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ENTROPY SQUEEZING OF A MULTI-PHOTON
JAYNES-CUMMINGS ATOM IN THE PRESENCE OF NOISE

HÜNKAR KAYHAN

Abstract. In this work, we study the entropy squeezing of a two-level atom
interacting with a single-mode quantum field by a multi-photon Jaynes-Cummings
Model in the presence of the two-state random phase telegraph noise. We show
that the entropy squeezing is very sensitive to the noise. It disappears in time
quickly due to the strongly destructive effect of the noise.

The Jaynes-Cummings Model (JCM) [1, 2, 3] is the basic model for describing
the interaction of a two-level atom with a single-mode cavity quantum field under
the rotating-wave approximation. This model reveals crucial non-classical prop-
erties such as sub-Poissonian statistics, anti-bunching, squeezing and collapse and
revival phenomena [4, 5]. Of the several interests to the model, one has been de-
voted to the squeezing properties of the atom [6, 7, 8, 9, 10]. In these works, the
atomic squeezing properties were studied on the base of the Heisenberg uncertainty
relation (HUR). But, HUR cannot provide suffi cient information about the atomic
squeezing in particular when the atomic inversion vanishes. As an alternative to
the HUR, Hirschman [11] studied quantum uncertainty by using quantum entropy
theory. And the limitations of the HUR have been overcome by using the entropic
uncertainty relation (EUR) [12, 13]. Fang et.al. [14] found that EUR can be used
as a general criterion for the squeezing of an atom. Accordingly, they proposed a
measure of the squeezing of an atom the so-called squeezed in entropy in order to
obtain suffi cient information on atomic squeezing. The entropy squeezing of the
atom has been studied extensively [15, 16, 17, 18, 19]. These works reveal that the
entropy squeezing based on the EUR is more precise than the variance squeezing
based on the HUR, as a measure of the atomic squeezing.
For the realistic situations, the JCM-type atom-field interactions should be con-

sidered with a decoherence mechanism. One consideration was formulated by
Joshi et.al. [20, 21] in which the authors re-describe the JCM with the random
telegraph noise. For the realization of this noise, the authors give some situations
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such as the source of the field or the instability in the atomic vapor production.
This noise influences the dipole or the transverse relaxation of the interaction. The
resulting decoherence mechanism conserves the energy of the system, but destructs
the quantum coherence.
In this work, we study the entropy squeezing of a two-level atom interacting with

a single-mode quantum field by a multi-photon JCM in the presence of the two-
state random phase telegraph noise. We show that the entropy squeezing is very
sensitive to the noise. It disappears in time quickly due to the strongly destructive
effect of the noise.
The Hamiltonian of a multi-photon JCM with resonance between the atomic

transition and the field frequency [22, 23] is given by (~ = 1)

H = ω
Sz
2

+ ωa†a+ g(S+a
k + S−a

†k) (1)

where S±, Sz are the spin-1/2 operators, a, a† denote the annihilation and the
creation operators of the field, ω is the atomic transition frequency and the field
frequency. g is the coupling coeffi cient which gives the interaction strength between
the atom and the field and k represents the k-photon process. The experimental
realization of the multi-photon process can seen in a trapped ion [24].
In the case of the interaction with the random phase telegraph noise, the coupling

coeffi cient is modified as [20]

g(t) = g0e
−iφ(t) (2)

where g0 is the non-noisy coupling coeffi cient and φ(t) represents the random tele-
graph which fluctuates between two states of the noise denoted by (a) and (−a).
These random fluctuations obey the Poisson jump process. The fluctuations of
φ(t) are also Markovian which allows one to take the average over the stochastic
fluctuations. The average time between these jumps is called the mean dwell time.
The multi-photon JCM in the presence of the random phase telegraph noise

becomes

H = ω
Sz
2

+ ωa†a+ g0(e
−iφ(t)S+a

k + eiφ(t)S−a
†k) (3)

For the initial state of the system, we assume for simplicity that the atom is in
the excited state |e〉 and the field is in the Fock state |n〉. In this case, the initial
state of the system is

ρ(0) = |n, e〉〈n, e| (4)

In order to find an exact solution to the system under the noise, we use the Bur-
shtein equation [25, 26, 27] by the solution method in Ref. [28] in which we stud-
ied the entanglement of atom-field interaction by the JCM with two-state random
phase telegraph noise. We also considered some other applications of the Burshtein
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equation elsewhere for investigating entanglement dynamics in different atom-field
systems with this noise [29] . The Burshtein equation is defined as

∂

∂t
Vα(t) = −iM(α)Vα(t)− 1

T

∑
β

[δαβ − f(α|β)]Vβ(t) (5)

where α and β represent the phase of the noise with the values (a) and (−a), the
function f(α|β) is the probability of φ(t) to change its state such that f(a,−a) =
f(−a, a) = 1 and f(a, a) = f(−a,−a) = 0. The time-dependent element Vα(t) is the
α-fixed state component of the vector V̂ (t) which is the transpose of the matrix
[ρ11n (t), ρ22n (t), ρ12n (t), ρ21n (t)]. M(α) is called the effective Liouville operator with

the fixed α-state of the noise obtained from the equation ˆ̇V k = −iMklV̂ l. T is
the mean dwell time which determines the strength of the dephasing induced by
the noise. The smaller T , the stronger noise. In the basis |n, e〉 and |n + k, g〉,
the following expressions for the stochastic evolution of the elements of the density
matrix of the system can be obtained from von Neumann-Lioville equation

dρ11n (t)

dt
= ig0

√
(n+ k)!

n!
[e−iφρ12n (t)− eiφρ21n (t)] (6)

dρ22n (t)

dt
= ig0

√
(n+ k)!

n!
[eiφρ21n (t)− e−iφρ12n (t)]

dρ12n (t)

dt
= ig0

√
(n+ k)!

n!
eiφ[ρ11n (t)− ρ22n (t)]

dρ21n (t)

dt
= ig0

√
(n+ k)!

n!
e−iφ[ρ22n (t)− ρ11n (t)]

where the diagonal elements are

ρ11n (t) = 〈n, e|ρ(t)|n, e〉 (7)

ρ22n (t) = 〈n+ k, g|ρ(t)|n+ k, g〉

and the off-diagonal elements are

ρ12n (t) = 〈n, e|ρ(t)|n+ k, g〉 (8)

ρ21n (t) = 〈n+ k, g|ρ(t)|n, e〉

By constructing the elements of the Burshtein equation from these expressions
and by using the Laplace transformation techniques [28], one can obtain the fol-
lowing noise-averaged solution



4 HÜNKAR KAYHAN

〈ρ11n (t)〉 =
1

2
[1 +

3∑
j=1

λj(λj + 2
T )∏

k 6=j(λj − λk)
exp(λjt)] (9)

〈ρ22n (t)〉 =
1

2
[1−

3∑
j=1

λj(λj + 2
T )∏

k 6=j(λj − λk)
exp(λjt)] (10)

〈ρ12n (t)〉 = ig0 cos a

√
(n+ k)!

n!

3∑
j=1

(λj + 2
T )∏

k 6=j(λj − λk)
exp(λjt) (11)

and
〈ρ21n (t)〉 = 〈ρ12n (t)〉∗ (12)

λjs are the roots of the equation

λ3j +
2λ2j
T

+ 4g20
(n+ k)!

n!
λj +

8g20(n+ k)!

Tn!
cos2 a = 0 (13)

The noise-averaged density matrix of the system 〈ρ(t)〉 takes the form of

〈ρ(t)〉 = 〈ρ11n (t)〉|n, e〉〈n, e|+ 〈ρ12n (t)〉|n, e〉〈n+ k, g| (14)

+〈ρ21n (t)〉|n+ k, g〉〈n, e|+ 〈ρ22n (t)〉|n+ k, g〉〈n+ k, g|
The HUR for an atomic system is defined as

∆Sx∆Sy ≥
1

2
|〈Sz〉| (15)

The fluctuations in the components of the Pauli operators are squeezed if

V (Sk) = ∆Sk −
√
|〈Sz〉|

2
< 0, k = x or y (16)

where ∆Sk =
√
〈S2k〉 − 〈Sk〉2. But, this definition of the variance squeezing can

not give information when 〈Sz〉 = 0. Fang et.al.’s definition for the squeezing the
so-called the entropy squeezing is

E(Sk) = exp(H(Sk))− 2/
√

exp(H(Sz)), k = x or y (17)
where H(Sk) denotes the information entropy of the component Sk

H(Sk) = −
D∑
i=1

Pi(Sk) ln(Pi(Sk)), k = x, y, z (18)

where Pi(Sk) represents the probability distribution of D possible measurement
outcomes of the Sk component. It is given by Pi(Sk) = 〈ψki|ρ|ψki〉 for a quantum
system ρ where |ψki〉 is an eigenvector of the component Sk. So, they are the
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Figure 1. Entropy squeezing factor E(Sx) as a function of time
t. n = 3 and k = 1. The non-noisy case a = 0 and T → ∞ for
dash line and a noisy case a = 0.4 and T = 1 for solid line.

elements of projective measurements. In this definition, there exists a squeezing in
the fluctuations of Sk, if E(Sk) < 0.
The probabilities are given as

P1(Sx) = 1/2(1 + 2Re〈ρ12n (t)〉)
P2(Sx) = 1/2(1− 2Re〈ρ12n (t)〉) (19)

P1(Sy) = 1/2(1− 2Im〈ρ12n (t)〉)
P2(Sy) = 1/2(1 + 2Im〈ρ12n (t)〉)
P1(Sz) = 〈ρ22n (t)〉
P2(Sz) = 〈ρ11n (t)〉

Since the entropy squeezing factor E(Sk) is more reliable in providing informa-
tion for the squeezing of the atom than the variance squeezing V (Sk), we will only
deal with the analysis of the entropy squeezing factor.
We investigate the influence of the noise on the entropy squeezing factor of the

atom by the following figures. (In these, we assume that the non-noisy coupling
coeffi cient is unity g0 = 1.) Figures (1)-(2) show that E(Sx) oscillates periodically
and has no negative values during the time-evolution of the system. This situation
remains unchanged when taking into account the noise. So, there is no entropy
squeezing in the Sx component at any time in the absence or in the presence of
the noise. For the Sy component as shown in figures (3)-(4), there is an entropy
squeezing. E(Sy) oscillates periodically and achieves some negative values during
the time-evolution of the system. But, the situation changes when the noise is
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Figure 2. Entropy squeezing factor E(Sx) as a function of time
t. n = 3 and k = 2. The non-noisy case a = 0 and T → ∞ for
dash line and a noisy case a = 0.4 and T = 1 for solid line.

Figure 3. Entropy squeezing factor E(Sx) as a function of time
t. n = 3 and k = 1. The non-noisy case a = 0 and T → ∞ for
dash line and a noisy case a = 0.4 and T = 1 for solid line.

involved. The negative values of E(Sy) disappear, as time passes. So, the noise
obviously destructs gradually the existing squeezing in the Sy component during
the time-evolution of the system. In the both components Sx and Sy, as the value
of k increases, the decay of the entropy squeezing in these components occurs with
a smaller period. Thus, the entropy squeezing is very sensitive to the noise. It
disappears in time quickly due to the strongly destructive effect of the noise.
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Figure 4. Entropy squeezing factor E(Sy) as a function of time
t. n = 3 and k = 2. The non-noisy case a = 0 and T → ∞ for
dash line and a noisy case a = 0.4 and T = 1 for solid line.

Figure 5. Entropy squeezing factor E(Sx) for dash line and E(Sy)
for solid line as a function of time t. n = 3, k = 2, a = 0.4 and
T = 1.

In Figure (5), we look at a longer-time behavior of the entropy squeezing factor
for observing more clearly the decoherence effect of the noise. We see that both
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E(Sx) and E(Sy) decay gradually and eventually reach the same stable value in
time due to the destructive effect of the noise with E(Sy) ≤ E(Sx).
In summary, we have studied the entropy squeezing of a two-level atom interact-

ing with a single-mode quantum field by a multi-photon Jaynes-Cummings Model
in the presence of the two-state random phase telegraph noise. We have shown that
the entropy squeezing is very sensitive to the noise. It disappears in time quickly
due to the strongly destructive effect of the noise.
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