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Abstract—This study presents novel machine learning-based approaches for detecting whether source code generated by Large
Language Models (LLMs) contains malicious code. To achieve this, comprehensive datasets comprising malicious and benign code
samples were created using the GPT-3.5 (ChatGPT), GPT-40, Gemini, and Claude language models. The extracted code samples
were then processed through CodeBERT, CodeT5, and manual feature extraction techniques before being classified using various
machine learning algorithms. Experimental results demonstrate that this approach can effectively detect malicious software in code
generated by LLMs. This study makes contributions to software security and represents a crucial step toward preventing the misuse
of LLMs for malicious purposes. Moreover, the Random Forest algorithm for binary malicious code classification in LLM-generated
code achieved the best F, score of 94.92% on the ChatGPT-generated dataset (with CodeT5 feature extraction technique). We
also showed that the classification models exhibited poor performance on the dataset generated by Claude language model.
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1. Introduction OpenAT’s Generative Pretrained Transformer (GPT)

models ChatGPT [1], GPT-40 [2], as well as Gemini
Large Language Models (LLMs) have brought | 5 E1ash [3] and the Anthropic’s Claude-3.5 Sonnet

transformative changes to software development [4], is malicious or benign. This analysis repre-

processes. They are now widely used for tasks gepis 5 significant step toward improving software

such as source code generation, code completion, security and preventing the misuse of LLMs for

and code refinement. However, as LLMs become generating malicious code.

more proficient in generating code, concerns have

arisen regarding their potential to produce malicious 1 1. Motivation and Contribution
code. This has underscored the need to develop
new methods to detect and prevent LLM-generated Software security is one of the most critical
malicious code. concerns in today’s technology landscape. With
In this study, we analyze whether the source the widespread adoption of LLMs, evaluating the

code generated by large language models, including security of the code they generate has become
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increasingly important. The primary motivation of
this study is to perform a comprehensive security
analysis of the code produced by popular LLMs,
including ChatGPT, GPT-40, Gemini, and Claude.
To our knowledge, this is the first preliminary
study exploring the potential use of these LLMs
for the generation of malicious code in the Python
programming language.

This paper addresses two key research questions:
“How capable are LLMs of generating malicious
code when prompted?” and “Can LLM-generated
malicious code be detected using machine learning
algorithms?”

The summarization of the main contributions is
as follows:

o A comparative analysis of the code generation
capabilities of different LLMs from a security
perspective has been conducted.

« Novel four different datasets containing both
malicious and benign source codes generated
by ChatGPT, GPT-4, Gemini, and Claude LLMs
have been generated.

« Different binary classification approaches have

(5]

CodeT5 [6] as well as manual methods as

been proposed using CodeBERT and

feature extraction models.
° We
the source codes and the source code for

have made the extracted features of
the binary classification models publicly
available at  https://github.com/MGCoban/
LLM-MalCode-Detection.

1.2. Organization

We give related works in Section [2] Section [3|
presents all the steps generating the data set. In
Section [ we give all the details of the proposed
methodology, and the experimental results are pre-
sented in Section [5] Finally, we conclude the paper

in Section

2. Related Works

In this section, the related works given in the
literature are addressed under two subheadings:
detecting whether source code is malicious and
extracting the features of source codes.

2.1. Studies on the Detection of Malicious and
Benign Source Code

In [7], GPT-2 model is used for malware detec-
tion. Static analysis of PE (Portable Executable)
format files is performed, and the processed code
is fed into the GPT-2 model. The model is designed
to capture the features of both malicious and benign
source codes. Experimental results show that the
proposed model successfully detects malware with
an accuracy rate of 85.4%.

In [8]], the potential use of GPT-3 by attackers to
generate malicious software is investigated. The ex-
perimental results show that while GPT-3 struggles
to generate fully functional malware examples, it
can create malware using building block definitions.
The study also highlights that GPT-3 is capable of
producing multiple variants of malware with the
same semantics, and the detection rates of these
variants vary.

Monje et al. [9] explore the potential misuse of
GPT 3.5 (ChatGPT) to generate malicious software.
The study demonstrates that by directing ChatGPT
with seemingly innocuous commands, it is possible
to bypass its built-in ethical constraints and create
ransomware.

Igbal et al. [10] investigate the malicious uses
of ChatGPT, presenting attack scenarios and usage
examples. The experiments demonstrate that Chat-
GPT can be used for malicious activities such as
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generating malware, preparing phishing emails, and
scanning for system vulnerabilities.

Begou et al. [11] explore the potential use of
ChatGPT for developing advanced phishing attacks
and automating large-scale deployments. The study
demonstrates that ChatGPT can perform functions
such as copying target websites, integrating code to
steal credentials, hiding code, automating distribu-
tion, registering phishing domains, and integrating
with reverse proxies. This indicates that ChatGPT
is capable of bypassing security measures against
malicious use and enabling the rapid creation and
deployment of phishing sites.

Pa Pa et al. [12] explore the potential of ChatGPT,
the “text-davinci-003” model from OpenAl Play-
ground, and Auto-GPT for malware development.
The study demonstrates that with these tools, seven
malware programs and two attack tools were devel-
oped. It also shows that, despite OpenAl’s security
controls, functional malware and attack tools can
be produced within 90 minutes. Although Auto-
GPT struggles to generate correct commands, it is
capable of bypassing OpenAl’s security checks. The
study emphasizes that current antivirus and endpoint
detection solutions are insufficient for detecting Al-
generated malware, highlighting the need for im-
provements in the security controls of ChatGPT and
the text-davinci-003 models.

2.2. Studies on Feature Extraction of Source
Code

In [[13], the “Large Movie Review Dataset,” con-
sisting of movie reviews, is used to test the BERT
model against traditional machine learning models.
In this study, TF-IDF and BERT-based feature ex-
traction methods are employed. When compared
with models such as Logistic Regression, Linear
SVC, Multinomial Naive Bayes, Ridge Classifier,
and Passive Aggressive Classifier, the BERT model

demonstrates the highest performance with an ac-
curacy rate of 93.87%.

In [14], the COPER dataset, consisting of Iranian
user comments and news content, 1S used. One-
hot encoding and sentence transformers are chosen
for feature extraction. Various deep learning models
Dense Neural Network (DNN), Long Short Term
Memory (LSTM), CNN + LSTM) are tested across
different categories, and in the economy category,
the CNN + LSTM + Dense model achieves the best
accuracy (77%), precision (79%), and recall (75%).

In [135]], source code classification is performed on
code files obtained from 293,319 GitHub reposito-
ries. For feature extraction, unigram, bigram, and
trigram methods are used. In this study, where the
Maximum Entropy and Naive Bayes models are
compared, the Maximum Entropy model demon-
strates superior performance with an accuracy rate
of 99.1%.

In [16], the Wikipedia Huggingface dataset is
used to differentiate between machine-generated
and human-written texts. Count Vectorizer is used
for feature extraction, and the Multinomial Naive
Bayes algorithm is chosen for classification. As a
result, the proposed model successfully identifies
the author of the texts with an accuracy of 86%
and an F1 score of 83%.

In [17], various natural language processing tech-
niques are applied for the automatic classification
of PDF documents. In the study, Part-of-Speech
(POS) based features are extracted using ECSS PDF
documents. Models such as Naive Bayes, SVM, RF,
and Feedforward Neural Network (FNN) are tested,
with the highest accuracy rate (98.2%) achieved by
the Decision Tree (DT) model.

Upon reviewing the existing literature, no study
specifically addresses two key research questions:
“How capable are LLMs of generating malicious
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Figure 1. General System Architecture

code when prompted?” and “Can LLM-generated
malicious code be detected using machine learning
algorithms?” Furthermore, while some studies have
attempted to generate malicious code, none have
used multiple LLMs to generate both malicious and
benign Python source code and performed binary
classification of these code snippets using various
feature extraction methods.

3. Proposed Datasets

Figure [I] illustrates the general system overview.
First, we generate all datasets, which include both
malicious and benign source codes, and then extract
the features of these source codes using the CodeT?5,
CodeBERT, and Manual + AST methods. Next, we
apply binary classification models to classify the
code snippets.

In this study, four different datasets—Dataset 1,
Dataset 2, Dataset 3, and Dataset 4—are created
using ChatGPT, GPT-40, Gemini, and Claude, re-
spectively. All these datasets contain both malicious
and benign source codes. For the malicious code
snippet class, ransomware, keyloggers, screenshot
grabbers, remote access tools (Remote Access Tro-

CodeT5

% Benign ?
% Malicious ?

Manual+AST

jan—RAT), software for controlling webcams and
microphones, software for accessing social media
accounts, adware, worms, and trojan malware were
generated. In the generation of benign code snippets,
code snippets that use the same libraries as those
used in the generated malicious code snippets but
produce benign outputs were created by providing
the same prompts to the large language models.

Table |I| presents the number of malicious and
benign source code snippets in each dataset. Ac-
cording to the table, Dataset 1, generated by Chat-
GPT, comprises 65 malicious and 65 benign code
snippets. Dataset 2, produced by GPT-40, consists of
50 malicious and 50 benign code snippets. Dataset
3, created by Gemini, includes 50 malicious and 60
benign code snippets, while Dataset 4, generated by
Claude, contains 45 malicious and 45 benign code
snippets. The reason for the different number of
samples in some classes of the datasets is that the
malicious code was not generated using that specific
large language model.
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Table 1.
Detailed information on malicious/benign source codes in each dataset.

#of samples #of samples #of samples #of samples

Type (Dataset 1 (Dataset 2 (Dataset 3 (Dataset 4
generated by ChatGPT) generated by GPT-40) generated by Gemini) generated by Claude)

Trojan 40 27 30 26
Ransomware 3 3 3 3
Spyware 17 15 15 11
Adware 5 5 2 5
Benign 65 50 60 45

4. Methodology

4.1. Evaluation Metrics

We use accuracy, precision, recall, and F; score
metrics to evaluate the performance of different
models in detecting malicious code. True Positive
(TP) refers to cases where the model correctly iden-
tifies a malicious code snippet as malicious, while
True Negative (TN) represents instances where be-
nign code is accurately classified as benign. False
Positive (FP) occurs when the model incorrectly
flags benign code as malicious, leading to false
alarms, whereas False Negative (FN) happens when
the model fails to detect a malicious code snippet
and mistakenly classifies it as benign.

Precision (P) L (1)
TeC1S10n = -
€C1S10 TP—l—FP
TP
Recall (R) = —— 2
ecall (R) TP - FN (2)
2xPxR
LA 3
! P+R )

4.2. Feature Extraction

In this study, CodeT5, CodeBERT, AST, and
Manual features methods are used for the feature
extraction. During the manual feature extraction
process, seven distinct features were identified and
utilized to differentiate between malicious and be-
nign code samples. The extracted features are de-
tailed in below:

o CodeBERT Features: The embedding vectors
are obtained using CodeBERT for the code
snippets.

o Manual Features:

— Code Length: The total number of charac-
ters in the code snippet is calculated.

— Unique Token Count: The number of unique
words (tokens) used in the code snippet is
determined.

— Line Count: The total number of lines in
the code is analyzed.

— Complexity Score: The number of opening
and closing parentheses (, (), []) is counted
to generate a complexity score.

— Function Count: The total number of func-
tion definitions in the code (e.g., “def” or
“function”) is identified.

— Library Import Count: The total number of
libraries imported in the code is analyzed.
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Table 2.
Model performance comparison on Dataset 1.

CodeT5 CodeBERT Manual+AST
Models F1 Precision Recall F1 Precision Recall F1 Precision Recall
GaussianNB 0.8469 0.7366 1.0000 0.7009 0.7000 0.7500 0.5203 0.6800 0.4667
LR 0.9269 0.8699 0.8900 0.8920 0.9099 0.9000 0.7080 0.7833 0.6833
KNN 0.7861 0.9500 0.6833 0.7176 0.8166 0.6833 0.7159 0.7933 0.6833
DT 0.6176 0.5700 0.6833 0.5452 0.7166 0.4666 0.5810 0.6667 0.5833
SVM 0.9206 0.9099 0.9500 0.8714 0.9000 0.8500 0.7060 0.6966 0.7500
RF 0.8984 0.9199 0.9000 0.8869 0.9199 0.8833 0.6355 0.7800 0.5833
GB 0.6857 0.7000 0.6833 0.6211 0.7100 0.5833 0.6088 0.7133 0.5833
AdaBoost 0.7936 0.8699 0.8000 0.6687 0.7433 0.6333 0.6522 0.6533 0.7500

— Arithmetic Operator Count: The total num-
ber of arithmetic operators (such as addition
(+), subtraction (-), multiplication (*), and
division (/)) in the code is calculated.

o AST (Abstract Syntax Tree) Features: The num-
ber of loops, conditionals, and functions ex-
tracted from the AST analysis.

o CodeT5 Features: CodeT5 represents code snip-
pets (code fragments) as high-dimensional em-
bedding vectors.

For CodeBERT and CodeT5, 767 features were
extracted for each dataset, while 9 features were
extracted using the Manual + AST method. We
applied the CodeBERT, CodeT5, and Manual + AST
methods separately for feature extraction on each
dataset and then compared the performance of all
these methods.

4.3. Models

In this study, various machine learning algorithms
were applied to classify malicious code in a binary
manner. To ensure a balanced distribution during
the training and evaluation process, the stratified
k-fold cross-validation method was employed, with
the value of k set to 5. This preserved the ratio of
malicious to benign code samples in each fold.

For hyperparameter optimization, the grid search
technique was utilized, allowing the identification
of optimal hyperparameter combinations for each
model. Eight machine learning classifiers, includ-
ing Gaussian Naive Bayes (GaussianNB), Logis-
tic Regression (LR), k-Nearest Neighbors (KNN),
DT, SVM, Random Forest (RF), Gradient Boosting
(GB), and Adaptive Boosting (AdaBoost), were
tested. By testing a variety of classifiers, we aim to
identify the most suitable model for given datasets.
GaussianNB is efficient for high-dimensional data
and probabilistic classification, while LR is well-
suited for linear relationships. KNN is effective for
nonlinear decision boundaries, whereas DT provides
interpretability and easy visualization. Ensemble
methods like RF, GB, and AdaBoost enhance pre-
dictive performance by combining multiple weak
learners to create a stronger model, reducing over-
fitting and improving generalization.

5. Experimental Results

All primary models were evaluated on Dataset
1 using precision, recall, and F; score, and their
performance results are provided in Table 2] Among
these models, the three best-performing models,
SVM, LR, and RF, were selected, and the results of
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Table 3.

Hyperparameters used in each classification algorithm for datasets.

Feature Extraction

D Model H

ataset odels Method yperparameters
LR C’: 0.1, ’penalty’: ’12°, ’solver’: ’lbfgs’
SVM CodeBERT C’: 0.1, ’gamma’: ’scale’, ’kernel’: ’linear’
RF max_depth’: None, 'min_samples_leaf’: 2, "'min_samples_split’: 2, 'n_estimators’: 100
LR C’: 1, ’penalty’: ’12°, ’solver’: ’liblinear’

Dataset 1 s s - s s s, 0a e
SVM CodeT5 C’: 1, ’gamma’: ’scale’, ’kernel’: ’rbf
RF max_depth’: None, 'min_samples_leaf’: 1, 'min_samples_split’: 5, 'n_estimators’: 100
RF max_depth’: None, 'min_samples_leaf’: 1, 'min_samples_split’: 2, 'n_estimators’: 200
LR Manual+AST C’: 1, ’penalty’: ’12°, ’solver’: ’lbfgs’
SVM C’: 10, "gamma’: ’scale’, ’kernel’: ’rbf’
LR C’: 0.1, ’penalty’: ’12’, ’solver’: ’Ibfgs’
SVM CodeBERT C’: 0.1, gamma’: ’scale’, "kernel’: 'rbf’
RF max_depth’: None, 'min_samples_leaf’: 2, min_samples_split’: 5, 'n_estimators’: 50
LR C’: 0.1, ’penalty’: ’12’, ’solver’: ’1bfgs’

Dataset 2 s s 5. s S
SVM CodeT5 C’: 0.1, ’gamma’: ’scale’, ’kernel’: ’rbf
RF max_depth’: None, 'min_samples_leaf’: 1, 'min_samples_split’: 2, *n_estimators’: 200
RF max_depth’: None, 'min_samples_leaf’: 1, 'min_samples_split’: 5, *n_estimators’: 200
LR Manual+AST C’: 1, ’penalty’: ’12°, ’solver’: ’lbfgs’
SVM C’: 0.1, gamma’: ’scale’, ’kernel’: ’rbf’
LR C’: 0.1, ’penalty’: ’12°, ’solver’: ’lbfgs’
SVM CodeBERT C’: 1, ’gamma’: ’auto’, 'kernel’: 'rbf’
RF max_depth’: None, 'min_samples_leaf’: 2, "'min_samples_split’: 2, 'n_estimators’: 100
LR C’: 1, ’penalty’: ’12°, ’solver’: ’liblinear’

Dataset 3 s s s, s > . 51
SVM CodeT5 C’: 1, ’gamma’: ’scale’, ’kernel’: ’rbf
RF max_depth’: 5, *min_samples_leaf’: 1, *min_samples_split’: 2, 'n_estimators’: 100
RF max_depth’: None, 'min_samples_leaf’: 2, "'min_samples_split’: 2, 'n_estimators’: 200
LR Manual+AST C’: 10, ’penalty’: ’12°, ’solver’: ’lbfgs’
SVM C’: 1, ’gamma’: ’auto’, "kernel’: ’rbf’
LR C’: 0.1, ’penalty’: ’12°, ’solver’: ’lbfgs’
SVM CodeBERT C’: 1, ’gamma’: ’scale’, 'kernel’: 'rbf’
RF max_depth’: 5, "'min_samples_leaf’: 1, *min_samples_split’: 2, 'n_estimators’: 100
LR C’: 0.1, ’penalty’: ’12’, ’solver’: ’1bfgs’

Dataset 4 s s 5. s s g
SVM CodeT5 C’: 0.1, ’gamma’: ’scale’, ’kernel’: ’rbf
RF max_depth’: None, 'min_samples_leaf’: 1, 'min_samples_split’: 2, *n_estimators’: 100
RF max_depth’: None, 'min_samples_leaf’: 2, *'min_samples_split’: 5, 'n_estimators’: 50
LR Manual+AST C’: 0.1, ’penalty’: ’12°, ’solver’: ’lbfgs’
SVM C’: 0.1, gamma’: ’scale’, ’kernel’: ’rbf’

the other datasets (Dataset 2, Dataset 3, and Dataset
4) were evaluated using just these three models.

Dataset 4.

In Table [3] we give the hyperparameters used in
each model for Dataset 1, Dataset 2, Dataset 3, and
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Table 4.
Precision metric results for each dataset

Dataset Models CodeT5 CodeBERT Manual+AST
SVM 0.9099 0.9000 0.7700
Dataset 1 LR 0.8699 0.9099 0.7833
RF 0.9099 0.9199 0.7800
SVM 0.7507 0.5557 0.5557
Dataset 2 LR 0.7691 0.6752 0.5964
RF 0.6733 0.5964 0.6571
SVM 0.7216 0.7027 0.7428
Dataset 3 LR 0.6725 0.6178 0.7998
RF 0.7214 0.7105 0.7355
SVM 0.5419 0.6690 0.5419
Dataset 4 LR 0.5571 0.5674 0.7000
RF 0.6448 0.6639 0.6600

Table 4| presents the precision scores of the models
trained on generated datasets. The performance of
SVM, LR, and RF was compared across CodeT35,
CodeBERT, and Manual+AST feature combina-
tions.

For Dataset 1, the SVM model achieves 90.99%
precision with CodeT5 features and 90% precision
with CodeBERT features. LR shows 86.99% pre-
cision with CodeT5 and 90.99% with CodeBERT.
RF achieves the highest precision, with 90.99% for
CodeT5 and 91.99% for CodeBERT. The precision
values for all models using Manual+AST features
are lower (around 77-78%), indicating that CodeT5
and CodeBERT features are more effective for
Dataset 1. For Dataset 2, the precision values show
a general decline. SVM achieves 75.07% precision
with CodeT5, while it drops to 55.57% with Code-
BERT. LR’s precision ranges from 76.91% with
CodeT5 to 67.52% with CodeBERT. RF shows the
lowest precision values. This suggests that Dataset 2
is more challenging compared to the other datasets,
GPT-40 model has been more successful at produc-
ing secure and benign code structures. For Dataset 3,
SVM achieves 72.16% precision with CodeT5 and

70.27% with CodeBERT. LR shows 67.25% preci-
sion with CodeT5, while it increases to 79.98% with
Manual+AST features. RF’s precision values range
from 72.14% with CodeT5 to 71.05% with Code-
BERT. This suggests that Manual+AST features are
more suitable for Dataset 3, and LR performs better
with these features. For Dataset 4, the precision val-
ues are the lowest. SVM achieves 54.19% precision
with CodeT5, and 66.90% with CodeBERT. Lo-
gistic Regression shows precision between 55.71%
(CodeT)5) and 56.74% (CodeBERT). Random Forest
achieves precision of 64.48% with CodeT5 and
66.39% with CodeBERT. This indicates that Dataset
4 is more complex than the other datasets, and
Claude has been more successful in creating secure
and benign code by taking safety measures into ac-
count. Machine learning models struggle to classify
this dataset as malicious, further supporting the idea
that Claude can create more security-aware code.

Table [5|compares the recall scores for each model.
For Dataset 1, the SVM model achieves a recall of
94% with CodeT5 features, which decreases to 85%
with CodeBERT features. The LR model demon-
strates a high recall of 95% with CodeT5, but this
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Table 5.
Recall metric results for each dataset

Dataset Models CodeT5 CodeBERT Manual+AST
SVM 0.9400 0.8500 0.7500
Dataset 1 LR 0.9500 0.9000 0.6833
RF 0.9099 0.8833 0.5833
SVM 0.7272 0.5636 1.000
Dataset 2 LR 0.6727 0.6363 0.6727
RF 0.7818 0.7272 0.6545
SVM 0.8163 0.7400 0.8527
Dataset 3 LR 0.7381 0.7418 0.7963
RF 0.8527 0.7600 0.7600
SVM 0.5107 0.7964 1.0000
Dataset 4 LR 0.5678 0.6178 0.6392
RF 0.6928 0.7428 0.7464

drops to 90% with CodeBERT. The RF algorithm
attains a recall of 90.99% with CodeT5 and 88.33%
with CodeBERT. These results indicate that CodeT5
features are more effective for detecting malicious
code in Dataset 1. Furthermore, the Manual+AST
features yield the lowest recall values across all
models, highlighting their inadequacy for Dataset
1. In Dataset 2, the SVM model shows a recall of
72.72% with CodeT5, which decreases to 56.36%
with CodeBERT. The LR model achieves a recall
of 67.27% with CodeT5, maintaining 63.63% with
CodeBERT. The RF algorithm demonstrates a recall
of 78.18% with CodeT5, but this drops to 72.72
with CodeBERT. For Dataset 3, the SVM model
achieves recall values of 81.63% with CodeT5 and
74.00% with CodeBERT. The LR model demon-
strates a recall of 73.81% with CodeT5, which
increases slightly to 74.18% with CodeBERT. The
RF algorithm reaches a high recall of 85.27% with
CodeTS but drops to 76.00% with CodeBERT.
These results suggest that CodeT5 and CodeBERT
features show similar performance for Dataset 3,
with the RF model being the most effective model in
detecting malicious code for this dataset. In Dataset

4, the recall values are generally lower. The SVM
model shows a recall of 51.07% with CodeT?,
which increases to 79.64% with CodeBERT. The
LR model attains a recall of 56.78% with CodeT5,
rising to 61.78% with CodeBERT. The RF algo-
rithm achieves a recall of 69.28% with CodeT5 and
74.28% with CodeBERT. These findings suggest
that Claude is more successful in concealing the
characteristic features of malicious code, making it
harder to detect. This indicates that the LLM is more
adept at generating safer code.

Table [6] presents the F; scores for each model.
For Dataset 1, the SVM model achieves an F;
score of 92.06% with CodeT5 features, while it
decreases to 87.14% with CodeBERT features. The
LR model demonstrates a high F; score of 92.69%
with CodeT?3, but it drops to 89.20% with Code-
BERT. The RF algorithm achieves the highest F;
score of 94.92% with CodeT5 and drops to 88.69%
with CodeBERT. The Manual+AST features result
in the lowest F; score for all models, indicating that
these features are less effective for Dataset 1. These
results suggest that CodeT5 features, particularly
with the RF algorithm, perform best for malware
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Table 6.
F, score metric results for each dataset

Dataset Models CodeT5 CodeBERT Manual+AST
SVM 0.9206 0.8714 0.7060
Dataset 1 LR 0.9269 0.8920 0.7080
RF 0.9492 0.8869 0.6355
SVM 0.7303 0.7144 0.7144
Dataset 2 LR 0.7072 0.6337 0.6169
RF 0.7205 0.6491 0.6456
SVM 0.7647 0.7200 0.7932
Dataset 3 LR 0.6975 0.6722 0.7966
RF 0.7806 0.7330 0.7451
SVM 0.7025 0.7222 0.7025
Dataset 4 LR 0.5591 0.5865 0.6649
RF 0.6635 0.6972 0.6967

detection in Dataset 1. In Dataset 2, F; scores for
the models generally show a decrease. The SVM
model achieves an F; score of 73.03% with CodeT5
features and 71.44% with CodeBERT. The LR
model shows an F; score of 70.72% with CodeTS5,
which decreases to 63.37% with CodeBERT. The
RF algorithm reaches an F; score of 72.05% with
CodeT5 and drops to 64.91% with CodeBERT.
This trend indicates that the malicious software in
Dataset 2 is more complex and harder to detect.
Although a decrease is observed, CodeT5 features
still perform better than CodeBERT features in this
dataset. For Dataset 3, the SVM model achieves
F, score of 76.47% with CodeT5, 72.00% with
CodeBERT, and 79.32% with Manual+AST. The
LR model shows F; score of 69.75% with CodeTS5,
67.22% with CodeBERT, and 79.66% with Man-
ual+AST. The RF algorithm reaches F; score of
78.06% with CodeTS5, 73.30% with CodeBERT, and
74.51% with Manual+AST. These results suggest
that Manual+AST features are more suitable for
Dataset 3, with SVM and LR models performing
better with these features. For Dataset 4, the F;
score of the models are lower compared to other

datasets. The SVM model achieves F; score of
70.25% with CodeTS5, 72.22% with CodeBERT, and
70.25% with Manual+Ast. The LR model demon-
strates F; score of 55.91% with CodeT5, 58.65%
with CodeBERT, and 66.49% with Manual+AST.
The RF algorithm reaches F; score of 66.35% with
CodeTS5, 69.72% with CodeBERT, and 69.67% with
Manual+AST.

From the malicious code detection perspective,
recall and F; score metrics are crucial. While the
experimental results are evaluated, if one of these
scores is low, this is a critical concern, as it means
that the malicious code is not being detected ef-
fectively. This implies a major risk that LLM-
generated malicious code is undetectable. Meanly,
the fine-tuned LLM can generate malicious code
that bypasses security mechanisms, which poses a
significant threat. If an Al-generated source code
snippet is not labeled as malicious, it suggests
that attackers could exploit such models to create
harmful software that evades detection. Dataset 4,
which includes Claude-generated source code, had
the lowest recall and F; scores, meaning the gen-
erated malicious codes were the hardest to detect.
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Moreover, SVM and LR struggled more compared
to RF. From the feature extraction perspective,
CodeBERT performed better in some cases, mean-
ing that different feature representations impact the
model’s ability to catch threats.

6. Conclusion

A low malicious code detection score means
this malicious code is actively being missed. That
underscores the need to improve detection models
and highlights the potential risk of LLMs being
exploited to generate undetectable malicious code.
In this paper, we compare this potential risk of
ChatGPT, GPT4-o, Gemini, and Claude language
models. Our findings indicate that while the mali-
cious codes generated by ChatGPT can be success-
fully detected, it is hard to detect malicious codes
generated by Claude.

One of the limitations of this study is the need
to increase the number of samples for each class
and design balanced datasets. Expanding the dataset
is crucial for improving the performance of multi-
class classification models, as a larger and more
balanced dataset can enhance model generalization
and reduce bias. Additionally, the datasets used in
this study contain a limited number of malicious
source code samples, necessitating future testing on
much larger datasets to ensure robustness and real-
world applicability. However, despite these limita-
tions, this study serves as a guiding use case, as
it is one of the pioneering efforts in this field. In
future work, we plan to focus on collecting and in-
corporating more diverse and extensive datasets, ex-
ploring advanced data augmentation techniques, and
experimenting with deep learning-based approaches
to further enhance classification performance.

Furthermore, integrating additional LLM models
and exploring more advanced feature extraction

techniques, such as deeper semantic analysis or
neural network-based methods, to better capture
the complex characteristics of malicious code and
enhance the overall performance of the detection
models will be part of future work. In addition,
further investigations are needed to analyze why
certain malicious code samples evade detection.
Techniques like explainable Al (XAI) could be
used to understand misclassified cases and improve
detection models.
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