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Abstract. The speed gradient-based control algorithm for tracking the membrane 
potential of Hodgkin-Huxley neurons is applied to their small clusters modeling the 

basic features of an epileptiform dynamics. One of the neurons plays a role of control 
element detecting the temporal hyper-synchronization among its network companions 
and switching their bursting behavior to resting. The ‘toy’ model proposed in the 

paper can serve as an algorithmic basement for developing special control elements at 
the scale of one or few cells that may work autonomously and are able to detect and 

suppress epileptic behavior in the networks of real biological neurons.  

 

 

1. Introduction 

 
Epilepsy is a disease involving changes at multiple different spatial and temporal 

scales and, therefore, demands for its modeling such a basic neuron mathematical 

element that possesses many degrees of freedom, like Hodgkin-Huxley (HH) neurons 

[1]. The chains of many HH neurons in the epileptiform regime demonstrate good 

agreement with animal in vivo recordings [2,3]. The 

synchronization/desynchronization of the cell behavior in the neural networks is the 

sufficient phenomenon for the understanding the mechanism of epilepsy [4,5]. Modern 

neuroscience demonstrates a great progress in study of the collective chaotic regimes 

of biological neurons, but its mathematical modeling still needs a sufficient 

improvement [6]. The Hodgkin-Huxley’s system covers some possible scenarios of the 

appearance of the collective bursting: ion channel mutations and fluctuations in 

concentration gradient of ions from inside to outside the axon [7].  

  

Recently we’ve developed the efficient algorithm to track an arbitrary dynamical 

regime in a single HH neuron controlled by an external electrical signal [8]. Here 

Fradkov’s speed gradient feedback [9] is applied to suppress the collective bursting 
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in the small clusters of Hodgkin-Huxley neurons via the driving action potentials in 

the neural axons. Our tracking algorithm allows to detect the hyper-synchronized 

dynamics in the cluster and to transfer the behavior of some selected neurons from 

the collective bursting to the resting.  

  

The control is performed with the single element of the cluster via the feedback to 

its bursting companions. The proposed algorithm can be used efficiently for studying, 

detecting and suppressing the epileptiform behavior [7] of spiking and bursting in the 

models for biological neuronal networks. 

  

 

2. Speed gradient feedback control for hodgkin-huxley neurons 

 

To model the basic element of the neural cluster we use here the Hodkin-Huxley 

(HH) model proposed in [1]. The k-th neuron in the population is described by the 

dynamical set of ordinary differential equations: 
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Here vk(t) stands for the action potential of the axon, mk(t), nk(t), hk(t) are its 

membrane gate variables. The summary current Ik(t) entering the k-th cell plays a 

role of an external signal stimulating spiking or bursting dynamics of the neuron. 

αm,n,h, βm,n,h are fenomenologically found functions related to the membrane gate 

probabilities and given by [1]:  
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                  (2.2) 

 

 

 

 

 

 

The set of constants in (2.1) includes the potentials ENa (equilibrium potential at 

which the net flow of Na ions is zero), EK (equilibrium potential at which the net 

flow of K ions is zero), ECl (equilibrium potential at which leakage is zero) in mV, 

the membrane capacitance CM and the conductivities gNa (sodium channel 

conductivity), gK (potassium channel conductivity), gCl (leakage channel 

conductivity) in mS/cm2: 
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The link element transfers the electrical stimulation from the axon of (k –1)-th 

neuron to the input of k-th neuron via synapses, dendrites and soma of the k-th cell. 

We use the gain model:  
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where the reference rest potential of an HH neuron is given by [1]:  
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The algorithm for tracking the membrane potential v(t) in a single neuron have been 

developed in [8]. For a single element tracking provides the reproduction of an 

arbitrary target function v*(t) by the potential v(t) via the designing the control 

current ISG(t). To do it, let’s define the scalar target (goal) function of the HH 

neuron as: 

                                    

 
2

*

1
( ) ( ) .

2
G v t v t                                    (2.6) 

 

The speed gradient algorithm [9] defines the gradient control in the space of the 

control signal. In the case of single neuron it is reduced to the partial derivative: 
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Here   is a positive constant. For the HH model (2.1) the algorithm (2.7) implies [8]: 
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Together with the dynamical set (2.1)-(2.4) Eq.(2.8) forms the control model for the 

HH cluster. 

 

 

3. Control model of the epileptiform suppression 

 

In this paper we introduce a basic ‘toy’ model for the epileptiform suppression. Let’s 

consider the sub-cluster of three HH neurons, see the configuration on Figure 1. 
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Figure 1. Basic model for an epileptiform suppression in the cluster of three 

Hodgkin-Huxley neurons. 

 

 

Here the neurons 1 and 2 are involved into the collective bursting stimulated by the 

currents Iinput1 and Iinput 2 coming from other companion cells in the neural 

population. The neuron 3 is a monitoring element providing the switch on and off 

for the algorithm of suppression. It plays two roles. First, it detects the over-

synchronization of the signals coming from the neurons 1 and 2 through the input 

currents I13 and I23 (sure, the neurons 1 and 2 may also stimulate other neurons in 

the bigger cluster, they are not shown on Figure 1). Second, if the neuron 3 observes 

the over-synchronization in a certain interval of time, it triggers the control algorithm 

of the suppression through the feedback loop to the neuron 2 by the current I32. The 

control current Icontrol reflects the inner degree of freedom for the neuron 3. Thus, 

this element works as an automat driving the neuron 2 from the bursting regime to 

the resting if and only if it detects its over-synchronization with the neuron 1. 

 

The basic cluster configuration on Figure 1 can be written in the form of coupled 

differential equations of (2.1)-type: 
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with the synaptic links: 
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Here we use our method of ‘back spread’ algorithmic goal: the real control signal is 

passing from the neuron 3 to the neuron 2, while the algorithmic definition of the 

goal follows the opposite direction, from 2 to 3, see Eqs.(3.5)-(3.7) below.  

 

First, we apply SG algorithm (2.8) to the neuron 3: 
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The goal v3* of the tracking potential in the neuron 3 is defined as the inverse 

function to (2.4): 
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The control current Icontrol entering the neuron 3 is given also in the SG form (2.8): 
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where ∆ stands for the smooth model of delta-function: 
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The factor ∆ in (3.5) switches on the control algorithm only for the synchronized 

currents I13 and I23, and in the case of their time over-synchronization, i.e. only in 

the period of their epileptiform dynamics, leads the neuron 2 to the stabilization at 

the rest membrane potential. 

 

This algorithm can be easily extended for a larger number of collective bursting 

neurons and their feedback links in the population. 

 

 

4. Numerical simulations 

 

For the purpose of numerical simulations the following set of parameters has been 

chosen: 
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The results of the simulation are presented on Figure 2. 
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Figure 2. The neuron membrane potentials v1 (blue dashed line), v2 (red solid line) 

and v3 (green dash-dotted line) vs time. 

 

On the Figure 2 one can see that after the beginning instability at the scale t = 2 

the potential v2 is suppressed approximately in two times to compare with the 

bursting potential v1. This result seems to be very good for such a simple control 

model. When the collectively synchronized bursting is starting to growth (closed to 

t = 10), the control mechanism is switching on to drive the potential of the neuron 

2 far away from the synchronization. The same is happen when t = 12. 

 

Sure, the presented algorithm reflects only the basic features of the bursting 

suppression. The ‘toy’ control (3.5)-(3.6) needs to be sufficiently improved for the 

better detecting the chaotic hyper-synchronization in the clusters and feating more 

flexible details of the neuron dynamics. 

 

 

5. Conclusions 

 

The control algorithm developed in [8] for tracking the membrane potential of a 

single Hodgkin-Huxley neuron can be applied to a small configuration of HH elements 

modeling the basic features of an epileptiform dynamics. In this population one of 

the neurons plays a role of control element detecting the temporal hyper-

synchronization among its network companions and switching on the feedback signal 
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that it sends to some selected neurons in the population to drive them off the 

epileptiform regime.  

 

The ‘toy’ model proposed in the paper can serve as an algorithmic basement for 

developing special control elements at the scale of one or few cells that may work 

autonomously and are able to detect and suppress epileptic behavior in the networks 

of real biological neurons. 
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