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Abstract— Modelling (in a broad sense) is an essential tool for 

research in all areas and represents a scientifically based method 

for assessing the performance of systems and processes used for 

making engineering decisions. This applies in particular to the field 

of management systems, where the foundation is making decisions 

based on the information received. 

The existing and newly designed systems effectively examined by 

using the mathematical models (analytical and spoofing) which 

allows identifying some constant parameters that are involved in 

the differential equations representing the dynamics of the system 

analyzed. Such systems may come from a broad scientific spectrum, 

for example from economics and biology from communication and 

weather forecasting. 

The present paper investigates some Artificial Intelligence (AI) 

methods identifying the parameters of a dynamical system. Two 

types of methods are compared - 'evolution' and 'particle swarm' 

intelligence. First, for this purpose, a system simulation model 

generating data (for the two methods of identification in order to 

compare afterwards the results) is used. After that, Genetic (GA) 

and Particle Swarm Optimization (PSO) algorithms are applied to 

estimate the wind turbine generator model parameters. The results 

of both methods are compared in terms of their accuracy and 

performance. The software for the simulation and AI process has 

been developed using MATLAB™. 

Index Terms— Artificial intelligence, system parameter 

estimation, genetic algorithm, particle swarm optimization, wind 

turbine generator system model 

I. INTRODUCTION 

HE main focus in system identification is on the parameter 

estimation process. Well-developed techniques such as 

least-square (LS), instrumental variable and maximum 

likelihood exist for parameters estimation of models. 

However, these techniques often fail in search for the global 

optimum if the search space is not differentiable or linear in 

the parameters. 

To date, artificial intelligence (AI) techniques have become 

potential candidates to many control applications. One of the  
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most powerful AI techniques is genetic algorithm (GA), 

which has been widely used and applied to control systems 

[1]. Genetic algorithms are very good for optimization 

problems with several local minima where conventional 

search algorithms fail. GA techniques can be effectively 

applied to system identification problem to estimate the 

model parameters. A GA simultaneously evaluates many 

points in the parameters space and converges toward the 

global solution. It does not require the search space to be 

differentiable or continuous [3,4]. Many researchers have 

applied the GA techniques to identify linear and non-linear 

systems. The wind turbine generator system is a complex 

nonlinear system with parameters that are difficult to identify 

using standard LS techniques. 

II. ESTIMATION METHODS 

A. Genetic algorithm overview 

The genetic algorithm is a method for solving both 

constrained and unconstrained optimization problems that is 

based on natural selection, the process that drives biological 

evolution. The genetic algorithm repeatedly modifies a 

population of individual solutions. At each step, the genetic 

algorithm selects individuals at random from the current 

population to be parents and uses them to produce the 

children for the next generation. Over successive generations, 

the population "evolves" toward an optimal solution. We can 

apply the genetic algorithm to solve a variety of optimization 

problems that are not well suited for standard optimization 

algorithms, including problems in which the objective 

function is discontinuous, non-differentiable, stochastic, or 

highly nonlinear. 

The genetic algorithm uses three main types of rules at 

each step to create the next generation from the current 

population: 

 Selection rules select the individuals, called parents, 

which contribute to the population at the next 

generation.  

 Crossover rules combine two parents to form 

children for the next generation.  

 Mutation rules apply random changes to individual 

parents to form children. 

GA was pioneered in 1975 by Holland [5], and its concept 

is to mimic the natural evolution of a population by allowing 

solutions to reproduce, creating new solutions, which then 

compete for survival in the next iteration. The fitness 
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improves over generation sand the best solution is finally 

achieved. The initial population, P(0), is encoded randomly 

by strings. In each generation, t, the more fit elements are 

selected for the mating pool; and then processed by three 

basic genetic operators, reproduction, crossover, and 

mutation, to generate new offspring. On the basis of the 

principle of survival of the fittest, the best chromosome of a 

candidate solution is obtained. The pseudo code of GA 

illustrates the procedure of the computation as follows: 

Procedure GA 
begin 

t=0 

initialize P(t) 

evaluate P(t) 

while not satisfy stopping rule do 

begin 

 

t= t+1 

select P(t) from P(t1) 

alter P(t) 

evaluate P(t) 

end 

end 

 The power of GA lies in its simultaneous searching a 

population of points in parallel, not a single point. Therefore 

GA can find the approximate optimum quickly without 

falling in to a local optimum. In addition GA does not have 

the limitation of differentiability, as do the mathematical 

techniques. These characteristics of GA are the reasons it is 

used here for the problem of model identification in ARIMA 

models. 

B. Concepts of the PSO approach 

The neural network is a simplified model of human brain; 

genetic algorithm is inspired by the human evolution. Here 

we discuss another type of biological system - social system, 

more specifically, the collective behaviors of simple 

individuals interacting with their environment and each other. 

Someone called it as swarm intelligence. All of the 

simulations utilized local processes, such as those modeled 

by cellular automata, and might underlie the unpredictable 

group dynamics of social behavior.  

There are two popular swarm inspired methods in 

computational intelligence areas: Ant colony optimization 

(ACO) and particle swarm optimization (PSO). ACO was 

inspired by the behaviors of ants and has many successful 

applications in discrete optimization problems [6].  

The particle swarm concept originated as a simulation of 

simplified social system. The original intent was to 

graphically simulate the choreography of bird of a bird block 

or fish school. However, it was found that particle swarm 

model can be used as an optimizer [7].  

Particle swarm optimization (PSO) is a population based 

stochastic optimization technique developed by Dr. Eberhart 

[8] and Dr. Kennedy  in 1995, inspired by social behavior of 

bird flocking or fish schooling. 

PSO shares many similarities with evolutionary 

computation techniques such as GA. The system is initialized 

with a population of random solutions and searches for 

optima by updating generations. However, unlike GA, PSO 

has no evolution operators such as crossover and mutation. In 

PSO, the potential solutions, called particles, fly through the 

problem space by following the current optimum particles.  

As stated before, PSO simulates the behaviors of bird 

flocking. Suppose the following scenario: a group of birds are 

randomly searching food in an area. There is only one piece 

of food in the area being searched. All the birds do not know 

where the food is. But they know how far the food is in each 

iteration. So what's the best strategy to find the food? The 

effective one is to follow the bird which is nearest to the food.  

PSO learned from the scenario and used it to solve the 

optimization problems. In PSO, each single solution is a 

"bird" in the search space. It is called "particle". All of 

particles have fitness values which are evaluated by the 

fitness function to be optimized, and have velocities which 

direct the flying of the particles. The particles fly through the 

problem space by following the current optimum particles.  

PSO is initialized with a group of random particles 

(solutions) and then searches for optima by updating 

generations. In every iteration, each particle is updated by 

following two "best" values. The first one is the best solution 

(fitness) it has achieved so far. (The fitness value is also 

stored.) This value is called pbest. Another "best" value that is 

tracked by the particle swarm optimizer is the best value, 

obtained so far by any particle in the population. This best 

value is a global best and called gbest. When a particle takes 

part of the population as its topological neighbors, the best 

value is a local best and is called lbest. 

After finding the two best values, the particle updates its 

velocity and positions with following equations (1) and (2). 

v[ ] = v[ ] + c1 * rand( )*(pbest[ ] - present[ ]) +   

+c2*rand()*(gbest[ ] - present[ ])  (1) 

present[ ] = persent[ ] + v[ ]         (2)  

v[ ] is the particle velocity, persent[ ] is the current particle 

(solution). pbest[ ] and gbest[ ] are defined as stated before. 

Rand ( ) is a random number between (0,1). c1, c2 are 

learning factors. Usually c1 = c2 = 2. The pseudo code of the 

procedure is as follows: 
for each particle  

   Initialize particle 

end 

do 

for each particle  

 Calculate fitness value 

if the fitness value is better than the best fitness value 

(pbest) in history 

set current value as the new pbest 

end 

Choose the particle with the best fitness value of all the 
particles as the gbest 

for each particle  

    Calculate particle velocity according equation (1) 

    Update particle position according Equ. (2) 

end 

while maximum iterations or minimum error criteria is not 

attained 

 Particles' velocities on each dimension are clamped to a 

maximum velocity Vmax. If the sum of accelerations would 

cause the velocity on that dimension to exceed Vmax, which is 

a parameter specified by the user, then the velocity on that 

dimension is limited to Vmax. 
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III. MODEL DESCRIPTION 

The system, modeled in this article represents a wind 

turbine generator. It consists of three main subsystems: wind 

turbine; synchronous generator and mechanical part. 

A. Mathematical description 

The mechanical subsystem is represented by the Simulink-

blocks which correspond to the equation:   

                                            𝑀𝑇 −𝑀𝐺 = 𝐽
𝑑𝜔

𝑑𝑡
                              (3) 

For a description of processes in the synchronous generator 

using the model of generalized electric machine axes d and q 

(d axis coincides with the axis of the poles and q-axis with 

geometric neutral line). The axes d and q are considered 

connected with the poles of the rotor. Windings of the 

armature are replaced with two equivalent in effect windings 

the axes d and q with respective electromotive forces - 

voltage, resulting from the relative rotation of the actual stator 

windings in the coordinate system of the rotor. 

The mathematical description of the dynamic processes in 

the synchronous electric drive is obtained by the equations 

write mechanical properties at axes d and q, associated with 

the rotor, on which is disposed exciting coil: 

     (4) 

 
 

where: 

                (5) 

  is the modulus of firmness of the asynchronous 

component to a moment determined by the operation of the snubber 

winding. In our case the snubber winding absent and the component 
 is equal to zero. 

The output power of the aerodynamic the wind turbine is 

described by the following equation [2]: 

 

                                                  P𝑚 = 𝐶𝑝(𝜆, 𝛽)
𝜌𝐴

2
𝑣𝑤𝑖𝑛𝑑
3  ,                             (6) 

where: 

Pm
  - Mechanical output power of the turbine (W); 

cp  - Performance coefficient of the turbine; 

ρ   - Air density (kg/m3); 

A   - Turbine swept area (m2); 

υ  - Wind speed (m/s); 

λ   - Tip speed ratio of the rotor blade tip speed to wind speed 

β   - Blade pitch angle (deg). 

 

Equation  (6) can be normalized. In the per unit (pu) system 

we have: 

,       (7) 

where : 
Pm_pu - Power in pu of nominal power for particular values of ρ and 

A; 

cp_pu - Performance coefficient in pu of the maximum value of cp; 

υwind_pu - Wind speed in pu of the base wind speed. The base wind 

speed is the mean value of the expected wind speed in m/s; 

kp - Power gain for cp_pu = 1 and υwind_pu = 1 pu, kp is less than or equal 

to 1 

A generic equation is used to model  cp (λ,β). This equation, 

based on the modeling turbine characteristics of [1], is: 

                                  (8) 

with 

                                        (9) 

 

The coefficients c1 to c6 are: c1 = 0.5176, c2 = 116, c3 = 0.4, 

c4 = 5, c5 = 21 and c6 = 0.0068. 

The mechanical power Pm as a function of generator speed, 

for different wind speeds and for blade pitch angle β = 4 

degree and base wind speed = 12 m/s , is illustrated below – 

Fig. 1.  

 
Fig. 1. Power characteristics 

B. The model structure 

The structural scheme of the mathematical model of the 

wind generator is shown in Fig.2. The system consists of a 

generator, mechanical subsystem and a wind turbine.  

The mechanical subsystem is represented by Simulink-

blocks Sum, Gain2 and Int1, which correspond to equation (3). 

The scheme of the model of the synchronous generator is 

shown in Fig.3. It is made up on the basis of the system of 

equations (4) and (5). 

 

 
Fig. 2. The structural scheme of the mathematical model of the wind 

generator 
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Fig. 3. The structural scheme of the synchronous generator mathematical 

model 

 

For a description of the wind turbine a library model of 

Matlab [Simulink-Sim Power Systems], [2] has been used  

IV. SIMULATIONS 

The basic simulation was performed at the following 

parameter values: 

Estimated parameters:  

Rsum = 0.894 - Sum of armature and load resistance (Ohm); 

Rf = 2.524;     - Excitation armature resistance (Ohm); 

L12 = 0.152    - Mutual inductance (H);     

L1 = 0.0117    - Own synchronous inductance (H); 

J = 0.02          - Total inertia (kg.m2) 

Other input parameters: 
Generator excitation voltage = 50 V; 

Initial rotor speed 100 rad/s; 

Wind Speed = 12 m/s; 

Pitch Angle = 4 deg; 

The simulation results are illustrated in Fig.4 
 

 
Fig. 4. Simulation of change of currents along the axes d and q 

 

Experiment Design 

System, with parameters have to be estimated is represented 

by the wind turbine generator system model, produced in 

Simulink environment as a block diagram. This model was 

described in details above. There are five parameters in system 

model to be identified: Rsum , Rf , L12, L1, J . Monte Carlo 

simulation planning using central composite design is 

performed. Bounds for each parameter are defined in the 

parameter space. Two algorithms: real coded GA and PSO are 

applied and tested. Firstly, we have to choice input factors to 

be varied. In GA algorithm they are: 

 

 Crossover_p – Crossover probability parameter; 

 Mutarion_r – Mutation rate. 

Varried parameters in PSO algorithm are chosen to be: 

 

 Correction_factor- is the correction (learning) 

factor; 

 Inertia- is the inertia factor. 

In the next step central composite design is performed. Only 

one central point is used in case to obtain uniform values 

distribution in the parameter space. For this purpose, is used 

Matlab function ccdesign. Design results are showed on Fig. 

5. Function plotGaSim.m  is used here to display results. 

After that parameter variance bounds are chosen:  

 Crossover_p = 0 … 1; 

 Mutation_r = 0.05 … 0.5 

 

Fig. 5. Two factors central composite design test matrix  

 

The position of the factors in the space of the parameters in GA is 

shown in Fig.6. 

 
Fig.6. Positions of the input variables in the parameter space in GA tests. 
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Central composite design for the PSO – test parameters variation 

in Monte Carlo simulation are presented on fig 7. 

 

 
Fig.7. Positions of the input variables in the parameter space in PSO tests 

 

The real coded GA search algorithm uses BLX-α crossover 

operation and two varied parameters: crossover parameter and 

mutation rate. It is written as a Matlab – function with the next 

syntax: 

[A B AvSAE]=ga_proc(err, popsize, crossover_p, 

mutation_r, n_generations), where: 

 

A    is a vector, containing evaluated 'a' parameters; 

B    is a vector, containing evaluated 'b' parameters (for 

future use); 

AvSAE is a vector of average sum of absolute error of the 

model for all generations; 

err   is an error tolerance; 

popsize   is the size of population; 
crossover_p   is the crossover parameter 

mutation_r   is the mutation rate; 

n_generations   is the number of generations. 

The two parameters in PSO-based search algorithm may vary too: 

correction factor and inertia. The related code is written as a Matlab 

– function with the next syntax: 

 [A B AvSAE]=pso_proc(swarm_size, correction_factor, 

inertia, iterations, err), where:   

A, B, AvSAE and err are the same as in function ga_proc; 

swarm_size  is the size of the swarm; 

correction_factor  is the correction (learning) factor; 

inertia    is the inertia factor 

iterations   is the number of iterations. 

 

Each algorithm was evaluated 90 times with varied parameters. 

Evaluation function setting of the model is the same for GA and 

PSO. It is based on a comparison of the outputs of the model and 

evaluation model (changes in the values of the currents Id and Iq in 

time). First configure the evaluation model on which to set the value 

of the current set of genes (model parameters). Then he started end 

to give the current realization of output functions. Finally, calculate 

the average of the sum of absolute error AvSAE the current 

configuration of the evaluated parameters. 

The syntax of the function is as follows: 

fit = fitness5(gene), 

where the gene is a vector containing the current set of genes (model 

parameters). 

V. RESULTS 

Test results for first 5 estimations, using real coded GA and PSO 

are reported in Table 1 and Table 2 respectively. 

 

 
TABLE I 

MONTE CARLO SYSTEM PARAMETER ESTIMATION TEST RESULTS USING GA 
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Rsum, 
 

 

Ohm 

 

Rf, 
 

 

Ohm 

 

L12, 
 

 

H 

 

L1, 
 

 

H 

 

J 
 

 

Kg.m2 

1 0.6 0.05 8.7812 0.83969 2.1095 0.14288 0.01199 0.0812 

2 0.2 0.5 25.5266 0.98713 3.0567 0.31685 0.0236 0.01458 
3 1 0.275 46.705 0.53758 0.9729 0.074  0.01351 

4 1 0.5 37.1226 0.69762 1.4955 0.07375 0.00768 0.00523 

5 1 0.05 57.3622 0.48262 0.6502 0.05 0.00609 0.0095 

 

 

TABLE II  
MONTE CARLO SYSTEM PARAMETER ESTIMATION TEST RESULTS USING PSO 
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Rsum, 
 

 

Ohm 

 

Rf, 
 

 

Ohm 

 

L12, 
 

 

H 

 

L1, 
 

 

H 

 

J 
 

 

Kg.m2 

1 2 0.8 5.493 1.0016 2.5279 0.61985 0.0481 0.01592 

2 1.6 0.6 70.32 3.1422 19.9406 0.99357 0.01348 0.2 

3 2 0.8 4.102 0.9912 2.5451 0.40782 0.0316 0.01449 

4 2.4 0.6 7.983 1.0482 2.5577 0.8053 0.06334 0.005 

5 2.4 0.8 15.566 0.9133 2.4368 0.54215 0.04386 0.15934 

VI. DISCUSSION 

The significance analyzes for the varied parameters was 

preformed too. Combined scatter plot for GA and PSO 

parameters significance analyzes is showed on Fig.8 and Fig.9 

respectively. Best values for the crossover parameter and 

mutation rate are 0,6 and 0,5. Best values for the correction 

factor and inertia are 2,0 and 0,8. 

 
Fig. 8 Scatter plot of AvSAE vs. Crossover parameter and Mutation rate in 

GA tests. 
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Fig.9. Scatter plot of AvSAE versus Correction factor and Inertia in PSO 

tests 

 

Provided null hypothesis F-test for each of tested 

algorithms returns the result as listed below: 

GA: F > P for all varied factors 

Crossover parameter is significant: F = 7.5913, P = 0,1764. 

Mutation rate is significant: F = 13.5861, P = 0,1764 

 

PSO: F > P for all varied factors  

Correction Factor is significant: F = 1.4571, P = 0,1764 

Inertia is significant: F = 0.1955, P = 0,1764 

 

The average values of the parameters calculated by GA and 

PSO algorithm are showed in the following Table 3. It may be 

noted that in this case PSO gives more accurate results. Are 

taken over the values of the rows of tables with minimum error 

AvSAE (Average Value of Sum of Absolute Error) - 

respectively 79 rows of PSO Table 2 and row 27 of GA of 

Table 1. 

 

TABLE III 

 MEAN VALUES OF THE ESTIMATED PARAMETERS BY GA AND 

PSO ALGORITHMS 
 Rsum Rf L12 L1 J 

Original 0.894 2.524 0.152 0.0117 0.02 

PSO 0.9362 2.4347 0.18024 0.01439 0.02089 

GA 0.88925 2.5581 0.15901 0.01212 0.0195 

Error PSO, % - 4.72 - 3.53 -18.57 - 22,99- - 4.45 

Error GA, % - 0.53 - 1.35 - 4.61 - 3.58   2.5 

 

The next Fig.10 is showed sorted values of AvSAE for both 

algorithms PSO (in red) and GA (in blue).  

 
Fig.10. Sorted by values of AvSAE for both algorithms PSO (in red) and 

GA (in blue) 

 

Test duration for all 90 estimations in each case (GA and 

PSO) was measured to check algorithms' performance and the 

reported results are: 

GA test duration  – 2 h, 32 min, 50.7 s 

PSO test duration – 2 h, 37 min, 18.6 s 

VII. CONCLUSIONS 

1. Both GA and PSO algorithm are suitable for use in the 

evaluation process the parameters of the wind turbine 

generator system. 

2. Table 3 and Fig.10 showed, that PSO procedure reports 

much more accurate estimation of the system parameters for 

the wind turbine generator system model.  

3. Best value for the crossover parameter in GA is 0,6. For the 

mutation rate this value is 0,5. 

4.  Best value for the correction factor in PSO is 2.0. For the 

inertia this value is 0,8 

5. GA reports a bit better efficiency, but the difference in test 

time duration is very small. This is due to the fact that the main 

time in carrying out the tests is spent for the simulation model 

of the wind turbine and to evaluate the setting of the model - 

2,700 times for each of the cases. Procedures themselves take 

up very little processor time. 
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