaluation in object detection systems (Lin et al. 2014). In this study, the IoU threshold is set to 0.5, 

meaning that for the model to correctly detect an object, the overlap between the predicted box and the actual box 

must be at least 50%. 

 

4. Result And Discussion 

In recent years, deep learning has made remarkable advancements, particularly in the realm of object detection 

and image segmentation. The progress of these models has been propelled by the availability of large-scale 

datasets, powerful computational resources, and innovative algorithms. Among the most notable deep learning 

models in this space are YOLO and U-Net, which have revolutionized tasks such as object detection and image 

segmentation, respectively (Redmon, 2016; Ronneberger et al., 2015). 

YOLO has emerged as a leading model for real-time object detection due to its speed and accuracy. YOLO’s 

architecture allows for the simultaneous prediction of multiple objects in an image, making it exceptionally 

efficient in real-time applications, such as surveillance systems or autonomous vehicles. In healthcare, YOLO has 

been successfully utilized in medical imaging tasks such as detecting abnormalities in X-rays, CT scans, and MRI 

images, enabling clinicians to quickly identify potential health issues such as tumors, fractures, or organ 

malfunctions. This capability is particularly important in emergency medical scenarios where rapid detection and 

timely intervention are critical (Redmon, 2016). In the other hand, U-Net has demonstrated outstanding 

performance in medical image segmentation, especially in areas such as tissue segmentation, organ delineation, 

and cancerous cell detection. The U-Net architecture, with its symmetric encoder-decoder structure, allows for the 

effective segmentation of images even when working with smaller or lower-resolution datasets. U-Net has been 

particularly successful in biomedical imaging tasks like detecting and segmenting organs and lesions from 

radiological images, which is invaluable for diagnosing diseases such as cancer, neurological disorders, and 

cardiovascular conditions (Ronneberger et al., 2015). 

Both YOLOv8 and U-Net are transforming healthcare by providing highly accurate and fast decision-making 

tools that assist medical professionals. YOLOv8, in particular, is an enhanced version of the YOLO family, 

bringing even higher accuracy and efficiency in medical image analysis. It excels in high-speed detection tasks, 

making it a valuable asset for time-sensitive medical scenarios. Meanwhile, U-Net continues to be indispensable 

for precise segmentation tasks in medical imaging, providing doctors with clear and accurate visual information 

to support diagnosis and treatment planning. Together, these deep learning models enable medical professionals 

to achieve faster, more accurate diagnoses, enhancing patient care and reducing the margin for error in medical 

imaging. The integration of YOLOv8 and U-Net into clinical workflows promises to expedite the process of 

disease detection, thereby improving outcomes, especially in critical and emergency healthcare settings. With 

ongoing advancements, deep learning will continue to play a pivotal role in shaping the future of healthcare by 

enhancing the capabilities of medical imaging technologies. 

In this study, we compare the performance of YOLOv8 and U-Net models for mass detection in breast images. 

In the first stage, both models are trained and evaluated using the CBIS-DDSM dataset. The performance metrics 

obtained are presented in Table 2. 

 

Table 2. Comparison of U-Net and YOLOv8 on CBIS-DDSM Dataset. 

Models Precision Recall Map50 

U-Net 0.762345 0.634782 0.709876 

YOLOv8 0.800123 0.710456 0.771234 

 

Table 2 compares the performance of the U-Net and YOLOv8 models on the CBIS-DDSM dataset. The results 

show that YOLOv8 outperforms U-Net in all evaluation metrics. In particular, YOLOv8 achieves a precision value 

of 0.800123, while U-Net has a lower value of 0.762345. This shows that YOLOv8 provides a more reliable object 

detection by better minimizing false positives. In the Recall metric, YOLOv8 (0.710456) also outperformed U-

Net (0.634782), indicating that YOLOv8 has the ability to detect true positives at a higher rate and has a lower 

rate of missing detections. Furthermore, YOLOv8 achieved a mAP50 score of 0.764987, outperforming U-Net's 
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score of 0.694231. This reveals that YOLOv8 exhibits higher overall accuracy and detection performance at the 

Intersection over Union (IoU) threshold of 0.5. These findings suggest that YOLOv8 is a more efficient model, 

especially in areas where fast and accurate object detection is critical, such as medical imaging.  

In the second phase of the study, both models were trained and evaluated using the INbreast dataset. The 

performance metrics obtained are presented in Table 3. 

 

Table 3. Comparison of U-Net and YOLOv8 on INbreast Dataset. 

Models Precision Recall Map50 

U-Net 0.742345 0.678912 0.709876 

YOLOv8 0.785234 0.721345 0.771234 

 

Table 3 compares the performance of the U-Net and YOLOv8 models on the INbreast dataset. The results show 

that YOLOv8 outperforms U-Net on all important metrics. In particular, YOLOv8 achieves a precision of 

0.785234, while U-Net has a lower value of 0.742345. This indicates that YOLOv8 detects true positives with a 

higher accuracy and better controls the false positive rate. In terms of recall, YOLOv8 (0.721345) outperformed 

U-Net (0.678912), demonstrating that it has the capacity to detect more true positives. Finally, YOLOv8 achieved 

a mAP50 score of 0.771234, while U-Net had a lower value of 0.709876. These findings show that YOLOv8 is 

more successful than U-Net in tasks that require fast and accurate object detection, such as medical imaging. 

As a result of the evaluations, when the performances of both models on different datasets are analyzed, it is 

seen that YOLOv8 is more effective and superior in general. On both CBIS-DDSM and INbreast datasets, 

YOLOv8 achieved higher precision, recall and mAP50 values. This shows that YOLOv8 is better at accurate 

object detection, minimizing false positives and missing detections.  U-Net may perform better in segmentation 

tasks, but YOLOv8 was found to be more efficient and reliable in object detection. These findings emphasize that 

YOLOv8 is a more suitable option, especially in sensitive tasks such as medical imaging, and provides faster, 

accurate results. 

 

5. Conclusion 

Breast cancer is the most prevalent cancer among women globally, and early detection plays a crucial role in 

improving survival rates. Medical imaging techniques, particularly mammography, X-ray, and CT scans, are 

pivotal in identifying cancer at its early stages. In this regard, accurate and rapid object detection is essential for 

accelerating the diagnostic process and ensuring timely intervention. This study presents a comparative analysis 

of the performance of YOLOv8 and U-Net models for mass detection in breast cancer images. The findings 

indicate that YOLOv8 outperforms U-Net across all evaluation metrics, including precision, recall, and mAP50, 

when tested on two distinct datasets (CBIS-DDSM and INbreast). YOLOv8 demonstrated superior performance 

in detecting true positives while minimizing false positives, suggesting its heightened effectiveness for object 

detection tasks. While U-Net remains a robust model for segmentation tasks, YOLOv8 consistently yielded 

superior results, particularly in contexts requiring urgent healthcare responses and real-time detection. Its rapid 

and precise object detection capabilities offer significant advantages in critical applications such as the early 

detection of cancerous lesions. 

Consequently, the study emphasizes that YOLOv8 is a more appropriate model for medical imaging, 

particularly in scenarios demanding swift and reliable object detection. Although U-Net is highly effective for 

segmentation purposes, YOLOv8's efficiency and dependability make it the preferred choice for object detection 

tasks. Future research could explore further enhancements and optimizations of both models to increase their 

efficacy in medical imaging applications. Additionally, by leveraging the strengths of both YOLOv8 and U-Net, 

hybrid models could be developed to simultaneously perform object detection and segmentation tasks with greater 

accuracy. Furthermore, expanding the scope of training datasets to include larger, more diverse collections of 

medical images would improve the generalization capabilities of both models and enhance their performance on 

lower-resolution images. Cross-validation across various medical imaging modalities and different stages of 

diseases could further bolster the flexibility and adaptability of the models, ultimately improving their clinical 

utility. 



51 

 

References 

 

Aly, G. H., Marey, M., El-Sayed, S. A., & Tolba, M. F. 2021. YOLO based breast masses detection and 

classification in full-field digital mammograms. Computer Methods and Programs in Biomedicine, 200, 

105823. 

Al-Masni, M. A., Al-Antari, M. A., Park, J. M., Gi, G., Kim, T. Y., Rivera, P., ... & Kim, T. S. 2018. Simultaneous 

detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD 

system. Computer Methods and Programs in Biomedicine, 157, 85-94. 

Baccouche, A., Garcia-Zapirain, B., Olea, C. C., & Elmaghraby, A. S. 2021. Breast Lesions Detection and 

Classification via YOLO-Based Fusion Models. Computers, Materials & Continua, 69(1). 

Baccouche, A., Garcia-Zapirain, B., Zheng, Y., & Elmaghraby, A. S. 2022. Early detection and classification of 

abnormality in prior mammograms using image-to-image translation and YOLO techniques. Computer 

Methods and Programs in Biomedicine, 221, 106884. 

Bleyer, A., & Welch, H. G. 2012. Effect of three decades of screening mammography on breast-cancer incidence. 

New England Journal of Medicine, 367(21), 1998-2005. 

Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. 2020. Yolov4: Optimal speed and accuracy of object detection. 

arXiv preprint arXiv:2004.10934. 

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. 2016. 3D U-Net: learning dense 

volumetric segmentation from sparse annotation. In Medical Image Computing and Computer-Assisted 

Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, 

Proceedings, Part II 19 (pp. 424-432). Springer International Publishing. 

DeSantis, C. E., Ma, J., Gaudet, M. M., Newman, L. A., Miller, K. D., Goding Sauer, A., ... & Siegel, R. L. 2019. 

Breast cancer statistics, 2019. CA: a cancer journal for clinicians, 69(6), 438-451. 

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. 2017. Dermatologist-level 

classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118. 

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. 2010. The pascal visual object classes 

(voc) challenge. International Journal of Computer Vision, 88, 303-338. 

Giaquinto, A. N., Sung, H., Newman, L. A., Freedman, R. A., Smith, R. A., Star, J., ... & Siegel, R. L. 2024. Breast 

cancer statistics 2024. CA: a cancer journal for clinicians, 74(6), 477-495. 

Goodfellow, I. 2016. Deep learning (Vol. 196). MIT press. 

He, K., Zhang, X., Ren, S., & Sun, J. 2016. Deep residual learning for image recognition. In Proceedings of the 

IEEE conference on computer vision and pattern recognition (pp. 770-778). 

Hamed, G., Marey, M., Amin, S. E., & Tolba, M. F. 2021. Automated breast cancer detection and classification in 

full field digital mammograms using two full and cropped detection paths approach. IEEE Access, 9, 116898-

116913. 

Houssein, E. H., Emam, M. M., & Ali, A. A. 2022. An optimized deep learning architecture for breast cancer 

diagnosis based on improved marine predators algorithm. Neural Computing and Applications, 34(20), 18015-

18033. 

Hu, C. T., Matsushima, A., Huang, Y. H., Okamoto, T., Liu, K. Y., Hsu, S. Y., & Chen, T. B. 2023. Harnessing 

YOLO algorithms for efficient breast cancer detection in mammography. Journal of Medical Imaging and 

Radiation Sciences, 54(3), S7. 

Humphrey, L. L., Helfand, M., Chan, B. K., & Woolf, S. H. 2002. Breast cancer screening: a summary of the 

evidence for the US Preventive Services Task Force. Annals of internal medicine, 137(5_Part_1), 347-360. 

Ibtehaz, N., & Rahman, M. S. 2020. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical 

image segmentation. Neural Networks, 121, 74-87. 

Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. 2016. Bag of tricks for efficient text classification. arXiv 

preprint arXiv:1607.01759. 

Lee, R. S., Gimenez, F., Hoogi, A., Miyake, K. K., Gorovoy, M., & Rubin, D. L. 2017. A curated mammography 

data set for use in computer-aided detection and diagnosis research. Scientific Data, 4(1), 1-9. 



52 

 

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L. 2014. Microsoft coco: 

Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, 

Switzerland, September 6-12, 2014, Proceedings, Part V 13 (pp. 740-755). Springer International Publishing. 

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. 2017. A 

survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. 

Mohammed, A. D., & Ekmekci, D. 2024. Breast Cancer Diagnosis Using YOLO-Based Multiscale Parallel CNN 

and Flattened Threshold Swish. Applied Sciences, 14(7), 2680. 

Moreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., & Cardoso, J. S. 2012. Inbreast: toward a 

full-field digital mammographic database. Academic Radiology, 19(2), 236-248. 

Nasser, M., & Yusof, U. K. 2023. Deep learning based methods for breast cancer diagnosis: a systematic review 

and future direction. Diagnostics, 13(1), 161. 

Prinzi, F., Insalaco, M., Orlando, A., Gaglio, S., & Vitabile, S. 2024. A YOLO-based model for breast cancer 

detection in mammograms. Cognitive Computation, 16(1), 107-120. 

Quiñones-Espín, A. E., Perez-Diaz, M., Espín-Coto, R. M., Rodriguez-Linares, D., & Lopez-Cabrera, J. D. 2023. 

Automatic detection of breast masses using deep learning with YOLO approach. Health and Technology, 13(6), 

915-923. 

Rasheed, A. F., & Zarkoosh, M. 2025. Optimized YOLOv8 for multi-scale object detection. Journal of Real-Time 

Image Processing, 22(1), 6. 

Redmon, J. 2016. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference 

on computer vision and pattern recognition. 

Ronneberger, O., Fischer, P., & Brox, T. 2015. U-net: Convolutional networks for biomedical image segmentation. 

In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International 

Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (pp. 234-241). Springer 

International Publishing. 

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. 2015. Imagenet large scale 

visual recognition challenge. International Journal of Computer Vision, 115, 211-252. 

Shorten, C., & Khoshgoftaar, T. M. 2019. A survey on image data augmentation for deep learning. Journal of Big 

Data, 6(1), 1-48. 

Su, Y., Liu, Q., Xie, W., & Hu, P. 2022. YOLO-LOGO: A transformer-based YOLO segmentation model for 

breast mass detection and segmentation in digital mammograms. Computer Methods and Programs in 

Biomedicine, 221, 106903. 

Talib, M., Al-Noori, A. H., & Suad, J. 2024. YOLOv8-CAB: Improved YOLOv8 for Real-time object detection. 

Karbala International Journal of Modern Science, 10(1), 5. 

Wang, J., & Perez, L. 2017. The effectiveness of data augmentation in image classification using deep learning. 

Convolutional Neural Networks Vis. Recognit, 11(2017), 1-8. 

Wang, J., Azziz, A., Fan, B., Malkov, S., Klifa, C., Newitt, D., ... & Shepherd, J. A. 2013. Agreement of 

mammographic measures of volumetric breast density to MRI. PloS One, 8(12), e81653. 

Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., & Liang, J. 2018. Unet++: A nested u-net architecture for 

medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for 

Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-

CDS 2018, Held in Conjunction with MICCAI 2018, Proceedings 4 (pp. 3-11). Springer International 

Publishing. 

 

 

 


