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Abstract
In this study, we propose a new selection and estimation procedure for the regression
coefficients of high-dimensional generalized linear models in which many coefficients have
weak effects (or weak signals). Many existing procedures for selection of regression coeffi-
cients in generalized linear models in the high-dimensional situation such as Least Absolute
Shrinkage and Selection Operator, Elastic-Net, Smoothly Clipped Absolute Deviation, and
Minimax Concave Penalty are mainly focused on selecting variables with strong effects.
This may result in biased parameter estimation, particularly when the number of weak
signals is extremely high relative to strong signals. Therefore, in this work, we propose
an algorithm in which a variable selection is performed first and then an efficient post-
selection estimation based on a weighted ridge estimators along with Stein-type shrinkage
strategies is employed. We compute the biases and mean square errors for the proposed
estimators and we prove the oracle properties of the selection procedure. We investigate
the performance of the new procedure relative to the existing penalized regression methods
by using Monte Carlo simulations. Finally, we illustrate the methodology by performing
genome-wide association analysis on a cancer data set.
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1. Introduction
Generalized linear models (GLMs) are widely used in medicine, social sciences, engineer-

ing, economics, and health sciences, etc. The GLM class provides a common approach
to a wide range of response modeling problems. The most popular cases of GLM are
logistic regression and Poisson regression. Consider a classical GLM ([17]), let Y be a re-
sponse variable and X = (X1, X2, · · · , Xn)T = (Xij)n×pn be an n × pn design matrix and
Xi = (Xi1, · · · , Xipn) be the pn ×1 vector of covariates of the ith observation, i = 1, · · · , n.
We assume that Y has a density from the exponential family of distributions,

fY (y, θ) = exp[yθ − ϕ(θ) + c(y)], (1.1)
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for some known functions ϕ(.) and c(.), where θ is the so-called canonical or natural
parameter in parametric GLM. The mean response is ϕ′(θ), the first derivative of ϕ(θ)
with respect to θ. In parametric GLM, the mean function is defined via a known link
function g(.),

µ = E(Y |x) = g−1(xTβ
)
,

If g is the canonical link, that is, g−1 = ϕ′, then ξ(x) = xTβ. In this article, we focus on
the canonical link function for simplicity of presentation.

Recent advances in technology have facilitated the collection of high-dimensional data
in a variety of scientific disciplines. The remarkable feature of these data is that the
number of predictors is typically much larger than the total number of observations. For
example, in genome-wide association studies, hundreds of thousands of single nucleotide
polymorphisms (SNPs) are potentially associated with genetic markers for the study of
human diseases [10]. Other common examples of high-dimensional data include DNA
sequencing, molecular biology, signal processing, engineering, and astronomy. The analysis
of high-dimensional data poses diverse computational and statistical challenges to classical
statistical methods and theories [5].

High-dimensional data typically deals with lot of predictors, many of which may be irrel-
evant. Removing irrelevant variables from the model is essential since the presence of too
many variables may cause overfitting, which leads to poor prediction of future outcomes.
In the past two decades, numerous penalized regularization techniques have evolved as a
powerful tool to solve the problem of variable selection and estimation simultaneously in
linear models or even GLMs. The regularization methods are particularly useful to obtain
sparse models compared to simply apply traditional criteria such as Akaike’s information
criterion [1] and Bayesian information criterion [20]. The least absolute shrinkage and
selection operation (LASSO) proposed by [22], is one of the most popular approaches be-
cause of its consistency and computational efficiency. Some modifications of LASSO have
also been developed, including least angle regression [7], Elastic-Net [29], fused LASSO
[23], adaptive LASSO [28], Dantzig-selector [6], square-root LASSO [2], and scaled LASSO
[21] to improve estimation and prediction in various problems. For GLMs, much of the
research has been done to investigate theoretical properties in high dimension, such as
[11, 16, 25, 26]. As the dimension pn increases with the sample size n, it is often assumed
that only a small number of predictors contribute to the response, leading to the sparsity
of the regression coefficient vector β. Sparsity means that the number of non-zero com-
ponents of the vector β is less than n. Sparse representation not only makes regression
results interpretable, but can also make the predictive model more accurate. Additional
assumptions made on the design matrix include the irrepresentability and the restricted
eigenvalue conditions. For more detailed information, we refer the interested reader to
[3, 14,27].

When pn > n, we are interested in recovering the support and nonzero components of
the regression coefficient vector β. As a powerful tool for producing interpretable models,
sparse modeling via penalized regularization has gained popularity for analyzing high-
dimensional data sets. Following [13], the regression parameter estimation problem is
seen when there are many predictors in the model. The predictors can be characterized
into the following three groups:

(1) Predictors with strong signals on the response variable and |βj | > c
√

log pn/n for
some c > 0 and 1 ≤ j ≤ pn.

(2) Predictors with weak signals that may or may not contribute to explaining the
response variable and 0 < |βj | < c

√
log pn/n for some c > 0 and 1 ≤ j ≤ pn.

(3) Predictors with scarce or no signals on the response variable in which their related
regression coefficients are exactly zero.
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Many existing inference procedures for high-dimensional penalized estimators may ignore
contributions from weak signals, and this will result in biased parameter estimation, par-
ticularly when weak signals outnumber strong signals. The objective of this paper is to
extend the idea of post-selection shrinkage estimation (proposed by [13]) for GLMs that
takes into account the joint impact of strong and weak signals. The proposed estimation
strategy dominates relative performances over the candidate submodel estimators gener-
ated from the LASSO and Elastic-Net methods. To obtain a high-dimension post-selection
shrinkage estimator, we offer the weighted ridge (WR) estimator which is able to separate
small coefficients from zero coefficients. We also established the asymptotic normality
of the post-selection WR estimator when pn increases polynomially with sample size n,
i.e. pn = O(nα) for some α > 0. These asymptotic properties are employed to develop
the asymptotic efficiency of the suggested post-selection shrinkage analytically. We also
performed numerical studies to support our theoretical findings.

The remainder of this paper is organized as follows. We outline the proposed method
for GLMs in Section 2 and investigate the asymptotic properties in Section 3. Monte-Carlo
simulation studies are conducted in Section 4. In Section 5, an analysis of the real data
set from genome-wide association studies using our method is presented. We conclude
the paper with a brief discussion in Section 6. All technical proofs are relegated to the
Appendix.

2. Methods
2.1. Notation

In this section, we state some standard assumptions and notations used throughout
the paper. We use bold upper-case letters for matrices and lower-case letters for vec-
tors. Moreover, T denotes the matrix transpose and IN denotes the N × N identity
matrix. Design vectors, or columns of X, are denoted by Xj , j = 1, · · · , pn. The index set
M = {1, 2, · · · , pn} denotes the full model that contains all potential variables. For a subset
A ⊂ M, use βA for a subvector of βM indexed by A, and XA for a submatrix of X whose
columns are indexed by A. For a vector v = (v1, · · · , vpn)T, denote ||v||2 =

√∑pn
j=1 v2

j and
||v||1 =

∑pn
j=1 |vj |. For any square matrix A, let Λmin(A) and Λmax(A) be the smallest

and largest eigen values of A, respectively. Given a, b ∈ R, let a ∨ b and a ∧ b denote the
maximum and minimum of a and b. For two positive sequences an and bn, an ≍ bn if an

is the same order as bn. We use I(.) to denote the indicator function; Hϑ(.; ∆) denotes
the cumulative distribution function (cdf) of a non-central χ2-distribution with ϑ degrees
of freedom and non-centrality parameter ∆. We also use D−→ to indicate convergence in
distribution.

Let S ⊂ {1, · · · , pn} be the set of the non-zero coefficient indices with s = |S| denoting
the cardinality of S. We assume that the true coefficient vector β∗ = (β∗T

1 , · · · , β∗T
pn

)T is
sparse, that is s < n. To facilitate theoretical results, let the parameter space be Ωn ⊆ Rpn .
For any β ∈ Ωn, let ϕ(Xβ) = (ϕ(XT

1 β), · · · , ϕ(XT
n β))T, ϕ′(Xβ) = (ϕ′(XT

1 β), · · · , ϕ′(XT
n β))T

and Σ(β) = diag{ϕ′′(XT
1 β), · · · , ϕ′′(XT

n β)}. Note that E(Y ) = ϕ′(Xβ0) and Cov(β) =
Σ(β0). Let

Σ = 1
n

XTΣ(β0)X and ΣS = 1
n

XT
S Σ(β0)XS. (2.1)

Without loss of generality, we partition the (n×pn)-matrix X as X = (XS1 |XS2 |XSnull)T,
where S1 ∩ S2 ∩ Snull = ∅, S1 ∪ S2 ∪ Snull = M and Snull = {j : β0j = 0}. For two matrices
XS1 and XS2 , we define the corresponding sample covariance matrices by

ΣS1|S2 = ΣS1S1 − ΣS1S2Σ−1
S2S2

ΣS2S1 ,

ΣS2|S1 = ΣS2S2 − ΣS2S1Σ−1
S1S1

ΣS1S2 . (2.2)
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Let V = (XS2 , XSnull)T be a pn − s1 submatrix of X. Then, another partition can
be written as X = (XS1 , V )T. Let M1 = In − XS1Σ̂−1

S1S1
XT

S1
. Then, V TM1V is a

(pn−s1)×(pn−s1) dimensional singular matrix with rank k1 ≥ 0. We denote ϱ1 ≤ · · · ≤ ϱk1

as all k1 positive eigenvalues of V TM1V .

2.2. Variable selection and estimation
Let (Yi, Xi), i = 1, · · · , n, be independent samples of (Y, X). For simultaneous param-

eter estimation and variable selection in GLM, we define the penalized estimator as the
argument that minimizes

−ℓn(β) +
pn∑

j=1
Pλ(βj), (2.3)

where ℓn(β) = n−1∑n
i=1

[
YiX

T
i β −ϕ(XT

i β)
]
, Pλ(βj) is a penalty function applied to each

component of β and λ is a tuning parameter that controls the amount of penalization.
We consider two popular methods, outlined below.

The LASSO estimator takes the form given in (2.3) with an L1-norm penalty: Penλ(βj) =
λ|βj |. This continuously shrinks the coefficients towards 0 when λ increases, and some
coefficients are shrunk to exact 0 if λ is sufficiently large. The theoretical properties of
LASSO have been well studied, and an extensive treatment can be found in [4].

The Elastic Net (ENet) estimator is (2.3) with a penalty.

Pλ(βj) = λ(α|βj | + (1 − α)β2
j ). (2.4)

That is, L1 and L2-norm penalties combined with an additional parameter α ∈ [0, 1]
(α = 1 and α = 0 correspond to LASSO and Ridge, respectively). This combines some
of the benefits of Ridge while giving sparse solutions. In the pn > n setting, LASSO can
select at most n variables, but ENet has no such limitation.

Given a > 2 and λ > 0, the penalty function SCAD is according to the following
formula:

Pλ(|βj |) =


λ|βj | |βj | < λ

− (β2
j −2aλ|βj |+λ2)

2(a−1) λ ≤ |βj | < aλ
(a+1)λ2

2 |βj | > aλ

(2.5)

Then Pλ(|βj |) = λI(|βj | < λ) + aλ−|βj |
a−1 I(λ ≤ |βj | < aλ).

In minimax concave penalty (MCP) selection the penalty takes the following form:

Pλ(βj) =
{

λβj − 1
2aβ2

j βj ≤ aλ
a
2 λ2 βj > aλ

(2.6)

for λ > 0 and a > 1. For both SCAD and MCP, the regularization parameter a controls
the degree of concavity, with a smaller a corresponding to a penalty that is more concave.
Both penalties begin by applying the same rate of penalization as LASSO, and then
gradually reduce the penalization rate to zero as |βj | increases.

2.2.1. Variable selection procedure for S1 and S2. We summarize the variable se-
lection procedure for S1 and S2.

Step 1 (Detection of S1). Obtain a candidate subset S1 of strong signals using a penalized
regression method. We consider the following penalized likelihood estimator (PLE):

β̂PLE = arg min
β

{−ℓn(β) +
pn∑

j=1
Pλ(βj)}, (2.7)



Post high-dimensional shrinkage estimation for sparse generalized linear models 5

where Pλ(βj) is a penalty for each individual βj to shrink the weak effects toward zeros and
select the strong signals, the tuning parameter λ > 0 controlling the size of the candidate
subset Ŝ1.
Step 2 (Detection of S2). To identify Ŝ2, we first solve a regression problem with a ridge
penalty on only the variables in Ŝc

1. That is,

β̂r = arg min
β

{
− ℓ(β) + rn||β

Ŝc
1
||22
}

, (2.8)

where rn > 0 is a tuning parameter that controls the overall strength of the variables
selected in Ŝc

1. Then, a post-selection weighted ridge (WR) estimator β̂WR has the form

β̂WR
j =

{
β̂r

j , j ∈ Ŝ1,

β̂r
j 1(|β̂r

j | > an), j ∈ Ŝc
1,

(2.9)

where an is a thresholding parameter. Then, the candidate subset Ŝ2 is obtained by

Ŝ2 = {j ∈ Ŝc
1 : β̂WR

j ̸= 0, 1 ≤ j ≤ p}. (2.10)

The post-selection estimation strategy is only used when the threshold parameter an sat-
isfies |Ŝ2| > 2. In particular, we set

an = cn−κ, 0 < κ ≤ 1/2. (2.11)

Note that Ŝnull = S − (Ŝ1
⋃
Ŝ2) and this is the set of variables that will be discarded as

irrelevant signals.

2.2.2. Post-selection estimation strategies. In this section, we propose a shrinkage
estimate based on two post-selection estimators β̂RE and β̂WR. Recall that β̂WR

Ŝ1
= (β̂r

j , j ∈
Ŝ1)T and β̂WR

Ŝ2
= (β̂r

j 1(|β̂r
j | > an), j ∈ Ŝ2)T.

We obtain the post-selection shrinkage estimator β̂SE
Ŝ1

by

β̂SE
Ŝ1

= β̂WR
Ŝ1

−
( ŝ2 − 2

T̂n

)(
β̂WR
Ŝ1

− β̂RE
Ŝ1

)
, (2.12)

where ŝ2 = |Ŝ2| , the post selection restirected estimator β̂RE restricted to Ŝ1 is constructed
by

β̂RE
Ŝ1

= Σ̂−1
Ŝ1

XT
Ŝ1

Σ(β̂
Ŝ1

)Ẑ (2.13)

where Ẑ is a n-dimensional vector of working response with elements

Ẑi = XT
i β̂ + (Yi − µ̂i)g′(µ̂i), i = 1, 2, · · · , n.

and T̂n is as defined by

T̂n =
(
β̂WR
Ŝ2

)T(
XT

Ŝ2
M

Ŝ1
X

Ŝ2

)−1
β̂WR
Ŝ2

, (2.14)

with M
Ŝ1

= In − X
Ŝ1

Σ̂−1
Ŝ1

XT
Ŝ1

. A generalized inverse is used if Σ̂
Ŝ1

is not singular. To
avoid over-shrinking where β̂WR

Ŝ1
has a different sign from β̂SE

Ŝ1
, we consider a positive

shrinkage estimator given by a convex combination of βWR
Ŝ1

and β̂RE
Ŝ1

,

β̂PSE
Ŝ1

= β̂ WR
Ŝ1

−
( ŝ2 − 2

T̂n

∧ 1
)(

β̂ WR
Ŝ1

− β̂RE
Ŝ1

)
, (2.15)

Again, we emphasize here that β̂PSE
Ŝ1

is particularly important for controlling the over-
shrinking problem inherited in the shrinkage estimator.
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2.3. Selection of threshold parameters
To implement the procedure of simultaneous estimation and selection of variables based

on penalized loss function, it is necessary to choose the appropriate value of the thresh-
old parameter an. One of the ways to select an is by minimizing the generalized cross-
validation (GCV) criterion. Tibshirani [22] and Fan and Li [8] used the same criterion
for the selection of the threshold parameter. However, Wang et al. [24] pointed out that
even if the sample size goes to infinity, the GCV criterion has a non-ignorable overfitting.
Further, for selection of threshold parameter they have proposed generalized information
criterion and showed that it is able to identify the true model consistently. [19] defined
a BIC-type selector for selecting the threshold parameter and, through simulation study,
demonstrated that it gives good results. This motivated us to select the optimal sn by
minimizing the BIC-type criterion.

BCI(an) = ℓn(β̂an) + 1
n

DFan log(n) (2.16)

where β̂an is penalized estimator of β at threshold parameter an, ℓn(β̂an) is loss function
of estimator evaluated at β̂an and DFan denotes number of non-zero components in β̂an .

3. Asymptotic properties
In this section, we study the asymptotic properties of post-selection shrinkage estima-

tors. To investigate the asymptotic theory, we need the following regularity conditions.
(B1) pn = exp(O(nν)) for some 0 < ν < 1.
(B2) ϱ1n = O(n−η), where 0 < τ < η ≤ 1.
(B3) There exists a positive definite matrix Σn such that limn→∞ Σn = Σ, where the
eigenvalues of Σ satisfy 0 < κ1 < λmin(Σ) ≤ λmax(Σ) < κ2 < ∞.
(B4) Sparse Riesz condition. For the random design matrix X, any S ⊂ {1, · · · , pn}
with |S| = q, q ≤ pn, and any vector v ∈ Rq, there exist 0 < c∗ < c∗ < ∞ such that
c∗ ≤ ||XT

S v||2/||v||2 ≤ c∗ holds with probability tending to 1.
(B5) Assume that ||βS2 ||2 ∼ O(nτ ) for some 0 < τ < 1, where ||.||2 is the Euclidean norm.

Here, condition (B1) allows high dimensionality such that the number of predictors can
increase with sample size at an almost exponential rate. The condition (B2) guarantees
that the positive eigenvalues of ZT M1Z cannot be too small with a rate associated with
the strength of the weak signals in S2. The condition (B3) assumes that the eigenvalues
of Σ are bounded away from zero and infinity. This is reasonable since the number of
nonzero covariates is small in a sparse model. (B4) guarantees that S1 can be recovered
with probability tending to 1 as n → ∞. (B5), which bounds the total size of weak signals
on S2, is required for selection consistency on S2.

The following theorems will make it easier to compute the ADB and ADR of the pro-
posed estimators (see [13]).

Theorem 3.1. Suppose that assumptions (B1)-(B5) hold. If we choose

rn = c2a−2
n (log log n)3 log(n ∨ pn) (3.1)

for some constant c2 > 0 and an defined in (2.11) with ν < (η − α − τ)/3, then Ŝ2 in
(2.10) satisfies

lim
n→∞

P (Ŝ2 = S2|Ŝ1 = S1) = 1. (3.2)

where τ, η and α are defined in (B1), (B2) and (B5), respectively.

Theorem 3.2. Let s2
n = dT

nΣ−1
n dn for any (p1n +p2n)×1 vector dn satisfying ||dn||2 ≤ 1.

Suppose assumptions (B1)-(B5) hold and a pre-selected model such as S1 ⊂ Ŝ1 ⊂ S1 ∪ S2
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is obtained with probability 1. If we choose rn in Theorem 3.1 with ν < {(η−α−τ)/, 1/4−
τ/2}, then we have the asymptotic normality,

n1/2s−1
n dT

n(β̂ WR
Sc

null
− βSc

null
) D−→ N(0, 1). (3.3)

3.1. Asymptotic distributional bias and risk analysis
In order to compare the estimators, we use the asymptotic distributional bias (ADB)

and the asymptotic risk (ADR) expressions of the proposed estimators.

Definition 3.3. For any estimator β∗
1n and p1n-dimensional vector d1n, satisfying ||d1n||2 ≤

1, the ADB and ADR of dT
1nβ∗

1n, respectively, are defined as

ADB(dT
1nβ∗

1n) = lim
n→∞

E[{n1/2s−1
1n dT

1n(β∗
1n − β01)}], (3.4)

ADR(dT
1nβ∗

1n) = lim
n→∞

E[{n1/2s−1
1n dT

1n(β∗
1n − β01)}2], (3.5)

where s2
1n = dT

1nΣ−1
S1|S2

d1n. Let δ = (δ1, · · · , δp2n)T ∈ Rp2n and

∆d1n =
dT

1n(Σ−1
S1

ΣS1S2δδTΣS2S1Σ−1
S1

)d1n

dT
1n(Σ−1

S1
ΣS1S2Σ−1

S2|S1
ΣS2S1Σ−1

S1
)d1n

. (3.6)

We have the following Theorems on the expression of ADBs and ADRs of the post-selection
estimators.

Theorem 3.4. Let d1n be any p1n-dimensional vector satisfying 0 < ||d1n||2 ≤ 1 and
s2

1n = dT
1nΣ−1

S1|S2
d1n. Under the assumption (B5), we have

ADB(dT
1nβ̂W R

1n ) = 0, (3.7)

ADB(dT
1nβ̂RE

1n ) = s−1
1 dT

2 β2, (3.8)

ADB(dT
1nβ̂SE

1n ) = (p2 − 2)s−1
1 dT

2 β2E[χ−2
p2 (∆d2)], (3.9)

ADB(dT
1nβ̂P SE

1n ) = s−1
1 dT

2 β2

[
(p2 − 2)

{
E[χ−2

p2 (∆d2)]

+ E
[
χ−2

p2 (∆d2)I(χ2
p2(∆d2) < (p2 − 2))

]}
− Hp2

(
p2 − 2; ∆d2

)]
, (3.10)

where d2n = ΣS2S1Σ−1
S1

d1n and E[χ−2i
p2 (∆d2)] =

∫∞
0 x−2idHp2(x; ∆d2).

Proof: See the Appendix for a detailed proof.
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Theorem 3.5. Let (B5) is replaced by β0j = δj/
√

n, for j ∈ S2, with |δj | < δmax, for
some δmax > 0, we have

ADR(dT
1nβ̂W R

1n ) = 1, (3.11)

ADR(dT
1nβ̂RE

1n ) = 1 + (1 − c)1/2[2 + (1 − c)1/2(1 + 2∆d2)], (3.12)

ADR(dT
1nβ̂SE

1n ) = 1 + (1 − c)1/2(p2 − 2)
[
(1 − c)1/2(p2 − 2)

{
E[χ−4

p2+2(∆d2)]

+ (s−1
2 dT

2 β2)2E[χ−4
p2 (∆d2)]

}
+ 2E[χ−2

p2+2(∆d2)]
]
, (3.13)

ADR(dT
1nβ̂P SE

1n ) = 1 + (1 − c)(p2 − 2)2
{

E[χ−4
p2+2(∆d2)]

+ (s−1
2 dT

2 β2)2E[χ−4
p2 (∆d2)]

+ E[χ−4
p2+2(∆d2)I(χ2

p2+2(∆d2) < (p2n − 2))]
}

+ 2(1 − c)1/2(p2 − 2)
{

E[χ−2
p2+2(∆d2)]

+ E[χ−2
p2+2(∆d2)I(χ2

p2+2(∆d2) < (p2n − 2))]

− (p2 − 2)E[χ−4
p2+2(∆d2)I(χ2

p2+2(∆d2) < (p2n − 2))] − (1 − c)1/2

×
[
E[χ−2

p2+2(∆d2)I(χ2
p2+2(∆d2) < (p2n − 2))]

+ (s−1
2 dT

2 β2)2E[χ−2
p2 (∆d2)I(χ2

p2(∆d2) < (p2n − 2))]
]}

,

+ (1 − c)1/2
[
(1 − c)1/2

(
E[χ2

p2+2(∆d2)]

+ (s−1
2 dT

2 β2)2Hp2(p2 − 2; ∆d2)
)

+ 2
{

Hp2(p2 − 2; ∆d2) − (p2 − 2)

× E[χ−2
p2+2(∆d2)I(χ2

p2+2(∆d2) < (p2n − 2))]
}]

, (3.14)

where c = limn→∞ dT
1nΣ−1

S1
d1n/(dT

1nΣ−1
S1|S2

d1n) ≤ 1 and s2
2n = dT

2nΣ−1
S2|S1

d2n.

Proof: See the Appendix for a detailed proof.

From Theorem 3.5, we can compare the ADRs of the estimators.
Corollary 3.6. Under assumptions in Theorem 3.5, we have

(1) If ||δ||2 ≤ 1, then ADR(dT
1nβ̂P SE

1n ) ≤ ADR(dT
1nβ̂SE

1n ) ≤ ADR(dT
1nβ̂W R

1n );
(2) If ||δ||2 = o(1) and p2n → ∞, then for δ = 0,

ADR(dT
1nβ̂RE

1n ) < ADR(dT
1nβ̂P SE

1n ) ≤ ADR(dT
1nβ̂W R

1n ).
Corollary 3.6 shows that the performance of the post-selection PSE is closely related to

the RE. On one hand, if Ŝ1 ⊂ S1∪S2 and (S1∪S2)∩Ŝc
1 are large, then the post-selection PSE
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tends to dominate the RE. Furthermore, if a variable selection method generates the right
submodel and ||δ||2 = o(1) , that is, limn→∞ Ŝ1 = S1 ∪ S2, then a post-selection likelihood
estimator β̂RE

1n is the most efficient compared to all other post-selection estimators.

Remark 3.7. The simultaneous variable selection and parameter estimation may not
lead to a good estimation strategy when weak signals are co-exist with zero signals. Even
though selected candidate subset models can be provided by some existing variable se-
lection techniques when pn > n, the prediction performance can be improved by the
post-selection shrinkage strategy, especially when an under-fitted subset model is selected
by an aggressive variable selection procedure.

4. Simulation study
We consider the estimation problem to the high-dimensional GLMs in which pn > n.

The response variable was generated from the two logistic and Poisson regression models
with the following regression coefficient vector under the three effect sizes such as strong,
weak, and no effect,

β0 = (
S1︷ ︸︸ ︷

5, 5, 5,

S2︷ ︸︸ ︷
0.5, . . . , 0.5︸ ︷︷ ︸

30

,

Snull︷ ︸︸ ︷
0, 0, 0, 0, . . . , 0︸ ︷︷ ︸

pn−p1−p2

)T. (4.1)

The covariate xi is generated from a pn-dimensional multivariate normal distribution
with zero mean and covariance matrix Ipn×pn . We separated the method under a high-
dimensional setting into two steps, namely:

(1) A variable selection step to detect significant predictors and to reduce the dimen-
sions to a low-dimensional model.

(2) A post-selection parameter estimation step, using the resulting model attained
from step 1 above.

In variable selection, we adopt the LASSO, ENet, SCAD and MCP method to eliminate
predictors with no signals and to keep predictors with both strong and weak signals. All
parameter tuning in variable selection approaches are chosen using cross-validation (CV).
We also apply the function cv.glmnet from the R statistical package glmnet with 10-fold CV
for tuning parameter selection. In particular, cv.glmnet is applied to obtain both LASSO
and ENet estimators. We use the ncvreg package in the R software to obtain SCAD and
MCP estimators, respectively.

We use different (n, pn) combinations. For each combination, we run Monte-Carlo
studies with 1000 replicates. Let β∗

1n be either β̂ PSE
1n or β̂RE

1n after the variable selection.
The performance of an estimator β∗

1n is evaluated by the relative mean squared error
(RMSE) criterion with respect to β̂WR

1n as follows:

RMSE(β̂WR
1n , β∗

1n) = E[||β̂WR
1n − β0||2]

E[||β∗
1n − β0||2]

The RMSE(β∗
1n) > 1 means the superiority of β∗

1n over β̂WR
1n . Larger RMSE indicates

the stronger degree of superiority of the estimator β∗
1n over β̂WR

1n . The results on RMSE
from 1000 iterations are reported in Table 1. To check the behavior of LASSO, ENet,
SCAD and MCP for variable selection, we further report the average number of selected
important covariates as |Ŝ1|. From tabulated values it is observed that β̂PSE

Ŝ1
outperforms

LASSO, ENet, SCAD and MCP in identifying signals in S. Figures 1-10 show results when
the LASSO, ENet, SCAD and MCP is utilized to generate the submodel. We summarize
the simulation results as follows:
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(1) For all combination of n and pn, it is clear that β̂RE
Ŝ1

and β̂PSE
Ŝ1

perform better
than LASSO, ENet, SCAD and MCP. This suggests that these estimators provide
better predictive accuracy and stability.

(2) When data includes both strong signals and weak signals, all of LASSO, ENet,
SCAD and MCP tend to ignore those weak covariates. In this case, the post-
selection shrinkage estimator dominates these estimators in terms of the risk per-
formance. This is because shrinkage estimators can recover some information
ignored by LASSO, ENet, SCAD and MCP when they underfit the model.

(3) Post-selection shrinkage estimators are more stable than variable selection estima-
tors in terms of risk performance. They are not seriously affected by a heavily
underfitted model.

(4) The relative performances of the proposed estimators become better when pn grows
for fixed n. This trend suggests that LASSO, ENet, SCAD and MCP strug-
gle with larger feature spaces, likely due to their tendency to aggressively shrink
weaker covariates. In contrast, the post-selection estimators show relatively sta-
ble RMSE behavior, indicating their ability to retain relevant information even in
high-dimensional settings.

(5) SCAD and MCP generally has lower RMSE values than LASSO and ENet, partic-
ularly for small sample sizes, indicating its advantage in balancing feature selection
and regularization.

Figures 1-5 visualize the RMSE trends of the logistic regression model for different values
of pn when comparing LASSO (Figure 1), ENet (Figure 3), SCAD (Figure 4) and MCP
(Figure 5) against the proposed estimators. The plots indicate how RMSE varies as pn

increases for different sample sizes n. The same resultshold for the Poisson regression
model.

In order to compare the sparsity of the coefficient estimators, we also evaluate the False
Positive Rate (FPR) defined as

FPR(β̂0) = |{j = 0, . . . , p; β̂0j ̸= 0 ∧ β0j = 0}|
|{j = 0, . . . , p; β0j = 0}|

. (4.2)

The FPR is the proportion of non-informative variables that are incorrectly included in
the model. This value is desired to be as small as possible. However, a large FPR
indicates that unnecessary associations are included, which ’only’ complicates the model
(see [15]). Note that if β0 does not contain any zero components, FPRe is not defined.
This evaluation measure is denoted for the generated data in each of 1000 simulation
replications separately, and then summarized in Table 1 and in Figures 4 and 10. The
lower the value of this criterion, the better the performance of the method.
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Table 1. The RMSE values and FPR averaged over N = 1000 runs.

Model n pn Method |Ŝ1| FPR β̂Ŝ1
β̂RE
Ŝ1

β̂P SE
Ŝ1

Logistic 200 200 LASSO 35.988 0.1736 1.1607 3.5262 3.9596
ENet 36.002 0.1796 1.6677 4.1716 4.6844
SCAD 32.084 0.1692 1.0913 3.2415 3.7217
MCP 30.111 0.1702 1.2048 3.6405 3.888

250 LASSO 38.996 0.1797 0.3301 0.9326 1.0300
ENet 36.993 0.2027 0.4242 1.0657 1.1816
SCAD 34.865 0.2333 0.2194 0.2212 1.0217
MCP 35.536 0.2123 0.3375 0.2663 1.0301

300 LASSO 37.994 0.1535 0.2415 0.9033 0.9961
ENet 37.991 0.1685 0.2848 0.9316 0.9960
SCAD 36.087 0.1551 0.2205 0.8875 0.8706
MCP 35.988 0.1634 0.2591 0.8963 0.9231

300 300 LASSO 33.008 0.1610 1.5494 1.6230 1.7295
ENet 33.100 0.1647 0.9420 1.0515 1.1155
SCAD 32.998 0.1584 0.9233 1.1988 1.1306
MCP 33.022 0.1611 0.9537 1.1402 1.5238

450 LASSO 36.003 0.1247 1.4410 1.3448 1.4495
ENet 36.003 0.1270 1.7995 1.5887 1.7131
SCAD 35.978 0.1254 1.3371 1.2243 1.3942
MCP 33.222 0.1198 1.5277 1.2305 1.4236

500 LASSO 35.004 0.1177 0.9994 1.0890 1.1470
ENet 37.000 0.1177 0.9814 1.0656 1.1201
SCAD 37.023 0.1163 0.9405 1.1005 1.1187
MCP 37.155 0.1094 0.9528 1.1257 1.1195

400 400 LASSO 33.996 0.0900 1.9431 2.2596 2.4025
ENet 34.000 0.0916 2.3976 2.5437 2.7099
SCAD 34.013 0.0902 1.8862 2.1902 2.3348
MCP 34.211 0.0898 1.8233 2.2023 2.4324

500 LASSO 35.003 0.0899 1.3406 1.3907 1.4169
ENet 33.001 0.0214 0.3831 2.4878 2.6432
SCAD 34.200 0.0452 1.2204 1.4333 1.5204
MCP 33.355 0.0400 1.3202 1.5475 2.2001

600 LASSO 34.998 0.0846 1.1135 1.2607 1.3337
ENet 33.050 0.0194 0.1621 1.6631 1.7571
SCAD 32.293 0.0525 1.2363 1.4302 1.3585
MCP 33.114 0.0873 1.4238 1.5204 1.6228

500 500 LASSO 36.000 0.1199 2.9295 3.4447 3.5971
ENet 35.997 0.1284 1.5312 2.1733 2.2699
SCAD 35.828 0.1196 1.3341 2.5232 2.9555
MCP 35.532 0.1225 1.5582 2.1184 2.2122

700 LASSO 34.000 0.0869 1.6610 2.2539 2.3670
ENet 34.000 0.0884 1.6324 2.3195 2.4313
SCAD 33.945 0.0874 1.5423 2.1444 2.2236
MCP 33.852 0.0923 1.5572 2.2208 2.3151

1000 LASSO 35.002 0.0775 2.1598 2.6015 2.7025
ENet 33.000 0.0258 0.7346 2.4387 2.5410
SCAD 34.200 0.0386 0.9231 2.2341 2.5970
MCP 35.010 0.0444 0.8862 2.2243 2.6133
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Table 2. The RMSE values and FPR averaged over N = 1000 runs.(countinued)

Model n pn Method |Ŝ1| FPR β̂Ŝ1
β̂RE
Ŝ1

β̂P SE
Ŝ1

Poisson 200 200 LASSO 39.587 0.0350 2.9705 3.6283 4.8609
ENet 37.011 0.0538 3.7216 4.2209 5.1548
SCAD 38.052 0.0723 2.8763 3.8890 4.9543
MCP 38.000 0.0334 2.5411 3.4420 4.1401

250 LASSO 41.889 0.0184 0.5227 1.3390 1.5883
ENet 38.002 0.0297 0.8017 2.4403 2.6913
SCAD 39.022 0.0336 0.7095 2.2331 2.5542
MCP 38.110 0.0281 0.6642 2.1244 2.1181

300 LASSO 39.915 0.0037 0.3341 0.9546 1.0702
ENet 38.866 0.0055 0.5934 1.4728 1.8991
SCAD 40.000 0.0077 0.3422 0.9624 1.6582
MCP 39.333 0.0035 0.3852 0.9288 1.5531

300 300 LASSO 37.005 0.0281 3.1058 3.6625 4.0410
ENet 35.020 0.0311 3.7355 4.0668 4.3787
SCAD 36.056 0.0433 3.9875 4.0225 4.2231
MCP 35.118 0.0651 3.8657 4.7975 4.5532

450 LASSO 39.001 0.0143 3.0217 3.4878 3.9898
ENet 39.008 0.0198 3.5671 4.2902 4.4413
SCAD 40.023 0.0226 3.6654 4.0100 4.2341
MCP 39.066 0.1736 3.2234 3.8975 4.1284

500 LASSO 40.030 0.0021 2.9901 3.2003 3.6333
ENet 38.994 0.0033 3.0889 3.9177 4.2441
SCAD 39.00 0.0044 3.1011 4.0024 4.1335
MCP 39.00 0.0073 3.2325 3.9997 4.0228

400 400 LASSO 41.000 0.0238 3.8195 4.1112 4.4496
ENet 41.300 0.0414 4.1911 4.6937 5.1204
SCAD 40.00 0.0523 4.2291 4.6617 5.0042
MCP 41.240 0.03452 3.6614 4.0978 5.1041

500 LASSO 40.988 0.0042 3.5093 4.0017 4.2588
ENet 40.000 0.0063 4.3858 4.7390 5.0136
SCAD 41.035 0.0022 4.2135 4.6541 5.2336
MCP 40.001 0.0064 3.9889 4.5311 5.1203

600 LASSO 39.000 0.0017 3.2685 3.9765 4.1302
ENet 39.002 0.0039 3.8716 4.5792 5.1119
SCAD 40.000 0.0040 3.7887 4.6531 5.1090
MCP 40.001 0.0056 3.6228 4.3444 4.9892

500 500 LASSO 40.013 0.0205 4.1924 4.6721 4.9023
ENet 40.001 0.0317 4.8817 5.2996 5.8943
SCAD 40.022 0.0421 4.3668 5.3000 5.9768
MCP 41.000 0.0388 4.2265 5.4502 5.7673

700 LASSO 39.008 0.0194 3.5377 3.4966 3.5138
ENet 38.000 0.0217 4.1444 4.7397 4.9906
SCAD 39.00 0.0343 3.4431 4.2954 4.5456
MCP 40.00 0.0356 4.1205 4.2322 4.3326

1000 LASSO 40.996 0.0031 4.0316 4.4415 4.6712
ENet 39.005 0.0038 5.3108 5.5024 5.8112
SCAD 40.00 0.0043 5.5542 5.4023 5.6641
MCP 39.044 0.0038 5.4856 5.4115 5.6562
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Figure 1. The RMSE of the proposed estimators compared with LASSO for
different n and pn in logistic model.
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Figure 2. The RMSE of the proposed compared with ENet for different n and
pn in logistic model.
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Figure 3. The RMSE of the proposed compared with SCAD for different n and
pn in logistic model.
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Figure 4. The RMSE of the proposed compared with MCP for different n and
pn in logistic model.
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Figure 5. The FPR for LASSO, ENet, SCAD and MCP methods for different n
and pn in logistic model.
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Figure 6. The RMSE of the proposed estimators compared with LASSO for
different n and pn in Poisson model.
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Figure 7. The RMSE of the proposed compared with ENet for different n and
pn in Poisson model.
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Figure 8. The RMSE of the proposed compared with SCAD for different n and
pn in Poisson model.
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Figure 9. The RMSE of the proposed compared with MCP for different n and
pn in Poisson model.
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Figure 10. The FPR for LASSO, ENet, SCAD and MCP methods for different
n and pn in Poisson model.
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5. Application
In this section, we investigate the practical usefulness of our methodology for gene

expression studies which involve high-dimensional data.

5.1. Genome-wide studies in cancer
We apply our methodology to a real data set on genome-wide association (GWA) studies

in cancer. The response variable, presence or absence of the illness is denoted by Y ∈ {0, 1}
(where Y = 1 denotes ”diseased”, and Y = 0 "healthy") and is binary, therefore we model
the relationship using logistic regression. The linear logistic regression model is defined as
follows:
Y1, · · · , Yn independent,

P (Yi = 1|Xi) = π(Xi), log
( π(Xi)

1 − π(Xi)

)
=

pn∑
j=1

β0jXij . (5.1)

The dataset is ultra-high-dimensional given that it contains 102 observations (52 posi-
tive, 50 control) on 6033 genes and is available from the R package spls. To obtain the
post-selection shrinkage estimators, we first select the candidate subsets from four variable
selection approaches, namely, LASSO, ENet, SCAD and MCP, respectively. All tuning
parameters are computed using 10-fold cross-validation. To evaluate the prediction ac-
curacy of the listed estimators, we randomly divided the data into two parts: 70% of
the dataset was designated as the training set and 30% was designated as the test set.
Table 3 reports the selected number of genes for different values pn. As seen, the ENet
strategy selects too many predictors, which may yield an overfitted model, whereas SCAD
and MCP select fewer substantial predictors, which may produce an under-fit model. We
observe that the suggested post-shrinkage estimator outperforms both submodels and full
models estimators in all cases. For these data, ENet performs relatively better than three
selected penalized methods used to construct the post-shrinkage estimators, perhaps due
to an inherited large amount of bias being more aggressive in variable selection. Interest-
ingly, all three penalized methods are superior to LASSO. Nevertheless, the post-shrinkage
estimator is utperforming the listed penalty estimators either we use ENet or LASSO to
construct it.

The relative residual sum of squares (RRSS) of estimator β∗
J over the WR estimator

βWR
0J is computed as follows:

RRSS(β∗
J) =

∑n
i=1 ||yi −

∑
j∈J XJβ

WR
0J ||2∑n

i=1 ||yi −
∑

j∈J XJβ
∗
J ||2

, (5.2)

where J is the index of the subset model, and β∗
J can be LASSO, ENet, SCAD, MCP

or post-selection RE and selection PSEs. RRSS > 1 indicates the supremacy of β∗
J over

βWR
0J . We compute the RRSS values for the underlying estimators under subset chosen by

LASSO, ENet, SCAD and MCP. The RRSS values are computed using cross-validation
following 50 random partitions of the data set. In each partition, the training set consists
of 60% observations and the test set consists of the remaining 40% observations. The
results of RRSS for different pn’s are reported in Figures 11 and 12. RRSS values of β̂PSE

Ŝ1
are observed to give the highest value in both cases. This is not surprising because the
selected submodel generated by LASSO, ENet, SCAD or MCP is the right one and does
not account for any bias. It is clear that in both cases β̂RE

Ŝ1
dominates the corresponding

penalized estimators based on RRSS with Ŝ1 detected by LASSO, ENet, SCAD, or MCP.
The prediction error accuracy (PEA) of the data based on the LASSO, ENet, SCAD, and
MCP methods is reported in Table 3. It can be seen that the PEA of LASSO and SCAD is
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higher than that of the second method. Thus, the data analysis agrees with the simulation
and theoretical findings.

Table 3. Results of classification & prediction error accuracy from real data set.

pn Method Selected number of genes PEA
2050 LASSO 26 0.1878

ENet 31 0.1633
SCAD 27 0.0836
MCP 22 0.2197

2500 LASSO 18 0.3523
ENet 45 0.1241
SCAD 28 0.0825
MCP 17 0.1913

3550 LASSO 19 0.1183
ENet 38 0.0195
SCAD 29 0.1388
MCP 21 0.1700

4300 LASSO 22 0.1247
ENet 54 0.0571
SCAD 32 0.1345
MCP 25 0.2024

6033 LASSO 21 0.1078
ENet 52 0.1300
SCAD 24 0.1088
MCP 33 0.1339
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Figure 11. Relative residual sum of squares (RRSS) of the proposed estimators
compared with LASSO for different pn.
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Figure 12. Relative residual sum of squares (RRSS) of the proposed estimators
compared with Elastic-Net for different pn.
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Figure 13. Relative residual sum of squares (RRSS) of the proposed estimators
compared with SCAD for different pn.



Post high-dimensional shrinkage estimation for sparse generalized linear models 21

2000 3000 4000 5000 6000

0
2

4
6

8
1
0

pn

R
R

S
S

MCP

RE

PSE

WR

Figure 14. Relative residual sum of squares (RRSS) of the proposed estimators
compared with MCP for different pn.

6. Conclusion
For a GLM where the number of predictors is much larger than the number of ob-

servations, we offer a post-selection high-dimensional shrinkage estimation strategy. The
asymptotic risk properties of the underlying estimators are developed and are evaluated
with the risk of the subset candidate model, LASSO, ENet, SCAD and MCP estimators,
respectively. We conclude that the suggested estimation strategy is very competitive with
SCAD and MCP estimators and in many cases performs better. In particular, it performs
very well when there are weak signals based on regression coefficients. The proposed strat-
egy is intuitively appealing and can be easily realized. Theoretical and simulation results
demonstrated that the post-selection shrinkage estimator has favorable performance and
is a good alternative to LASSO, ENet, SCAD and MCP estimators. It can save the loss
of efficiency of SCAD due to the effect of variable selection. When pn > n, we are inter-
ested in recovering the support and nonzero components of the regression coefficient vector
β. As a powerful tool for producing interpretable models, sparse modeling via penalized
regularization has gained popularity for analyzing high-dimensional data sets.

The proposed post-selection shrinkage estimator has a superior prediction performance
over other penalized regression estimators. The penalized estimators do not allow other
predictors to contribute once a sparse model or subset model is generated. The proposed
post-selection shrinkage estimators inherit the advantage of Stein-type estimators and take
into account possible contributions of other irrelevant variables.

This paper contributes to the investigation of post-penalized estimation analysis in a
high-dimensional setting. In summary, we investigate the asymptotic normality of the WR
estimator when pn increases with n. In addition, the relative efficiency of the proposed
high-dimensional shrinkage estimator to its competitors is assessed analytically and nu-
merically. We show that the performance of the shrinkage strategy is favorable relative to
that of other estimators. Our Monte Carlo simulation studies suggest that post-selection
shrinkage strategies perform better than penalty estimators for both variable selection
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and prediction purposes in many instances. The reported results of the data set are con-
sistent with our simulation study, demonstrating the superior performance of suggested
post-selection shrinkage strategies.

In this work, we focus on the high-dimensional post-selection shrinkage estimation
within the context of GLMs. For future work, one may consider combining all the es-
timators produced by multiple (more than two) variable selection techniques into a single
estimator to improve the overall prediction error. In another study, it would be interesting
to include penalty estimators that correspond to Bayes procedures based on priors with
polynomial tails.
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APPENDIX
The technical proofs of the Theorems 3.4 and 3.5 are included in this section.

Proof of Theorem 3.4
Here, we provide the proof of the ADB expressions of the proposed estimators. Based on
Theorem 3.2, it is clear that

lim
n→∞

E[n1/2s−1
1n dT

1n(β̂W R
1n − β1)] = E[ lim

n→∞
{n1/2s−1

1n dT
1n(β̂W R

1n − β1)}] = E[Z] = 0,
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where Z ∼ N(0, 1). Then,

ADB(dT
1nβ̂RE

1n ) = lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂RE

1n − β1
)]

= lim
n→∞

E
[
n1/2s−1

1n dT
1n

{
(β̂W R

1n − β1) − (β̂W R
1n − β̂RE

1n )
}]

= lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂W R

1n − β1
)]

− lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂W R

1n − β̂RE
1n

)]

= ADB(dT
1nβ̂W R

1n ) − lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂W R

1n − β̂RE
1n

)]

= lim
n→∞

E

[
n1/2s−1

1n dT
2nβ̂W R

2n

]

= lim
n→∞

(s2n/s1n)E
[
n1/2s−1

2n dT
2nβ̂W R

2n

]
= (s2/s1)s−1

2 dT
2 β2 = s−1

1 dT
2 β2,

where d2n = Σ̂S2S1Σ̂−1
S1

d1n, dT
1n(β̂W R

1n − β̂RE
1n ) = −dT

1 Σ̂−1
S1

Σ̂S2S1β̂W R
2n = −dT

2nβ̂W R
2n and

s2
2n = dT

2 Σ̂−1
S2|S1

d2n.

Now, we compute the ADB of β̂SE
1n as follows

ADB(dT
1nβ̂SE

1n ) = lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂SE

1n − β1
)]

= lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂W R

1n − [(p2n − 2)T̂ −1
n ](β̂W R

1n − β̂RE
1n ) − β1

)]

= lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂W R

1n − β1
)]

− lim
n→∞

(p2n − 2)E
[
n1/2s−1

1n dT
1n

(
β̂W R

1n − β̂RE
1

)
T̂ −1

n

]

= E[Z] − (p2 − 2)E
[

lim
n→∞

{
n1/2s−1

1n dT
1n(β̂W R

1n − β̂RE
1n )T −1

n

}]

= (p2 − 2)E
[

lim
n→∞

{
n1/2s−1

1n dT
2nβ̂W R

2n T −1
n

}]

= (p2 − 2)(s2/s1)E
[

lim
n→∞

{
n1/2s−1

2n dT
2nβ̂W R

2n T −1
n

}]

= (p2 − 2)s−1
1 dT

2 β2E

[
χ−2

p2 (∆d2)
]
.
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Finally, we obtain ADB of β̂P SE
1n ,

ADB(dT
1nβ̂P SE

1n ) = lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂P SE

1n − β1
)]

= lim
n→∞

E

[
n1/2s−1

1n dT
1n

{
β̂SE

1n + [1 − (p2n − 2)T̂ −1
n ](β̂W R

1n − β̂RE
1n )

× I(T̂n < (p2n − 2)) − β1
}]

= lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂SE

1n − β1
)]

+ lim
n→∞

E

[
n1/2s−1

1n dT
1n[1 − (p2n − 2)T̂ −1

n ]
(
β̂W R

1n − β̂RE
1n

)
I
(
T̂n < (p2n − 2)

)]

+ E

[
lim

n→∞

{
n1/2s−1

1n dT
1n(β̂SE

1n − β1)
}]

+ E

[
lim

n→∞

{
n1/2s−1

1n dT
1n(β̂W R

1n − β̂RE
1n )I

(
T̂n < (p2n − 2)

)}]

− (p2 − 2)E
[

lim
n→∞

{
n1/2s−1

1n dT
1n(β̂W R

1n − β̂RE
1n )T −1

n I
(
T̂n < (p2n − 2

)
)
}]

= ADB(dT
1nβ̂SE

1n ) − E

[
lim

n→∞

{
n1/2s−1

1n dT
2nβ̂W R

2n I
(
T̂n < (p2n − 2)

)}]

+ (p2 − 2)E
[

lim
n→∞

{
n1/2s−1

1n dT
2nβ̂W R

2n T̂ −1
n I

(
T̂n < (p2n − 2)

)}]

= ADB(dT
1nβ̂SE

1n ) − (s2/s1)E
[
ZI
(
χ2

P2(∆d2) < (p2 − 2)
)]

− s−1
1 dT

2 β2Hp2(p2 − 2; ∆d2)

+ (p2 − 2)(s2/s1)E
[
Zχ−2

p2 (∆d2)I
(
χ2

P2(∆d2) < (p2 − 2)
)]

+ (p2 − 2)s−1
1 dT

2 β2E

[
χ−2

p2 (∆d2)I
(
χ2

P2(∆d2) < (p2 − 2)
)]

= ADB(dT
1nβ̂SE

1n ) − s−1
1 dT

2 β2Hp2(p2 − 2; ∆d2)

+ (p2 − 2)s−1
1 dT

2 β2E

[
χ−2

p2 (∆d2)I
(
χ2

p2(∆d2) < (p2 − 2)
)]

= s−1
1 dT

2 β2

[
(p2 − 2)

{
E
[
χ−2

p2 (∆d2)] + E
[
χ−2

p2 (∆d2)I
(
χ2

P2(∆d2) < (p2 − 2)
)]}

− Hp2(p2 − 2; ∆d2)
]
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and the proof is completed. □

Proof of Theorem 3.5

Here, we provide the proof of the ADR expressions of the proposed estimators. It is
clear that

lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂W R

1n −β1
)}2

]
= E

[
lim

n→∞

{
n1/2s−1

1n dT
1n

(
β̂W R

1n −β1
)}2

]
= E[Z2] = 1,

ADR(dT
1nβ̂RE

1n ) = lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂RE

1n − β1
)}2

]

= lim
n→∞

s−2
1n E

[{
n1/2dT

1n

[(
β̂W R

1n − β1
)

−
(
β̂W R

1n − β̂RE
1n

)]}2
]

= lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂W R

1n − β1
)}2

]

+ lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂W R

1n − β̂RE
1n

)}2
]

− 2 lim
n→∞

E

[
ns−2

1n dT
1n

(
β̂W R

1n − β̂RE
1n )(β̂W R

1n − β1
)T

d1n

]
= I1 + I2 + I3.

From (3.11), we have I1 = limn→∞ E

[{
n1/2s−1

1n dT
1n(β̂W R

1n − β1)
}2
]

= 1. Also,

I2 = lim
n→∞

s−2
1n E

[
n1/2dT

1n

(
β̂W R

1n − β̂RE
1n

)]2

= lim
n→∞

(s2
2n/s2

1n)E
[
n1/2s−1

2n dT
2nβ̂W R

2n

]2

.

Since s2
2n/s2

1n → 1 − c, then

I2 = (1 − c) lim
n→∞

E

[
χ2

1(∆d2n)
]

= (1 − c)(1 + 2∆d2).

Furthermore,

I3 = −2 lim
n→∞

E

[
ns−2

1n dT
1n

(
β̂W R

1n − β̂RE
1n

)(
β̂W R

1n − β1
)T

d1n

]

= 2 lim
n→∞

(s2n/s1n)E
[
n1/2s−1

2n dT
2nβ̂W R

2n n1/2s−1
1n

(
β̂W R

1n − β1
)T

d1n

]
= 2(1 − c)1/2.
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Now, we investigate (3.13). By using Eq. (3.5), we have

ADR(dT
1nβ̂SE

1n ) = lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂SE

1n − β1)
}2
]

= lim
n→∞

E

[
n1/2s−1

1n dT
1n

{(
β̂W R

1n − β1
)

− [(p2n − 2)/T̂n]
(
β̂W R

1n − β̂RE
1n

)}]2

= lim
n→∞

E

[
n1/2s−1

1n dT
1n

(
β̂W R

1n − β1
)]2

+ lim
n→∞

E

[
n1/2s−1

1n

[
(p2n − 2)T −1

n

]
dT

1n

(
β̂W R

1n − β̂RE
1n

)]2

− 2 lim
n→∞

E

[
ns−2

1n

[
(p2n − 2)T̂ −1

n

]
dT

1n

(
β̂W R

1n − β̂RE
1n

)(
β̂W R

1n − β1
)T

d1n

]
= J1 + J2 + J3.

Again, J1 = limn→∞ E

[{
n1/2s−1

1n dT
1n

(
β̂W R

1n − β1
)}2

]
= 1. Then, we have

J2 = lim
n→∞

E

[
n1/2s−1

1n

[
(p2n − 2)T̂ −1

n

]
dT

1n

(
β̂W R

1n − β̂RE
1n

)]2

= lim
n→∞

(p2n − 1)2E

[
n1/2s−1

1n dT
2nβ̂W R

2n T −1
n

]2

= (s2
2/s2

1)(p2 − 1)2E

[
lim

n→∞

{
n1/2s−1

2n dT
2nβ̂W R

2n T̂ −1
n

}]2

= (s2
2/s2

1)(p2 − 1)2
{

E[Z2χ−4
p2 (∆d2)] + (s−1

2 dT
2 β2)2E[χ−4

p2 (∆d2)]
}

= (1 − c)(p2 − 2)2
{

E[χ−4
p2+2(∆d2)] + (s−1

2 dT
2 β2)2E[χ−4

p2 (∆d2)]
}

,

and

J3 = −2 lim
n→∞

E

[
ns−2

1n

[
(p2n − 2)T̂ −1

n

]
dT

1n

(
β̂W R

1n − β̂RE
1n

)(
β̂W R

1n − β1
)T

d1n

]

= 2 lim
n→∞

(s2n/s1n)(p2n − 2)E
[
n1/2s−1

2n dT
2nβ̂W R

2n s−1
1n (β̂W R

1n − β1)TT̂ −1
n

]

= 2(1 − c)1/2(p2 − 2)
{

E
[
Z2χ−2

p2 (∆d2)
]

+ s−1
2 dT

2 β2E
[
Zχ−2

p2 (∆d2)
]}

= 2(1 − c)1/2(p2 − 2)E
[
χ−2

p2+2(∆d2)
]
.
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ADR(dT
1nβ̂P SE

1n ) = lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂P SE

1n − β1
)}2

]

= lim
n→∞

E

[{
n1/2s−1

1n dT
1n

[(
β̂SE

1n − β1
)

+
[
1 − (p2n − 2)T̂ −1

n

](
β̂W R

1n − β̂RE
1n

)
I
(
T̂n < (p2n − 2)

)]}2
]

= lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂SE

1n − β1
)}2
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n→∞

E
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n1/2s−1

1n dT
1n
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1 − (p2n − 2)T̂ −1

n

](
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1n − β̂RE
1n
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I
(
T̂n < (p2n − 2)

)}2
]
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n→∞

E
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1n dT
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1nβ̂SE
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n→∞
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1n dT
1n

(
β̂W R

1n − β̂RE
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× T̂ −1
n I
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1nβ̂SE
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D1 = lim
n→∞
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2n I
(
T̂n < (p2n − 2)

)}2
]

= (s2/s1)2
{

E

[
Z2I

(
χ2

p2(∆d2) < (p2 − 2)
)]

+ (s−1
2 dT

2 β2)2Hp2(p2 − 2; ∆d2)
}

= (1 − c)
{

E

[
χ2

p2+2(∆d2)
]

+ (s−1
2 dT

2 β2)2Hp2(p2 − 2; ∆d2)
}

,

D2 = lim
n→∞

E

[{
n1/2s−1

1n dT
1n

(
β̂W R

1n − β̂RE
1n )(p2n − 2)T̂ −1

n I
(
T̂n < (p2n − 2)

)}2
]

= lim
n→∞

(p2n − 2)2(s1n/s2n)2E

[{
n1/2s−1

2n dT
2nβ̂W R

2n T̂ −1
n I

(
T̂n < (p2n − 2)

)}2
]

= (p2 − 2)2(s2/s1)2E

[
lim

n→∞

{
n1/2s−1

2n dT
2nβ̂W R

2n T̂ −1
n I

(
T̂n < (p2n − 2)

)}2
]

= (p2 − 2)2(1 − c)E
[
Z2χ−4

p2 (∆d2)I
(
χ2

p2(∆d2) < (p2 − 2)
)]

= (p2 − 2)2(1 − c)E
[
χ−4

p2+2(∆d2)I
(
χ2

p2+2(∆d2) < (p2 − 2)
)]

,

D3 = −2 lim
n→∞

(p2n − 2)E
[{

ns−2
1n dT

1n

(
β̂W R

1n − β̂RE
1n )2T̂ −1

n I
(
T̂n < (p2n − 2)

)
d1n

}]

= −2(p2 − 2)(s2/s1)2E

[
lim

n→∞

{
n1/2s−1

2n dT
1nβ̂W R

2n

}2
T̂ −1

n I
(
T̂n < (p2n − 2)

)
]

= −2(p2 − 2)(1 − c)
{

E

[
Z2χ−2

p2 (∆d2)I
(
χ2

p2(∆d2) < (p2 − 2)
)]

+ (s−1
2 dT

2 β2)2E

[
χ−2

p2 (∆d2)I
(
χ2

p2(∆d2) < (p2 − 2)
)]}

= −2(p2 − 2)(1 − c)
{

E

[
χ−2

p2+2(∆d2)I
(
χ2

p2+2(∆d2) < (p2 − 2)
)]

+ (s−1
2 dT

2 β2)2E

[
χ−2

p2 (∆d2)I
(
χ2

p2(∆d2) < (p2 − 2)
)]}

,
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D4 = 2 lim
n→∞

E

[{
ns−2

1n dT
1n

(
β̂W R

1n − β̂RE
1n

)(
β̂SE

1n − β1
)T

I
(
T̂n < (p2n − 2)

)
d1n

}]

= 2 lim
n→∞

(s2n/s1n)E
[{

n1/2s−1
2n dT

2nβ̂W R
2n

}{
n1/2s−1

1n dT
1n

(
β̂SE

1n − β1
)}T

I
(
T̂n < (p2n − 2)

)]

= 2(s2/s1)E
[{

n1/2s−1
2n dT

2nβ̂W R
2n

}{
n1/2s−1

1n dT
1n

(
β̂W R

1n − β1
)

− (p2n − 2)T̂ −1
n I

(
T̂n < (p2n − 2))

}T
I
(
T̂n < (p2n − 2)

)]
= 2(1 − c)1/2

{
E

[
lim

n→∞

{
n1/2s−1

2n dT
2nβ̂W R

2n

}{
n1/2s−1

1n dT
1n

(
β̂W R

1n − β1
)
I
(
T̂n < (p2n − 2)

)}T
]

− (p2 − 2)E
[{

n1/2s−1
2n dT

2nβ̂W R
2n

}{
n1/2s−1

1n dT
1n

(
β̂W R

1n − β1
)
T̂ −1

n I
(
T̂n < (p2n − 2)

)}T
]}

= 2(1 − c)1/2
{

E

[
Z2I

(
χ2

p2(∆d2) < (p2 − 2)
)]

− (p2 − 2)E
[
Z2χ−2

p2 (∆d2)I
(
χ2

p2(∆d2) < (p2 − 2)
)]}

= 2(1 − c)1/2
{

Hp2+2(p2 − 2; ∆d2) − (p2 − 2)E
[
χ−2

p2+2(∆d2)I
(
χ2

p2+2(∆d2) < (p2 − 2)
)]}

and

D5 = −2 lim
n→∞

(p2n − 2)E
[{

ns−2
1n dT

1n

(
β̂W R

1n − β̂RE
1n

)(
β̂SE

1n − β1
)T

T̂ −1
n I

(
T̂n < (p2n − 2)

)
d1n

}]

= 2(p2 − 2)(s2/s1)E
[

lim
n→∞

{
n1/2s−1

2n dT
2nβ̂W R

2n T̂ −1
n I

(
T̂n < (p2n − 2)

)}

×
{

n1/2s−1
1n dT

1n

(
β̂W R

1n − β1
)

− (p2n − 2)
(
β̂W R

1n − β̂RE
1n

)
T̂ −1

n I
(
T̂n < (p2n − 2)

)}T
]

= 2(p2 − 2)(s2/s1)
{

E

[
Z2χ−2

p2 (∆d2)I
(
χ2

p2(∆d2) < (p2 − 2)
)]

− (p2 − 2)E
[
Z2χ−2

p2 (∆d2)I
(
χ2

p2(∆d2) < (p2 − 2)
)]}

= 2(p2 − 2)(1 − c)1/2
{

E

[
χ−2

p2+2(∆d2)I
(
χ2

p2+2(∆d2) < (p2 − 2)
)]

− (p2 − 2)E
[
χ−4

p2+2(∆d2)I
(
χ2

p2+2(∆d2) < (p2 − 2)
)]}

.

□


