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ABSTRACT: HCV is a blood-borne RNA virus that causes acute and chronic hepatitis, cirrhosis, liver failure, and 
hepatocellular carcinoma. In the present work, a large in silico combinatorial library was generated using the privileged 
substructures of existing inhibitors of the HCV NS5B protein. Next, we performed a multistep virtual screening process 
to identify novel HCV NS5B inhibitors. Additionally, we assessed the hit compounds' pharmacokinetic characteristics to 
evaluate their potential as drugs. Hit molecules with drug-like properties were classified with fingerprint-based 
chemical similarity clustering. Molecular dynamics simulations confirmed the stability of complexes and provided a 
comprehensive understanding of the molecular interactions between the novel molecule classes and HCV NS5B 
polymerase. The results of this study set the stage for developing new scaffolds as allosteric inhibitors of HCV NS5B 
protein for drug designing objectives and highlight the promising prospects of using privileged substructures for 
screening library construction in pharmaceutical research. 
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 1.  INTRODUCTION 

Hepatitis C Virus (HCV) is a blood-borne RNA virus belonging to the Hepacivirus genus within the 
Flaviviridae family [1]. There are currently at least six major identified genotype variants of HCV, each with 
a unique geographic distribution and numerous subtypes [2, 3]. HCV can lead to acute and chronic hepatitis, 
cirrhosis, liver failure, and hepatocellular carcinoma. According to the World Health Organization (WHO), 
approximately 58 million people are chronically infected with HCV, with 1.5 million new cases reported 
annually [4]. Given its status as a significant global health threat, the pharmaceutical industry and academia 
are keen on developing new molecules based on previous medicinal chemistry efforts and structural 
information [5]. 

NS5B is a non-structural protein component of HCV that has gained global attention due to the 
absence of a comparable mammalian counterpart [6]. NS5B plays a crucial role in HCV's transcription and 
genome replication. It consists of a catalytic core with distinct subdomains such as 'fingers', 'palm', and 
'thumb'. [7] Scientists have discovered several small molecules targeting the active site and the allosteric 
binding sites of NS5B polymerase, including nucleoside inhibitors (NIs) and non-nucleoside inhibitors 
(NNIs) [8-10]. The complexity of nucleoside pharmacology for NIs makes it challenging to predict their 
effectiveness and safety in humans. Although there has been progress in making them more potent, there is 
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still a need for new structural elements that can improve their pharmacokinetic properties, as well as their 
off-target effects. On the other hand, non-nucleoside inhibitors (NNIs) target the allosteric binding pocket 
within NS5B [11]. They allow for the development of selective anti-HCV drugs with fewer non-targeted side 
effects compared to NIs. Dasabuvir, an NNI, inhibits the action of NS5B palm polymerase [12, 13, 14]. It was 
approved by the FDA in 2014. Dasabuvir is used in combination with ombitasvir (an NS5A inhibitor), 
paritaprevir (an NS3-4A serine protease inhibitor), and ritonavir (a cytochrome P450-3A4 inhibitor) for the 
treatment of hepatitis C virus genotypes 1a and 1b [15]. Another NNI, Beclabuvir, which binds to the thumb 
site 1 pocket and inhibits NS5B, was approved in Japan in 2016 for treating genotype 1 chronic hepatitis C 
[16]. It is used in combination with the NS5A inhibitor Daclatasvir and NS3 protease inhibitor Asunaprevir 
[16]. Despite advances in treatment, many patients with HCV still need to undergo retreatment due to 
limited effectiveness against different HCV genotypes, variations in ethnicity, ineffective long-term 
treatments, resistance to HCV, side effects, and limited affordability of drugs [17, 18]. This emphasizes the 
ongoing need for further advancements in therapy. Furthermore, no medications currently target the thumb 
site 2 pocket, which prompted our research initiative. 

Modulating the biological functions of HCV NS5B polymerase has been the focus of several drug 
discovery projects. Therefore, several crystal structures of HCV NS5B protein in complex with various 
ligands have been resolved in the Protein Data Bank (PDB) [19]. Molecular docking studies often involve a 
static protein structure and flexible ligands [20, 21]. However, the binding region's conformation can 
undergo significant changes based on the structure of the co-crystallized ligand and the internal flexibility of 
the protein's binding site. Molecular dynamics (MD) simulations are commonly used to generate the 
protein's conformational substates [22]. Nonetheless, it is difficult to sample the conformational space of 
proteins using MD simulations and to identify the most biologically relevant structural conformations. On 
the other hand, X-ray crystals or cryo-EM structures only provide a single native conformation of protein 
structures, leading to limited conformational heterogeneity. However, the structural data for biomolecules 
with various co-crystallized ligands is increasing rapidly. This provides a collection of valuable experimental 
protein conformations. Despite this, screening large compound libraries on a range of protein conformations 
can significantly increase the computational time required for docking calculations, making it impractical. A 
subset of representative protein conformations can be used to minimize the computing time [23-26]. To 
analyze the conformational changes in the thumb site 2 pocket caused by the ligand during our docking 
experiments, we initially grouped the existing crystal structures of HCV NS5B in the PDB. Subsequently, we 
conducted ensemble docking studies to pinpoint the most probable poses with the highest achievable 
binding affinity score. 

Molecular docking experiments are valuable for identifying the likely way in which a ligand binds to 
a protein surface and the interactions between them. However, it remains challenging to estimate the 
changes in free energy upon ligand desolvation and intramolecular and conformational entropy changes 
upon binding, which are essential for evaluating the binding affinity of ligands to the receptor [21, 27-29]. 
Instead, the endpoint binding free energy calculations such as Molecular Mechanics Poisson–Boltzmann 
Surface Area (MM-PBSA) and MM-GBSA methods are popular tools for understanding the binding affinities 
of small ligands to their target macromolecules and postprocessing the docking solutions [24, 30-33]. These 
methods offer a balance between accuracy and computational efficiency. They provide improved accuracy 
compared to many molecular docking scoring functions and require fewer computational resources than 
alchemical-free energy methods. As a result, they represent a valuable intermediate option between 
empirical scoring and strict alchemical perturbation methods. Therefore, we carried out molecular 
mechanics generalized Born surface area (MM/GBSA) calculations to rescore the docking poses and 
compute the binding energies with a more physically reasonable description of the contributions to the 
binding. 

QSAR modeling is an in-silico approach that helps identify differences in structural properties that 
lead to variations in biological activities [34-37]. This method uses regression and classification techniques to 
build a mathematical model that links the structural modifications to continuous (IC50, EC50, Ki, etc.) or 
categorical/binary (active, inactive, etc.) biological properties. As a result, this model can prioritize a large 
number of chemicals based on their desired biological activities and reduce the number of chemicals to be 
tested in the laboratory. In our current project, we developed both categorical and continuous QSAR models 
to forecast the activities of new chemical compounds created during combinatorial library enumeration. The 
compounds anticipated to be active were then analyzed for their drug-likeness and ADME properties. MD 
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simulations were carried out on the reference molecule of each of the four clusters, which were grouped 
based on their chemical similarity. These compounds exhibited stable interactions with the key residues 
Ser476 and Tyr477, as well as other commonly associated residues, Arg422, Leu474, Leu497, and Arg501, 
within the thumb site 2 pocket of NS5B, suggesting that they could serve as innovative allosteric inhibitors of 
HCV NS5B, offering a new starting point for developing novel therapeutics [38-43]. The overall workflow 
implemented in this work is presented in Figure 1. 
 

  
Figure 1. Overall workflow applied in the present work. 

2. RESULTS and DISCUSSION 

2.1. Clustering the thumb site 2 pockets of the known HCV NS5B crystals 
To decrease the expense of the computing time of ensemble docking of our focused virtual 

combinatorial library, we used a subset of HCV NS5B protein conformations. We first mapped the 
topologies of the binding sites of all the protein structures using the SiteMap module of Schrödinger 
software. SiteMap analyses the surface of a protein, detects all the possible binding sites, and then ranks 
them based on SiteScore to eliminate the pharmaceutically irrelevant ones. By providing the names of the 
present ligands in the co-crystalized structures and a search distance of 5 Å, we mapped only the thumb site 
2 regions of each of the 81 protein-ligand complexes. Next, we clustered the thumb site 2 pocket surfaces 
using Schrödinger’s volume clustering script, which uses a hierarchical clustering with average linkage for 
clustering the structures. In total, 8 clusters were generated, and the protein structure that represents the 
cluster’s center was chosen for the subsequent in-silico experiments. 

Conducting ensemble docking studies of the newly generated in-house compound library of 184,214 
molecules on this number of protein structures would require high computational power, rendering the 
study infeasible. Fortunately, clustering of binding pockets and selecting a representative grid of each cluster 
has shown to be successful in virtual screening studies. Thus, as a first step, we created a KNIME workflow 
to cluster the thumb site 2 pockets of the known HCV NS5B crystal structures in complex with thumb site 2 
inhibitors.  In total, eight protein structures with PDB IDs 1NHV [42], 1YVZ [79], 2I1R [65], 2WHO [80], 
2O5D [66], 2HWH [64], 4J04 [63], and 4TLR [57] were predicted as representatives of different conformations 
adopted by thumb site 2 pockets upon inhibitor binding. 
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2.2. Ensemble docking and rescoring of docking poses with MM-GBSA method: Known HCV NS5B 
inhibitors 

In the next step, 314 known thumb site 2 inhibitors of HCV NS5B were docked onto the eight 
representative structures using the Glide docking tool implemented in the Schrödinger program. Only the 
top-scored pose out of the eight poses retrieved from the ensemble docking campaign was used to generate 
the box plots showing the distribution of the Glide SP docking score, and the derived ligand efficiency 
scores, Glide ligand efficiency score, Glide ligand efficiency_ln score, and Glide ligand efficiency_sa score 
(Figure S1). In the case of the Glide SP docking score, the threshold value for obtaining the first quartile of 
the dataset was -7.87, -7.5, and -7.36 for the active, weak, and inactive compounds, respectively. According to 
these values, with a Glide SP score equal to or higher than -7.87, we can eliminate more than 75% of the 
weak binders and inactives from a prospective dataset. On the other hand, the threshold Glide ligand 
efficiency score to obtain the first quartile of the dataset was -0.23, -0.24, and -0.25 for the active, weak, and 
inactive compounds, respectively. Similarly, Glide ligand efficiency_ln and ligand efficiency_sa scores could 
not discriminate actives from weak and inactive compounds. For the Glide ligand efficiency_ln-based 
scoring, a threshold value of -1.43, 1.44, and -1.43, and for the ligand efficiency_sa-based scoring, -0.67, -0.73, 
and -0.69 was predicted to obtain the first quartile of the dataset for the active, weak, and inactive 
compounds, respectively. This shows us that the derived ligand efficiency scores performed poorly 
compared to the Glide SP docking score. To assess the discriminative power of each score produced by Glide 
SP docking, we further generated a ROC plot (Figure 2a) and calculated the AUC values. The Glide SP 
docking score had the highest performance, with an AUC value of 0.66, compared to the other ligand 
efficiency metrics obtained from Glide SP docking. As a result, it was used as a parameter to filter the 
compounds in the combinatorial library. 

Consequently, docking solutions obtained from the Glide SP docking experiment of 314 known 
thumb site 2 inhibitors of HCV NS5B were analyzed using BFE calculations. The correlation coefficient (R2) 
of predicted and experimental binding free energies for different groups of ligands has been enhanced by 
rescoring an ensemble of docking poses rather than a single pose. Since the accuracy of the calculated 
relative binding free energies relies on the quality of modeled poses, all docking poses retrieved against 
eight representatives of inhibited HCV NS5B thumb site 2 conformations were used for rescoring with the 
Prime MM-GBSA method. Then, docking poses were re-ranked based on their MM-GBSA dG binding score, 
and only the top-ranked pose obtained for each ligand was used to generate box plots (Figure 4) and the 
ROC plot (Figure 2b). The distribution of the MM-GBSA dG binding score and ligand efficiency metrics 
(MM-GBSA ligand efficiency score, MM-GBSA ligand efficiency_ln score, and MM-GBSA ligand 
efficiency_sa score) is shown in Figure S2. Based on the box plots, we observed that the first quartile of the 
dataset corresponds to the following threshold MM-GBSA dG binding score values: -65.57 for active 
compounds, -62.9 for weak compounds, and -60.39 for inactive compounds. Using a threshold value of -
65.57 or higher for the MM-GBSA dG binding score allows us to filter out more than 75% of weak and 
inactive molecules. Similarly, the threshold values for the MM-GBSA ligand efficiency_ln score were -14.78 
for active compounds, -14.36 for weak compounds, and -13.8 for inactive compounds. However, the MM-
GBSA ligand efficiency (-2.29 for actives, -2.21 for weak binders, and -2.37 for inactives) and MM-GBSA 
ligand efficiency_sa scores (-3.44 for actives, -3.31 for weak binders, and -3.55 for inactive molecules) were 
not as effective in discriminating actives from weak and inactive compounds as the first two metrics. It has 
already been reported in the literature that choosing a docking solution based on binding free energy may 
improve the accuracy of the docking pose [24, 25, 33, 79-81]. In addition, we also extracted information on 
the Glide SP score and related ligand efficiency metrics predicted for the top-ranked pose based on its MM-
GBSA dG score. We compared the predictive power of different scores obtained from processing the docking 
poses using Prime MM-GBSA calculations. The MM-GBSA dG binding score outperformed the others, with 
an AUC of 0.71 distinguishing between active and inactive compounds. Therefore, we selected the MM-
GBSA dG binding score as a secondary parameter to screen the hits from the molecular docking experiment 
of the combinatorial library. 
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Figure 2. The ROC curve generated using the top-pose selected based on (a) the Glide SP docking score and (b) the MM-
GBSA dG binding score of the known 314 inhibitors of HCV NS5B. 

 
2.3. Ensemble Docking and Rescoring of Docking Results with MM-GBSA Method: Combinatorial 
Library 

A virtual combinatorial library of was generated using the privileged substructures of known HCV 
NS5B thumb site 2 inhibitors from different series of compounds, including phenylalanine derivatives, 
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thiophene-2-carboxylic acid derivatives, and anthranilic acid derivatives in the literature. We have 
developed a step-by-step screening process to improve the effectiveness of our virtual screening efforts. This 
method involves gradually increasing computational resources and accuracy. Initially, we filter the 
combinatorial library using the Glide HTVS precision option to dock all the molecules. We then chose only 
the top 10% of the ligands based on the HTVS docking score, resulting in 18,323 selected molecules. These 
selected molecules undergo a second round of screening using a more thorough docking algorithm, the 
Glide SP scoring function. Only compounds with a Glide SP score of -7.87 or higher proceed to the next step, 
resulting in 555 hit molecules. Subsequently, we conduct binding free energy calculations using the Prime 
MM-GBSA method. Compounds with an MM-GBSA dG binding score of -65.57 or higher move on to the 
next stage, resulting in 404 compounds. Finally, these compounds undergo screening using QSAR models. 
 
2.4. Generation and Application of QSAR Models 
 In our study, we developed three models for predicting the activity of inhibitors of HCV NS5B 
polymerase. The models are QSAR-2C, QSAR-3C, and QSAR-N. The statistical details for the top ten QSAR-
2C models are provided in Table 1. All models performed well, scoring 0.82 or higher out of 1.00. The 
confusion matrices for the external validation set using the rp_32 model and the consensus QSAR-2C model 
are shown in Table 2.  
 
Table 1. Accuracy rate per category for the top-scored ten models for QSAR-2C 

Code Score Train 
(inactive) 

Train 
(active) 

Test 
(inactive) 

Test 
(active) 

rp_32 0.9510 0.9792 0.9286 1.0000 0.9048 
rp_23 0.8885 0.8542 0.9167 1.0000 0.8571 
rp_14 0.8841 0.8542 0.8929 0.9167 0.8095 
rp_35 0.8496 0.8542 0.9286 0.8333 0.9048 
rp_33 0.8449 0.7708 0.9167 0.7500 0.9524 
bayes_linear_27 0.8304 0.9375 0.9881 0.8333 0.9524 
bayes_desc_49 0.8275 0.7708 0.8690 0.9167 0.8571 
bayes_desc_8 0.8239 0.7708 0.8690 0.8333 0.8571 
bayes_desc_3 0.8236 0.7500 0.8810 0.9167 0.8571 
bayes_desc_35 0.8206 0.8125 0.8214 0.9167 0.7619 

 
Table 2. Confusion matrix of the external validation set using the top-ranked QSAR-2C model (rp_32) and consensus 
QSAR-2C model 

  Top-ranked QSAR-2C Model Consensus QSAR-2C Model 

Active 
predicted 

Inactive 
predicted 

Active 
predicted 

Inactive 
predicted 

Active (46) 40 6 38 8 

Inactive (9) 3 6 2 7 

 The prediction ability 

Accuracy (40+6)/ 55 = 83.64% (38+7)/ 55 = 81.82% 

Sensitivity 40 / (40+6) = 86.96% 38 / (38+8) = 82.61% 

Specificity 6/ (3+6) = 66.67% 7/ (7+2) = 77.78% 

 
The consensus QSAR-2C model demonstrated superior performance in identifying true inactive 

molecules, with an accuracy of 81.82%, sensitivity of 82.61%, and specificity of 77.78%, compared to the top-
ranked QSAR-2C model, rp_32, which achieved an accuracy of 83.64%, sensitivity of 86.96%, and specificity 
of 66.67%. To enrich the hit dataset with probable actives and eliminate as many inactive molecules as 
possible, we employed both QSAR-2C models to predict inactive molecules. Of the 404 hit compounds, 362 
and 357 molecules were predicted as actives based on the top-ranked rp_32 and consensus QSAR-2C 
models, respectively. Compounds predicted as actives by both models were selected for further filtering. In 
total, 352 compounds were subjected to filtering using QSAR-3C models.The statistical details for the top ten 
QSAR-3C models are provided in Table 3.  

 

https://doi.org/10.12991/jrespharm.1634330


Karaman Mayack et al. 
In silico design of potential HCV NS5B inhibitors 

Journal of Research in Pharmacy 

 Research Article 

 
 

 

 
https://doi.org/10.12991/jrespharm.1634330  

J Res Pharm 2025; 29(2): 871-891 

877 

 

Table 3. Accuracy rate per category for the top-scored ten models for QSAR-3C 

Code Score Train 

(inactive) 

Train 

(weak) 

Train 

(active) 

Test 

(inactive) 

Test 

(weak) 

Test 

(active) 

bayes_desc_13 0.6892 0.6279 0.5357 0.8696 0.6000 0.6923 0.8636 

rp_36 0.6878 0.7209 0.7321 0.9348 0.4000 0.8462 0.9545 

bayes_desc_33 0.6850 0.5581 0.6071 0.8696 0.7000 0.5385 0.8636 

bayes_desc_42 0.6845 0.6279 0.5714 0.8370 0.6000 0.5385 0.9545 

bayes_desc_45 0.6761 0.5349 0.6250 0.8370 0.7000 0.5385 0.8636 

bayes_desc_5 0.6652 0.6047 0.5179 0.8587 0.7000 0.4615 0.8636 

bayes_desc_21 0.6500 0.6977 0.4107 0.8478 0.5000 0.6923 0.8182 

bayes_desc_2 0.6510 0.5349 0.5000 0.8261 0.7000 0.6923 0.8182 

bayes_desc_7 0.6508 0.6512 0.4643 0.8478 0.6000 0.5385 0.8182 

rp_40 0.6489 0.7907 0.7500 0.9565 0.5000 0.7692 0.9091 

 

Table 4. Confusion matrix of the external validation set using the top-ranked (bayes_desc_13) and the consensus  
QSAR-3C models 

 Top-ranked QSAR-3C Model Consensus QSAR-3C Model 

Active 

predicted 

Weak 

predicted 

Inactive 

predicted 

Active 

predicted 

Weak 

predicted 

Inactive 

predicted 

Active (37) 30 6 1 30 6 1 

Weak (25) 4 10 11 5 11 9 

Inactive (16) 5 1 10 5 2 9 

Accuracy (30+10+10)/78 = 64.10% (30+11+9)/ 78 = 64.10% 

Sensitivity* 30 / (30+6+1) = 81.08% 30 / (30+6+1) = 81.08% 

Specificity** 10/ (5+1+10) = 62.50% 9/ (5+2+9) =56.25 % 

* Only active molecules are considered. 
** Only inactive molecules were considered. 

Overall, the prediction accuracy rate of QSAR-3C models was lower than QSAR-2C models. The 
highest-scoring QSAR-3C model achieved a score of approximately 0.69 out of 1.00. This result wasn't 
surprising, as previous literature has shown that distinguishing weak binders from active and inactive 
molecules is generally more challenging than distinguishing actives from inactive molecules [82, 83]. 
Additionally, the QSAR code of the AutoQSAR module was not optimized for more than two classes. When 
we looked at the confusion matrix of the external validation set using the top-ranked QSAR-3C model 
(bayes_desc_13) and the consensus QSAR-3C model, we found a similar predictivity rate for both models 
(Table 4). As a result, we only selected the compounds predicted as actives in both QSAR-3C models as hit 
molecules for further analysis. For categorical response endpoints, it is essential to have at least five 
compounds in each class, and the distribution of compounds across the classes should be relatively equal. If 
one class contains significantly more compounds than the others, developing a predictive model that 
performs well becomes challenging. Since the QSAR models in this work have been generated using the 
known Thumb Site 2 inhibitors collected from literature and different laboratories —often seen in high-
throughput screening (HTS) datasets—compounds bearing a similar scaffold for each class were not 
distributed equally. It is important to avoid data heterogeneity, meaning we should not mix data from 
different species or experimental protocols. This is particularly important if chiral compounds or racemates 
are used in the dataset. One should exclude all chiral compounds or the activity data from racemic mixtures. 
However, the available activity data tested against HCV NS5B thumb Site2 was limited to a few hundred. 
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When excluding all chiral compounds is not feasible, one can consider including only one of the forms. 
However, in order to retain all available data points and explore the potential for creating more global QSAR 
models for prefiltering purposes—rather than for lead optimization—we decided to include all available 
compounds in our analysis. We selected the form that acquired the highest binding affinity during docking 
and binding free energy calculations. However, the imbalanced number of compounds between different 
classes of compounds, in terms of chemistry and activity, might have caused lower specificity values, as seen 
in the QSAR-2C model (66.67%) and QSAR-3C model (62.50%), and a lower accuracy rate for QSAR-3C 
model (64.10%). 

In addition, when building a categorical model based on activity cutoffs, it is recommended to 
discard compounds that fall in some gray area. In accordance, we discarded the ligands having an activity of 
2 µM < weak binders ≤ 20 µM in QSAR-2C model generation, and these ligands were accepted as weak 
binders. Since the specificity of the QSAR-2C model was low, and we aimed to enrich the datasets with 
active molecules as much as possible, we also wanted to assess the power of a QSAR model where weak 
binders were included. Since the QSAR-3C model's sensitivity was 81.08%, we also included this model to 
our pre-filtering workflow. Thus, compounds predicted as actives by both QSAR-2C and QSAR-3C models 
could pass for further evaluation. In total, 244 compounds were predicted as active and further evaluated 
using QSAR-N models. 

Statistical details for the top 10 ranked models obtained during the generation of the QSAR_N model 
are presented in Table 5. All models had a coefficient of determination (R2) above 0.70 for the training set 
and above 0.72 for the test set (Q [2]). Generally, for a QSAR model to be predictable, it is required that (R2 > 
0.60 and Q [2] > 0.50). Furthermore, all the top-ranked models were based on the KPLS model. This is not 
surprising as the KPLS method performs well when there is a significant difference between the number of 
independent variables and the number of samples, which is typical in most drug discovery studies. The 
method has been demonstrated to have better correlation and prediction power in the literature, making it a 
valuable QSAR tool in various drug discovery projects [84]. The top-ranked model, kpls_radial_21, was built 
using KPLS fitting with linear fingerprints using the 21st split of the learning set into a training set and a test 
set. The scatter plot depicting the performance of the kpls_radial_21 model in predicting experimental 
binding affinity for the learning set and the external validation set is shown in Figure 3.  

This plot shows that the top-ranked QSAR model predictions reproduce experimental binding 
affinities with an R2 of 0.55. Compounds with a domain alert are colored in green. These compounds fall 
outside the applicability domain of training set compounds where predictions aren’t expected to be accurate. 
One compound out of 74 was flagged as an outlier. Visual inspection showed that it was part of the same 
congeneric series as the training set and was not an outlier. We also assessed the predictive ability of the 
consensus QSAR-N model (y = 0.57x + 2.48, R2 = 0.58) using external validation set compounds. The 
predicted pIC50 values of the 244 hits using the top-ranked QSAR model ranged from 4.497 to 6.643, while 
the predicted values using the consensus QSAR model ranged from 4.996 to 6.495. 

 

 

Figure 3. Comparison of experimental and predicted HCV NS5B polymerase inhibitory activity (pIC50) of the learning 
dataset (a) and external validation set (b; y = 0.56x + 2.50 (R2 = 0.55)) using kpls_radial_21 QSAR-N model. 
Table 5. The predictive power of the first ten top-scored QSAR-N models 
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Model Code Score S.D. R2 RMSE Q [2] Q [2] MW 

kpls_radial_21 0.7682 0.5125 0.7831 0.5221 0.7907 0.0213 

kpls_molprint2D_21 0.7646 0.5340 0.7659 0.5331 0.7819 0.0213 

kpls_dendritic_21 0.7532 0.4432 0.8378 0.5034 0.8055 0.0213 

kpls_linear_21 0.7438 0.4303 0.8471 0.5048 0.8044 0.0213 

kpls_molprint2D_15 0.7388 0.5531 0.7533 0.5555 0.7429 0.0674 

kpls_molprint2D_20 0.7189 0.5390 0.7635 0.5632 0.7444 0.0227 

kpls_linear_32 0.7156 0.5566 0.7431 0.5745 0.7452 -0.0478 

kpls_radial_6 0.7030 0.5045 0.7983 0.5569 0.7214 -0.0574 

kpls_linear_20 0.6981 0.5679 0.7360 0.5884 0.7211 0.0227 

kpls_dendritic_48 0.6961 0.4546 0.8355 0.5432 0.7407 0.0759 

 
2.5. Evaluation of Drug-likeness and ADME Properties 

We predicted physiochemically significant descriptors and pharmaceutically relevant  (ADME) 
properties of hit molecules by using the QikProp program (Schrödinger Release 2022-1: QikProp, 
Schrödinger, LLC, New York, NY, 2022). Then, the drug-likeness of the 244 hit compounds was assessed by 
considering Lipinski's rule of 5 (Pfizer filter) [85], Ghose [86], Veber (GSK) [87], Egan (Pharmacia) [88], and 
Muegge (Bayer) [89] filters. When assessing compounds that adhere to Lipinski's Rule of 5 for oral drug 
activity, the molecular weight (MW) should be ≤ 500 g/mol, the lipophilicity coefficient (octanol/water 
partition coefficient) Moriguchi Log P (MLogP) value should be MLogP ≤ 4.15, the number of hydrogen 
bond acceptors (HBA) should be ≤ 10, and the number of hydrogen bond donors (HBD) should be ≤ 5. 
According to Veber, the total number of rotatable bonds (RB) should be ≤ 10, and the total polar surface area 
(TPSA) should be ≤ 140 Å2. According to Ghose's rules, a drug candidate compound should have 
lipophilicity in the range of -0.4 ≤ WLOGP ≤ -5.6, a molar refraction value in the range of 40 ≤ MR ≤ 130, a 
MW in the range of 160-480 daltons, and a total number of atoms in the range of 20-70. According to Egan's 
filter, the compound's lipophilicity should be lower than WLOGP ≤ 5.88, and the TPSA should be ≤ 131.6 Å2. 
According to Muegge's rules, a drug-like compound should have a MW of 200-600 Da, lipophilicity in the 
range of -2 ≤ XLOGP ≤ -5, a TPSA ≤ 150 Å2, the number of rings should be ≤ 7, the number of carbon atoms 
should be > 4, the number of heteroatoms should be > 1, the RB should be ≤ 15, the HBA should be ≤ 10, and 
the HBD should be ≤ 5. We screened compounds based on the following physicochemical parameters: MW ≤ 
600 g/mol, HBA ≤ 10, HBD ≤ 5, RB ≤ 15, TPSA ≤ 150 Å2, total number of atoms ≤ 70, MR ≤ 130, and logP 
o/w ≤ 6.5. Out of 244 compounds, 48 met these criteria and were considered as hit compounds. 

2.6. Clustering of Hit Molecules and Molecular Dynamics (MD) Simulations 

The Canvas Similarity and Clustering tool (Schrödinger Release 2022-1: Canvas, Schrödinger, LLC, 
New York, NY, 2022) was used to cluster the selected 48 molecules into four representative groups. The 
following settings were used for fingerprints: 64-bit precision, MolPrint2D fingerprint type, atom typing 
scheme, Daylight invariant atom types, and bonds distinguished by bond order. Tanimoto was used as the 
similarity metric, and the average linkage method was chosen for clustering. Next, MD simulations were 
performed for the ligand representing the structure nearest to the centroid in each cluster group. Molecular 
dynamics offers a comprehensive understanding of the interactions between proteins and ligands, as 
suggested by molecular docking programs. It also helps assess the stability of the proposed binding mode of 
the ligands with their target biomolecules. Additionally, MD simulations uncover the conformational 
changes the protein-ligand complex may undergo over time. In order to assess the average change in 
displacement of a selection of atoms for a particular frame with respect to a reference frame, the Root Mean 
Square Deviation (RMSD) is calculated. RMSD analysis involved aligning the generated frames with 
reference frames, using backbone atoms for the protein and heavy atoms for the ligand RMSD is calculated 
for all frames in the trajectory (Figure 4).  
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Figure 4.  MD simulation analysis of HCV NS5B protein and ligand complexes. Protein Cα RMSD values are depicted on 
the left y-axis using pale blue lines. 'Lig fit on Prot' RMSD values are depicted on the right Y-axis using red lines. 'Lig fit 
on Lig' RMSD values are depicted on the right Y-axis using pink lines. Compound ID numbers are shown in the upper 
left corner of each RMSD plot. 

RMSD analysis of the protein provides insights into the fluctuations in its structural conformation 
during the simulation. Moreover, we calculated the Root Mean Square Fluctuation (RMSF) to characterize 
local changes along the protein chain (Figure S3, Figure S8, Figure S13, Figure S18). On these plots, peaks 
indicate areas of the protein that fluctuate the most during the simulation. As expected, the proteins' tails (N- 
and C-terminal) and the loop regions fluctuated the most. During MD simulations, the secondary structure 
elements like alpha helices and beta strands were usually more rigid than the unstructured part of the 
proteins during MD simulations (Figure S4-5, Figure S9-10, Figure S14-15, Figure S19-20). The RMSD values 
for the protein Cα atoms (pale blue line, left X-axis) fluctuated between 1-2 Å during MD simulations, 
showing that the simulation has equilibrated well and that the protein adopted some thermal average 
structure. Moreover, we performed ligand-protein contact analysis. For each interacted residue, we assessed 
four types of interactions: hydrogen bonds, hydrophobic, ionic, and water bridges, and plotted the fraction 
and a timeline representation of each of these interactions (Figure S6-7, Figure S11-12, Figure S16-17, Figure 
S21-22). Protein-ligand interactions that occurred over 30% of the simulation time are shown in Figure 5. 

Cluster-1 representative molecule 166978. The RMSD (Root Mean Square Deviation) values for the 'Lig fit 
Prot' (red line, right Y-axis) fluctuated between approximately 1-3 Å during the MD simulation. This 
indicates that the ligand remained stable in relation to the protein and its binding pocket. The RMSD of the 
ligand was calculated by aligning the protein-ligand complex with the protein backbone of the reference, 
and then determining the RMSD of the ligand's heavy atoms. Moreover, the 'Lig fit Lig' RMSD values (pink 
line, right Y-axis) of the ligand were also measured to determine the internal fluctuations of the ligand 
atoms. For this purpose, the ligand was aligned on its reference conformation, and RMSD was measured. 
'Lig fit Lig' RMSD values of 166978 fluctuated approximately between 0.5-1 Å during the MD simulation 
except for the last few ns where fluctuations reached 1.5 Å. However, visual analysis showed that the ligand 
was still bound to the binding pocket. Cluster-1 ligand 166978 showed hydrophobic contacts with residues 
Leu419, Tyr477, Leu497, and Trp528. Stable H-bond interactions were observed between the ligand carbonyl 
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group and the backbone N-H of the residue Tyr477 (60 % simulation time of the MD trajectory) and ligand 
OH group and the backbone N-H of the residue Leu497 (63 % simulation time of the MD trajectory). 

Cluster-2 representative molecule 95833. The 'Lig fit Prot' RMSD values and the 'Lig fit Lig' RMSD values 
fluctuated approximately 1.5-3.5 Å and 0.5-1.5 Å, respectively, during the MD simulation, indicating that the 
ligand remained stable in the binding pocket. Ligand 95833 showed hydrophobic contacts with residues 
Leu419, Tyr477, and Trp528. Stable H-bond interactions were observed between the carboxylic acid carbonyl 
group and the oxygen with the backbone N-H of the residue Tyr477 for 50% and 39%, respectively, during 
the simulation time of the MD trajectory. Interestingly, bridging water molecule H-bond interactions 
occurred between Tyr477 and the ligand carbonyl group during MD simulation for 33% of the trajectory 
time. Similarly, the backbone N-H of the residue Ser476 made H-bond interactions with the carboxylic acid 
carbonyl group and the oxygen for 39% and 60%, respectively, during the simulation time of the MD 
trajectory. 

Cluster-3 representative molecule, 106912. The 'Lig fit Prot' RMSD values and the 'Lig fit Lig' RMSD values 
fluctuated between approximately 0.8-1.6 Å and 0.4-1.2 Å, respectively, during the first 45 ns of the MD 
simulation, indicating that the ligand was highly stable within the binding pocket. However, in the last ~5 
ns, there was an approximately 0.8 Å RMSD jump for both 'Lig fit Prot' RMSD values and the 'Lig fit Lig' 
RMSD values. Visual analysis revealed that the Arg501 sidechain adopted a different conformation, and the 
3,4-dioxocyclobut-1-en-1-olate moiety of the ligand was pulled over towards the sidechain to maintain the 
H-bond and ionic interactions with this residue and then returned to the original orientation, which is 
further explained later. Additionally, 106912 formed multiple hydrogen bond interactions during the 
simulation. One notable interaction involved the ligand's hydroxyl group, which formed hydrogen bonds 
with the sidechain -NH2+ of the Arginine residue and the backbone carbonyl group of Leucine 474 for 93% 
and 65% of the MD trajectory, respectively. Furthermore, water-bridging interactions were observed 
between the ligand's carbonyl group and the backbone -NH of Ser476 and Tyr477 for 50% and 38% of the 
simulation time, respectively. Persistent interactions were also noted between the sidechain -NH2+ groups 
of Arginine 501 residue and the O- of the 3,4-dioxocyclobut-1-en-1-olate moiety of the ligand, spanning 105% 
of the MD simulation. It is worth noting that interactions lasting longer than 100% of the simulation time are 
possible due to the Arginine side chain having four H-bond donors that can all hydrogen bond to a single H-
bond acceptor. Additionally, the Lysine -NH3+ group formed hydrogen bond interactions with the O- of the 
3,4-dioxocyclobut-1-en-1-olate moiety of the ligand for 31% of the trajectory time during the MD simulation. 
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Figure 5. HCV NS5B protein and ligand interactions exist more than 30% of the time during MD simulation.  
Compound ID numbers for each ligand are shown in the lower right corner.   Hydrophobic (green), polar (water blue), 
and charged (purple) residues are shown as spheres. Water molecules are shown as grey spheres. Solvent exposure is 
illustrated as grey spheres with transparent centers. 

Cluster-4 representative molecule, 108895. During the MD simulation, the 'Lig fit Prot' RMSD values and 
the 'Lig fit Lig' RMSD values fluctuated approximately between 1.2-5.4 Å and 0.6-1.8 Å, respectively. Visual 
analysis revealed that the ligand remained in the binding pocket during the MD simulation. Significant H-
bond interactions were observed between the ligand, the carboxylic acid carbonyl group, and the oxygen 
with the backbone -NH of Ser476 and Tyr477 residues for 39% and ~40%, respectively, during the simulation 
time of the MD trajectory. Interestingly, bridging water molecule H-bond interactions occurred between 
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Tyr477 and the ligand carboxylic acid group during MD simulation for 31% of the trajectory time. There 
were 2 other important water-bridging interactions between the ligand hydroxyl group and the backbone -
NH of Leu497 residue (32% simulation time of the MD trajectory), as well as the ligand amide carbonyl 
group and the sidechain -NH2+ of Arg501 residue (35% simulation time of the MD trajectory). The slight 
RMSD jump observed for the ligand between ~5.5-28 ns resulted from the fluorophenyl and hydroxyphenyl 
moieties obtaining different conformations (Figure S12). Then, in the next 10 ns, the ligand lost the stable H-
bond interactions between its carboxylic acid functional group and Ser476 and Tyr477 residues, resulting in 
the 'Lig fit Prot' RMSD values jumping from ~2Å to 5.4Å. Nevertheless, the last 12ns ligand adopts its initial 
binding mode and regains these significant interactions again. This indicates that the simulation has 
equilibrated, and that the protein-ligand complex adopted some thermal average structure. 
In summary, each representative ligand from the four clusters showed stable interactions with important 
residues, Arg422, Leu474, Ser476, Tyr477, Leu497, and Arg501 in the thumb site 2 pocket of NS5B. These 
results suggest that they could potentially function as novel allosteric inhibitors of HCV NS5B. 

The NS5B is an essential protein for the replication of the RNA genome of HCV. The absence of a 
comparable mammalian counterpart of NS5B polymerase and the enzyme's confirmed druggable allosteric 
binding sites makes it an attractive therapeutic target for HCV infections. Sofosbuvir [90] and Dasabuvir [13, 
14, 12] are two NS5B inhibitors approved by the FDA. They have varying degrees of sustained virological 
response for different genotypes and subtypes. Sofosbuvir (GS-7977) is a nucleotide analog and prodrug. 
Once inside liver cells, it is converted into its active uridine triphosphate form and works by stopping viral 
genome replication. On the other hand, Dasabuvir is a non-nucleoside polymerase inhibitor that binds to the 
palm site. Due to the risk of resistance development, it is combined with other agents. The incidence of new 
acute HCV infections is increasing annually, and the mortality rate for chronic HCV infections is high in 
several countries [4, 5, 91]. The high mutation rate in the HCV viral strains and the immune response to 
HCV are believed to be the main barriers to effective anti-HCV therapy, and there is an urgent need for 
affordable, broad-spectrum, and direct-acting antiviral drugs [92-94]. Consequently, there is a pressing need 
for the development of new treatments. 

In this study, we used molecular modeling techniques to identify novel HCV NS5B inhibitors that 
target the thumb site 2 pocket. First, we generated a combinatorial library of 184,214 molecules using the 
privileged substructures (Figure S1) of known NS5B inhibitors from different series of compounds. Next, a 
structure-based virtual screening search was applied to filter over compounds with increasing scoring 
precision, resulting in 555 compounds. Application of the Prime MM-GBSA rescoring enabled us to filter 
these molecules further, resulting in 404 compounds. In addition, classification-based QSAR models were 
generated to enrich the dataset with active molecules. The top-ranked QSAR-2C model (rp_32) and the 
consensus QSAR-2C model demonstrated excellent performance in accurately identifying active molecules, 
with an accuracy rate of over 80%. Therefore, only compounds predicted as active molecules by both models 
were chosen for additional filtering. Out of 404 molecules, 352 of them were predicted to be active. In the 
next step, the top-ranked QSAR-3C model (bayes_desc_13) and the consensus QSAR-3C models, which had 
a predictive accuracy of over 64% for distinguishing active molecules from weak and inactive ones, were 
used for filtering. In total, 244 compounds were predicted to be active. We calculated physiochemically 
significant descriptors and pharmaceutically relevant properties of these hits. Consequently, 48 molecules 
were considered druglike molecules. Fingerprint similarity clustering of these molecules revealed four novel 
scaffolds as potential HCV NS5B thumb site 2 inhibitors. MD simulations confirmed the binding stability of 
these compounds within the thumb site 2 of HCV NS5B protein. They revealed the presence of key 
interactions previously identified that play a critical role in potency and protein function [38-43]. 
Compounds that produce a stable protein-ligand complex with a high pIC50 value predicted using the 
QSAR-N model could be considered for future synthetic work as a follow-up project. 

3. CONCLUSION 

Based on this study, three main objectives have been attained: 1) developing in silico combinatorial 
libraries by integrating known bioactive moieties and then enumerating them to novel molecules can be an 
easy alternative in the search for new intellectual properties for HCV NS5B inhibitors, 2) balancing the 
number of molecules for different chemical and activity classes with further literature search and inclusion 
of physiochemically similar decoys can be considered to improve the predictivity and specificity rates of 

https://doi.org/10.12991/jrespharm.1634330


Karaman Mayack et al. 
In silico design of potential HCV NS5B inhibitors 

Journal of Research in Pharmacy 

 Research Article 

 
 

 

 
https://doi.org/10.12991/jrespharm.1634330  

J Res Pharm 2025; 29(2): 871-891 

884 

 

categorical QSAR models, and 3) introducing another layer of post-filtering method for instance, field-based 
3D QSAR models based on fields, such as electrostatic, hydrophobic, or steric fields, may overcome or 
mitigate the limitations of the categorical QSAR models. Our ongoing efforts of designing more effective and 
selective antiviral drugs against HCV targeting NS5B thumb site 2 inhibitors using known bioactive 
molecules and replacing or enumerating different functionalities resulted in the recent discovery of novel 
phenylalanine derivatives with single-digit micromolar EC50 values against HCV gt1b replicon . The 
suitability of the identified hits as starting points for lead discovery against HCV NS5B will depend on 
testing these molecules through traditional wet lab experiments, which require further investigation. We 
plan to further explore the effects of these compounds on HCV and optimize the hits or generate new series 
with potential anti-HCV activities. 

4. MATERIALS AND METHODS 

4.1. Dataset Preparation 
A validated dataset of known inhibitors of HCV NS5B polymerase inhibitors with activities on 

genotype 1b (gt1b) was collected from the literature. The structure of the molecules was drawn using the 2D 
Sketcher module implemented in the Maestro (Schrödinger Release 2022-1: Maestro, Schrödinger, LLC, New 
York, NY, 2022) interface of the Schrödinger platform. In total, 314 compounds were collected [39, 44-67] and 
prepared using LigPrep within the Schrödinger software for in silico experiments. The options were set to 
generate all possible ionization states at pH 7.0. We kept the specified chirality from the input file. Low-
energy 3D structures of the compounds were obtained using the Optimized Potentials for Liquid 
Simulations (OPLS) force field OPLS3e [68]. All other parameters for ligand preparation were kept as 
default. If the compounds' exact HCV NS5B inhibition activities (IC50, μM) were known, we converted them 
into the corresponding pIC50 and -log10(IC50) values. 

4.2. Combinatorial Library Generation 

We generated a virtual combinatorial library where privileged substructures (Table S1) of known 
NS5B inhibitors from different series of compounds, including phenylalanine derivatives, thiophene-2-
carboxylic acid derivatives, and anthranilic acid derivatives. We generated the library using R Group 
Creator and Custom R Group Enumeration tools implemented in Schrödinger software within Maestro. We 
first sketched each R group using the 2D Sketcher panel implemented in Maestro and used R-group libraries 
to enumerate the core-containing molecule. Compounds were then subjected to the LigPrep module 
(Schrödinger Release 2022-1: LigPrep, Schrödinger, LLC, New York, NY, 2022) for ligand preparation. The 
settings were configured to create probable ionization states at pH 7.0, maintain the specified chirality from 
the input file, and generate all possible isomers of other chiral centers. In total, 184,214 molecules were 
obtained after the ligand generation and preparation. 

4.3. Preparation of protein-inhibitor complexes 

The preparation of protein-inhibitor complexes has already been reported before [69]. In short, crystal 
structures of HCV NS5B in complex with thumb site 2 inhibitors were collected from PDB by April 2020 and 
prepared using the Protein Preparation Wizard module (Schrödinger Release 2022-1: Protein Preparation 
Wizard; Epik,  Schrödinger, LLC, New York, NY, 2022; Impact, Schrödinger, LLC, New York, NY; Prime, 
Schrödinger, LLC, New York, NY, 2022). A total of 47 X-ray crystal structures with various chains were 
processed. After splitting the chains during protein preparation, we obtained 81 protein-ligand complexes. A 
KNIME [70] workflow (Figure S2-4) was generated to cluster the thumb site 2 pockets of the HCV NS5B-
ligand complexes using the SiteMap module (Schrödinger Release 2022-1: SiteMap, Schrödinger, LLC, New 
York, NY, 2022). In total, 8 clusters were generated, and the protein structure that represents the cluster’s 
center was chosen for the subsequent in silico experiments. 

4.4. Ensemble Docking and Rescoring of Known HCV NS5B Thumb Site 2 Inhibitors 

An automated KNIME workflow was generated to perform the Glide SP (Standard Precision) [71, 72] 
Docking calculations and post-processing of docking poses with the Prime MM-GBSA (Schrödinger Release 
2022-1: Prime, Schrödinger, LLC, New York, NY, 2022)  method (Figures S5-8). Ensemble docking was 
performed using the eight representative protein structures retrieved from clustering of all known 
complexes of thumb site 2 inhibitors with HCV NS5B polymerase deposited in PDB. The top-ranked docking 
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pose produced for each ligand and each protein structure was used for binding free energy (BFE) 
calculations. Thus, in total, eight poses were subjected to Prime MM-GBSA calculations. 

4.5. Ensemble Docking and Rescoring of Combinatorial Library 

We also generated a KNIME workflow for ensemble docking combinatorial library compounds into 
the eight representative protein structures of HCV NS5B with the Glide HTVS (High throughput Virtual 
Screening) precision option. We selected only the top 10% of the ligands ranked based on their HTVS 
docking score (Figure S9). Thus, only 18,323 molecules were subjected to Glide docking using the SP scoring 
function, which has a much more exhaustive conformational sampling than HTVS docking (Figure S10). 
During this docking run, the top-ranked docking pose was saved again for each ligand and each protein 
structure. Thus, eight poses for each ligand were collected for further BFE calculations using the Prime MM-
GBSA method for the known HCV NS5B inhibitors (Figure S11). 

4.6. Generation of Numeric- and Classification-based QSAR Models 

We used 314 known thumb site 2 inhibitors of HCV NS5B to generate numeric- and classification-
based QSAR models. The ligand dataset was divided into three activity classes. Ligands having an inhibitory 
activity of ≤ 2 µM were annotated as actives (151 molecules). Ligands having an activity of 2 µM < weak 
binders ≤ 20 µM were accepted as weak binders (94 molecules). Finally, ligands with an inhibitory activity of 
> 20 µM were grouped as inactives (69 molecules). 

First, we generated a two-categorical QSAR model (QSAR Model-2C) based on two activity classes: 
actives and inactives. The ligand dataset (220 compounds) was randomly split into two sets: a modeling set 
consisting of %75 (165 compounds) of the total dataset and an external validation set of 55 compounds (%25 
of the whole dataset). During model building, the modeling set was randomly split into a training set (%80 
of the entire modeling set, 132 molecules) and a test set (%20 of the whole modeling set, 33 molecules). This 
process was repeated 50 times to develop 50 different models per supervised learning techniques, Naïve 
Bayes classification, and ensemble recursive partitioning (RP, rp). Only the top-scored ten models were 
saved for further evaluation. 

Furthermore, we generated a three-categorical QSAR model (QSAR-3C) based on three activity 
classes: actives, weak binders, and inactives. The ligand dataset (314 compounds) was randomly split into 
two sets: a modeling set consisting of %75 (236 compounds) of the total dataset and an external validation set 
of 78 compounds (%25 of the whole dataset). During model building, the modeling set was randomly split 
into again a training set (%80 of the entire modeling set, 188 molecules) and a test set (%20 of the whole 
modeling set, 48 molecules). This step was repeated 50 times to generate 50 different models for both Bayes 
and RP techniques used during model generation. For further assessment, only the top-scored ten models 
were kept for each method used in model generation. 

We aimed to use these models to filter and rank the hit compounds selected from the hierarchical 
filtering of the combinatorial library based on Glide docking and Prime MM-GBSA calculations. To generate 
QSAR models, we used the AutoQSAR module implemented in Schrödinger software. In the AutoQSAR 
model generation step, several 2D descriptors were automatically generated, including molecular and 
topological descriptors and feature counts. As several of these descriptors are highly correlated, only the 
most informative subset for all the correlation coefficients below a specified threshold was selected. The 
maximum allowed correlation between any pair of descriptors was set to 0.80 by default. Descriptors were 
removed before the model-building stage if more than 90% of the ligands in the dataset had the same value 
for that particular property. Moreover, 2D fingerprints for Naïve Bayes classification (Bayes, bayes) and 
kernel-based partial least-squares regression (KPLS) models were generated. The 10,000 most informative 
bits for each fingerprint type (linear, radial, dendritic, and molprint2D) were retained. 

In addition, we built a numeric QSAR model (QSAR Model-N) using the ligands with exact pIC50 
values. In AutoQSAR, the generation of numeric QSAR models was done using four different techniques: 1) 
multiple linear regression (MLR) [73], 2) partial least-squares regression (PLS) [74], 3) KPLS [74, 75], and 4) 
principal components regression (PCR) [76]. The ligand dataset was randomly split into two sets: a modeling 
set consisting of %75 (221 compounds) of the total dataset and an external validation set of 74 compounds 
(%25 of the whole dataset). During model building, the modeling set was randomly split into a training set 
(%80 of the entire modeling set, 176 molecules) and a test set (%20 of the entire modeling set, 45 molecules). 
Like the categorical QSAR model generation steps, this process was repeated 50 times to generate 50 models 
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per supervised learning techniques used in the model generation step. Only the top-scored ten models were 
kept for further evaluation. 

4.7. Molecular Dynamics (MD) Simulation 

The preparation of protein-inhibitor complexes for MD simulation has already been reported before 
[77]. The MD simulations were conducted using the Desmond module (Schrödinger Release 2022-1: 
Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2022. Maestro-Desmond 
Interoperability Tools, Schrödinger, New York, NY, 2022). The ligand-protein complexes were preprocessed 
before MD to assign the correct bond orders, adjust the formal charges, and cap the termini. OPLS4 [78] force 
field parameters were employed in all simulations. The system was solvated using the simple point-charge 
(SPC) water model and an orthorhombic water boundary box with a margin of 10 Å. The system was 
neutralized by counterions, followed by adding 0.15 M NaCl salt to the system, and the iso-osmotic state 
was maintained during the simulation. Before the production MD run, the system was relaxed using the 
default relaxation procedure for the NPT ensemble. First, the system was relaxed in the NVT ensemble with 
Brownian dynamics at a temperature of 10 K. Then, it was simulated in the NPT ensemble using a Langevin 
thermostat and a Langevin barostat. During relaxation, heavy atoms of the solute were restrained, and the 
temperature and the pressure were kept constant at 10 K and 1 bar, respectively. Next, the system's 
temperature was increased to 300 K, and two consecutive simulations were performed, first keeping the 
restraints on the heavy atoms of the solute and then switching them off. The production MD simulation was 
run for 50 ns with the NPT (isothermal-isobaric) ensemble. The pressure was kept constant at 1.01325 bar 
using the Martyna-Tobias-Klein barostat, and the constant temperature was maintained at 300 K using the 
Nosé- Hoover thermostat. The trajectories were saved at 50 ps intervals, producing 1000 frames, which were 
analyzed using the Simulation Interaction Diagram tool implemented in the Schrödinger program. 
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