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Abstract 

Fuzzy logic is a theory used as an alternative to classical structures in both application and 

algebraic fields. In particular, there are fuzzy structures in metric spaces and partial metric spaces. 

The most widely used of these structures are fuzzy metric spaces, fuzzy partial metric spaces and 

intuitionistic fuzzy metric spaces. In this paper, intuitionistic fuzzy partial metric spaces are 

defined, their basic properties and examples are obtained. For it, open ball, convergent sequence, 

and Cauchy sequence are defined and their basic properties are introduced. Furthermore, the 

relations between intuitionistic fuzzy partial metric spaces, classical metric spaces, fuzzy metric 

spaces, fuzzy partial metric spaces, and intuitionistic fuzzy metric spaces are analyzed. As a result 

of this investigation, it is shown that from each classical metric, classical partial metric, and 

intuitionistic fuzzy metric, an intuitionistic fuzzy partial metric can be obtained. Moreover, it is 

achieved that an intuitionistic fuzzy metric is also an intuitionistic fuzzy partial metric space. 

Thus, a new structure is given by transferring the partial metric structure to intuitionistic fuzzy 

metric spaces. 

Keywords: Metric spaces; Partial metric spaces; Fuzzy metric spaces; Fuzzy partial metric 

spaces; Intuitionistic fuzzy metric spaces; Intuitionistic fuzzy partial metric spaces. 
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Sezgisel Bulanık Kısmi Metrik Uzaylar 

Öz 

Bulanık mantık, hem uygulama hem de cebirsel alanlarda klasik yapılara alternatif olarak 

kullanılan bir teoridir. Özellikle metrik uzaylarda ve kısmi metrik uzaylarda bulanık yapılar yer 

almaktadır. Bu yapılardan en yaygın olarak kullanılan bulanık metrik uzaylar, bulanık kısmi 

metrik uzaylar ve sezgisel bulanık metrik uzaylardır. Bu çalışmada, sezgisel bulanık kısmi metrik 

uzaylar tanımlanmış, temel özellikleri ve örnekleri elde edilmiştir. Bunun için açık yuvar, 

yakınsak dizi ve Cauchy dizisi tanımlanmış ve temel özellikleri tanıtılmıştır. Ayrıca, sezgisel 

bulanık kısmi metrik uzaylar, klasik metrik uzaylar, bulanık metrik uzaylar, bulanık kısmi metrik 

uzaylar ve sezgisel bulanık metrik uzaylar arasındaki ilişkiler incelenmiştir. Bu inceleme 

sonucunda, her bir klasik metrik, klasik kısmi metrik ve sezgisel bulanık metrikten bir sezgisel 

bulanık kısmi metrik elde edilebileceği gösterilmiştir. Ayrıca, bir sezgisel bulanık metriğin aynı 

zamanda bir sezgisel bulanık kısmi metrik uzay olduğu elde edilmiştir. Böylece kısmi metrik 

yapısı sezgisel bulanık metrik uzaylara aktarılarak yeni bir yapı verilmiştir.  

Anahtar Kelimeler: Metrik uzaylar; Kısmi metrik uzaylar; Bulanık metrik uzaylar; Bulanık 

kısmi metrik uzaylar; Sezgisel bulanık metrik uzaylar; Sezgisel bulanık kısmi metrik uzaylar. 

1. Introduction 

Partial metric spaces [1] were defined by Matthews in 1994. The most important feature 

that distinguishes this metric from the classical metric is that the distance of a point to itself is not 

always zero. This property leads to important properties in fixed point theories (FPTs). 

Zadeh defined fuzzy logic (FL) and fuzzy sets (FS) [2] in 1965 to explain uncertainties 

more precisely mathematically. In FS, the degree of membership of each element of set takes a 

value in the range [0, 1]. Thus, unlike classical logic, the membership of each element is graded. 

For example, the weather can be specified with expressions such as hot, cold, warm, cool, very 

hot, very cold, etc., and with different degrees of membership. Thus, a more precise type of logic, 

including classical logic, has been defined to explain uncertainties. FL is one of the most widely 

used types of logic in almost every field of science, including decision-making applications and 

algebraic fields. Recently, Emniyet and Şahin obtained fuzzy normed rings [3] in 2018. Kum et 

al. studied an alternative method for determining erosion risk based on FL [4] in 2022; Wang et 

al. introduced a new distance measure for q-Rung Orthopair FSs [5] in 2024; Xu and Wang 

introduced a novel fuzzy bi-clustering algorithm for Co-Regulated Genes [6] in 2024; 

Plebankiewicz and Karcińska studied supporting construction using to the FSs theory [7] in 2024. 
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In 1975, Kramosil and Michálek defined fuzzy metric space (FMS) [8]. Also, Grabiec 

obtained fixed points in FMSs [9] in 1989. This new type of metric, defined as an alternative to 

classical metric spaces, brings the advantages of FL to the theory of metric spaces. Thus, the 

distance between two points is graded with the help of a fuzzy membership function. Many 

classical metric types have been similarly redefined according to FL. Recently, Shukla et al. 

studied vector-valued FMS [10] in 2024; Gregori et al. achieved completeness FPT based on 

FMSs [11] in 2024; Huang introduced properties for some metric spaces based on FSs [12] in 

2024. 

Moreover, fuzzy partial metric space (FPMS) has been defined differently in three different 

works [13-15] in different years. Olgun et al. introduced the basic definition and properties were 

given and provided an FPT for FPMS [13]. Recently, Aygün et al. studied FPTs based on FPMS 

[16] in 2022; Gregori et al. studied relationship between FPMS and fuzzy quasi-metrics [17] in 

2020.  

In 1986, Atanassov [18] defined intuitionistic fuzzy sets (IFS) by including the degree of 

uncertainty in addition to the degree of membership and non-membership in FL. In this type of 

logic, the degree of uncertainty is defined depending on the degree of membership and the degree 

of non-membership so that the sum of the degree of membership, degree of non-membership, and 

degree of uncertainty is 1. Thus, a new type of logic that can give more precise results than FL 

has emerged. Intuitionistic fuzzy logic is frequently used in areas where FL is insufficient. 

Recently, Ngan studied creating operators and functions based on IFSs [19] in 2024; Gerogiannis 

et al. obtained an approach for IFSs [20] in 2024; Rajafillah et al. defined intuitionistic fuzzy 

pooling [21] in 2024. 

In 2004, Park defined intuitionistic fuzzy metric spaces (IFMS) [22]. In this study, open 

balls, convergent sequence, Cauchy sequence, and complete space are defined for IFMS and given 

an FPT. Also, thanks to this metric space, the advantage of using IFSs is brought to the theory of 

metric spaces. While defining this metric space, the relationship between FL and intuitionistic FL 

was transferred to metric spaces. Thus, many researchers are working on IFMS [23-26]. Recently, 

Wong et al. studied complex-valued IFMS [27] in 2024; Singh et al. defined fuzzy differential 

equations based on IFMS [28] in 2024. 

In this paper, we define intuitionistic fuzzy partial metric spaces (IFPMS) for the first time 

and give their basic properties. These definitions and properties are obtained by considering the 

basic definitions and properties given for FPMS in the study [13] of Olgun et al. and in the study 

[22] of Park. The IFPMS defined in Section 3 have new properties different from the other 
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structures, but they also provide some basic properties of FMS, FPMS, and IFMS. For this reason, 

to make the definitions, properties, and results obtained in Section 3 more comprehensible and to 

easily show which definitions, properties, and results are given by making use of which 

definitions, properties, and results, the basic information in Section 2 is included. In Section 3, 

IFPMS are defined and some examples are given. It is also shown that every IFMS is also an 

IFPMS. It is also shown that one can obtain an IFPMS from every classical partial metric and 

every IFMS. For IFPMS, basic properties are given. Also, open balls, convergent sequence, 

Cauchy sequence, and complete space are defined for IFPMS. The basic properties of these 

structures are given. Thus, existence of IFPMS is proved for each classical, classical partial, and 

IFMS. In the last section, the conclusions of this study are given and suggestions are made to 

researchers about the structures that they can obtain by using this study. 

2. Preliminaries 

In this section, the basic definitions, examples, lemmas, and properties are given based on 

FS, IFS, FMS and IFMS. These basic contractures are used in Section 3. 

Definition 1. [2] Let E be a non-empty set. Fuzzy set K is denoted by  

K = {〈𝛾, 𝜇𝐾(𝛾)〉: 𝛾 ∈ 𝐸}. 

where 

𝜇𝐾: 𝐸 → [0,1] 

is the membership function of K. For example, 𝜇𝐾(𝛾) is the membership value of γ ∈ 𝐸. 

Definition 2. [18] Let E be a non-empty set. Intuitionistic fuzzy set L is denoted by 

L = {〈𝛾, 𝜇𝐿(𝛾), 𝜈𝐿(𝛾)〉: 𝛾 ∈ 𝐸}. 

where 

𝜇𝐿: 𝐸 → [0,1] 

 is the membership function of L and 

𝜈𝐿: 𝐸 → [0,1] 

is the non-membership function of L such that 

0 ≤ 𝜇𝐿(𝛾) + 𝜈𝐿(𝛾) ≤ 1. 
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Also, 𝜇𝐿(𝛾) and 𝜈𝐿(𝛾) are membership values of γ and non-membership values of γ; 

respectively. 

Definition 3. [29] Let ⊕ be a binary operation such that 

⊕: [0,1] × [0,1] → [0,1]. 

If the following properties are satisfied, then ⊕ is called a continuous t-norm (CTN).                                    

For 𝛾1, 𝛾2, 𝛾3, 𝛾4 ∈ [0,1], 

i. 𝛾1 ⊕ 1 = 𝛾1, 

ii. If 𝛾1 ≤ 𝛾2 and 𝛾3 ≤ 𝛾4, then 𝛾1 ⊕ 𝛾3 ≤ 𝛾2 ⊕ 𝛾4, 

iii. ⊕ is continuous, 

iv. ⊕ is commutative and associative. 

Definition 4. [29] Let ⊚ be a binary operation such that 

⊚: [0,1] × [0,1] → [0,1]. 

If the following properties are satisfied, then ⊚ is called a continuous t-conorm (CTCN). 

For 𝛾1, 𝛾2, 𝛾3, 𝛾4 ∈ [0,1], 

i. 𝛾1 ⊚ 0 = 𝛾1, 

ii. If 𝛾1 ≤ 𝛾2 and 𝛾3 ≤ 𝛾4, then 𝛾1 ⊚ 𝛾3 ≤ 𝛾2 ⊚ 𝛾4, 

iii. ⊚ is continuous, 

iv. ⊚ is commutative and associative. 

Definition 5. [13] Let 𝒳 be a non-empty set, ⊕ be a CTN and ℛ be FS on 𝒳2x(0, ∞). A 

3-tuple (𝒳, ℛ, ⊕) is said to be an FPMS if the following conditions are satisfied. For each 

𝛾1, 𝛾2, 𝛾3  ∈ 𝒳; ρ, 𝑝1, 𝑝2 > 0, 

i. 0 ≤ ℛ(𝛾1, 𝛾2, 𝜌) ≤ 1,            

ii. ℛ(𝛾1, 𝛾1, 𝜌) ≥ ℛ(𝛾1, 𝛾2, 𝜌), 

iii. ℛ(𝛾1, 𝛾2, 𝜌) = ℛ(𝛾2, 𝛾1, 𝜌), 

iv. ℛ(𝛾1, 𝛾2, 𝜌) = ℛ(𝛾1, 𝛾1, 𝜌) = ℛ(𝛾2, 𝛾2, 𝜌) if and only if 𝛾1 = 𝛾2, 

v. ℛ(𝛾1, 𝛾3, 𝑝1) ⊕ ℛ(𝛾3, 𝛾2, 𝑝2) ≤ ℛ(𝛾1, 𝛾3, 𝑝1 + 𝑝2) ⊕ ℛ(𝛾3, 𝛾3, 𝜌), ρ ≥ 𝑝1 and ρ ≥ 𝑝2, 

vi. ℛ(𝛾1, 𝛾2, . ): [0, ∞)  → [0,1] is continuous, 

The function ℛ(𝛾1, 𝛾2, 𝜌)  denotes the degrees of nearness, between 𝛾1 and 𝛾2 with respect to ρ. 
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Definition 6. [13] Each FPMS ℛ(𝛾1, 𝛾2, 𝜌) on 𝒳2x(0, ∞) generates a topology τ on 𝒳 with 

the family of open M-balls 

{𝐵𝑀(𝛾1, 𝜀): 𝛾1 ∈ 𝑋, 0 < 𝜀 < ℛ(𝛾1, 𝛾1, 𝑝1)} 

as a base, where for all 𝛾1 ∈ 𝒳, 

𝐵𝑀(𝛾1, 𝜀) = {𝛾2  ∈ 𝒳: ℛ(𝛾1, 𝛾2, 𝜌) ⊕ ℛ(𝛾11, 𝛾1, 𝑝1) > ℛ(𝛾11, 𝛾1, 𝑝1) −  𝜀, 𝑝1 ≥ ρ}. 

Definition 7. [13] A sequence {𝛾𝑛} in an FPMS ℛ(𝛾1, 𝛾2, 𝜌) converges to 𝛾1 ∈ 𝒳 with 

respect to T   if and only if 

lim
𝑛→∞

ℛ(𝛾1, 𝛾𝑛, 𝜌) =  ℛ(𝛾1, 𝛾1, 𝜌). 

Definition 8. [13] A sequence {𝛾𝑛} in an FPMS ℛ(𝛾1, 𝛾2, 𝜌) is called Cauchy if  

lim
𝑛,𝑚→∞

ℛ(𝛾𝑚, 𝛾𝑛, 𝜌) 

exists and finite.  

Lemma 1. [13] Let (𝒳, ℛ, ⊕) be an FPMS. Then,  

i. If ℛ(𝛾1, 𝛾2, 𝜌) = 1, then 𝛾1 = 𝛾2.  

ii. If 𝛾1 ≠ 𝛾2, then ℛ(𝛾1, 𝛾2, 𝜌) < 1. 

iii. If 𝛾𝑛 → 𝛾3 with ℛ(𝛾3, 𝛾3, 𝜌) =1, then lim
𝑛→∞

ℛ(𝛾2, 𝛾𝑛, 𝜌) =  ℛ(𝛾2, 𝛾3, 𝜌) for all 𝛾2 ∈ 𝒳. 

Definition 9. [22] Let 𝒳 be a non-empty set, ⊕ be a CTN, ⊚ be a CTCN and ℛ, 𝒮 be FS 

on 𝒳2x(0, ∞). A 5-tuple (𝒳, ℛ, 𝒮, ⊕, ⊚) is said to be an IFMS if the following conditions are 

satisfied.  For all 𝛾1, 𝛾2, 𝛾3 ∈ 𝒳; ρ, 𝑝1, 𝑝2> 0, 

i. 0 ≤ ℛ(𝛾1, 𝛾2, 𝜌) ≤ 1, 0 ≤ 𝒮(𝛾1, 𝛾2, 𝜌) ≤ 1 and 0 ≤ ℛ(𝛾1, 𝛾2, 𝜌) +  𝒮(𝛾1, 𝛾2, 𝜌) ≤ 1, 

ii. ℛ(𝛾1, 𝛾2, 𝜌) = 1 if and only if 𝛾1 = 𝛾2, 

iii. ℛ(𝛾1, 𝛾2, 𝜌) = ℛ(𝛾2, 𝛾1, 𝜌), 

iv. iv. ℛ(𝛾1, 𝛾2, 𝑝1) ⊕ ℛ(𝛾2, 𝛾3, 𝜌) ≤ ℛ(𝛾1, 𝛾3, 𝜌 + 𝑝1), 

v. ℛ(𝛾1, 𝛾2, . ): [0, ∞)  → [0,1] is continuous, 

vi. vi.  lim
𝜀→∞

ℛ(𝛾1, 𝛾2, 𝜌) = 1, 

vii. 𝒮(𝛾1, 𝛾2, 𝜌) = 0 if and only if 𝛾1 = 𝛾2, 

viii. 𝒮(𝛾1, 𝛾2, 𝜌) = 𝒮(𝛾2, 𝛾1, 𝜌), 

ix. 𝒮(𝛾1, 𝛾2, 𝑝1) ⊚ 𝒮(𝛾2, 𝛾3, 𝜌) ≥ 𝒮(𝛾1, 𝛾3, 𝜌 + 𝑝1), 
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The functions ℛ(𝛾1, 𝛾2, 𝜌) and 𝒮(𝛾1, 𝛾2, 𝜌) denote the degrees of nearness, the degrees of non-

nearness between 𝛾1 and 𝛾2 with respect to ρ; respectively. 

Example 1. [22] Let d be a metric such that d: 𝒳2 →[0, ∞), ℛ and 𝒮 be two functions on 

𝒳2x[0, ∞) such that  

ℛ(𝛾1, 𝛾2, 𝜌) = 
𝜌

𝜌+𝑑(𝛾1,𝛾2)
  and 𝒮(𝛾1, 𝛾2, 𝜌) = 

𝑑(𝛾1,𝛾2)

𝜌+𝑑(𝛾1,𝛾2)
. 

Also, if we take 𝛾1 ⊕ 𝛾2 = min{𝛾1, 𝛾2} and 𝛾1 ⊚ 𝛾2 = max{𝛾1, 𝛾2}. Thus, (𝒳, ℛ, 𝒮, ⊕, ⊚) 

satisfies the conditions of IFMS. 

Definition 10. [22] Let (𝒳, ℛ, 𝒮, ⊕, ⊚) be an IFMS and 0 < r < 1, ρ > 0 and 𝛾1 ∈ 𝒳. The 

set  

B(𝛾1, r, ρ) = { 𝛾2 ∈ 𝒳: ℛ(𝛾1, 𝛾2, 𝜌) > 1 − 𝑟, 𝒮(𝛾1, 𝛾2, 𝜌) < 𝑟 } 

is called the open ball with center 𝛾1 and radius r with respect to ρ.  

Remark 1. [22] Let (𝒳, ℛ, 𝒮, ⊕, ⊚) be an IFMS. Define  

           τ(ℛ, 𝒮) = {A ⊂ 𝒳: for each 𝛾1 ∈ 𝐴, there exists ρ > 0 and 0 < r < 1 such that B(𝛾1, r, 

ρ)⊂A}. 

Then, τ(ℛ, 𝒮) is a topology on 𝒳.  

Lemma 2. [22] Let (𝒳, ℛ, 𝒮, ⊕, ⊚) be an IFMS. Then, ℛ(𝛾1, 𝛾2, . ) is non-decreasing and 

𝒮(𝛾1, 𝛾2, . ) is non-increasing for all 𝛾1, 𝛾2 ∈ 𝒳. 

Theorem 1. [22] Let (𝒳, ℛ, 𝒮, ⊕, ⊚) be an IFMS. Every open ball B(𝛾2, 𝑟, 𝜌) in this space 

is an open set. 

Theorem 2. [22] Let (𝒳, ℛ, 𝒮, ⊕, ⊚) be an IFMS and τ(ℛ, 𝒮) be a topology on 𝒳 induced 

by the (𝒳, ℛ, 𝒮, ⊕, ⊚). Then for a sequence {𝛾𝑛} in (𝒳, ℛ, 𝒮, ⊕, ⊚), 

𝛾𝑛 → 𝛾1 

if and only if 

lim
𝑛→∞

ℛ(𝛾1, 𝛾𝑛, 𝜌) =  1 and lim
𝑛→∞

𝒮(𝛾1, 𝛾𝑛, 𝜌) =  0. 
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Definition 11. [22]  Let (𝒳, ℛ, 𝒮, ⊕, ⊚) be an IFMS and τ(ℛ, 𝒮) be a topology on 𝒳 

induced by the (𝒳, ℛ, 𝒮, ⊕, ⊚). Then a sequence {𝛾𝑛} in (𝒳, ℛ, 𝒮, ⊕, ⊚) is said to be a Cauchy 

sequence with respect to τ(ℛ, 𝒮) if for ρ > 0, r ∈ (0, 1), there exists 𝑛0 ∈ ℕ, n, m > 𝑛0 such that 

ℛ(𝛾𝑚, 𝛾𝑛, 𝜌) ⊕ ℛ(𝛾𝑚, 𝛾𝑚, 𝜌) > 1 − 𝑟 

and   

𝒮(𝛾𝑚, 𝛾𝑛, 𝜌) ⊚ 𝒮(𝛾𝑚, 𝛾𝑚, 𝜌)  < 𝑟. 

3. Results  

In this section, IFPMS are defined and their basic properties and examples are given. For 

IFPMS, open ball, convergent sequence, and Cauchy sequence are defined and their basic 

properties are achieved using the basic definitions and basic properties in Section 2. Furthermore, 

the relations between IFPMS and classical metric spaces, FMSs, FPMS, and IFMS are analyzed. 

Definition 12. Let 𝒳 be a non-empty set, ⊕ be a CTN, ⊚ be a CTCN, ℛ and 𝒮 be FSs on 

𝒳2x(0, ∞). A 5-tuple (𝒳, ℛ, 𝒮, ⊕, ⊚) is said to be an IFPMS if the following conditions are 

satisfied. For all 𝛾1, 𝛾2, 𝛾3 ∈ 𝒳; ρ, 𝑝1, 𝑝2> 0, 

i. 0 ≤ ℛ(𝛾1, 𝛾2, 𝜌) ≤ 1, 0 ≤ 𝒮(𝛾1, 𝛾2, 𝜌) ≤ 1  and  0 ≤ ℛ(𝛾1, 𝛾2, 𝜌) +  𝒮(𝛾1, 𝛾2, 𝜌) ≤ 1, 

ii. ℛ(𝛾1, 𝛾1, 𝜌) ≥ ℛ(𝛾1, 𝛾2, 𝜌), 

iii. ℛ(𝛾1, 𝛾2, 𝜌) = ℛ(𝛾2, 𝛾1, 𝜌), 

iv. ℛ(𝛾1, 𝛾2, 𝜌) = ℛ(𝛾1, 𝛾1, 𝜌) = ℛ(𝛾2, 𝛾2, 𝜌) if and only if 𝛾1 = 𝛾2, 

v. ℛ(𝛾1, 𝛾3, 𝑝1) ⊕ ℛ(𝛾3, 𝛾2, 𝑝2) ≤ ℛ(𝛾1, 𝛾3, 𝑝1 + 𝑝2) ⊕ ℛ(𝛾3, 𝛾3, 𝜌), ρ ≥ 𝑝1 and ρ ≥ 𝑝2, 

vi. ℛ(𝛾1, 𝛾2, . ): [0, ∞)  → [0,1] is continuous, 

vii. lim
𝜌→∞

ℛ(𝛾1, 𝛾1, 𝜌) = 1, 

viii. 𝒮(𝛾1, 𝛾1, 𝜌) ≤ 𝒮(𝛾1, 𝛾2, 𝜌), 

ix. 𝒮(𝛾1, 𝛾2, 𝜌) = 𝒮(𝛾2, 𝛾1, 𝜌), 

x. 𝒮(𝛾1, 𝛾2, 𝜌) = 𝒮(𝛾1, 𝛾1, 𝜌) = 𝒮(𝛾2, 𝛾2, 𝜌) if and only if 𝛾1 = 𝛾2, 

xi. 𝒮(𝛾1, 𝛾3, 𝑝1) ⊚ 𝒮(𝛾3, 𝛾2, 𝑝2) ≥ 𝒮(𝛾1, 𝛾3, 𝑝1 + 𝑝2) ⊚ 𝒮(𝛾3, 𝛾3, 𝜌), ρ ≥ 𝑝1 and ρ ≥ 𝑝2, 

xii. 𝒮(𝛾1, 𝛾2, . ): [0, ∞)  → [0,1] is continuous, 

xiii. lim
𝜌→∞

𝒮(𝛾1, 𝛾1, 𝜌) = 0, 

The functions ℛ(𝛾1, 𝛾2, 𝜌) and 𝒮(𝛾1, 𝛾2, 𝜌) denote the degrees of nearness, the degrees of non-

nearness between 𝛾1 and 𝛾2 with respect to ρ, respectively. 
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Example 2. Let p be a partial metric such that p: 𝒳2→[0, ∞), ℛ and 𝒮 be two functions on 

X2x[0, ∞) such that  

ℛ(𝛾1, 𝛾2, 𝜌) = 
𝜌

𝜌+𝑝(𝛾1,𝛾2)
  and 𝒮(𝛾1, 𝛾2, 𝜌) = 

𝑝(𝛾1,𝛾2)

𝜌+𝑝(𝛾1,𝛾2)
. 

Also, we take a⊕b = min{𝛾1, 𝛾2} and a⊚b = max{𝛾1, 𝛾2}. Thus, (𝒳, ℛ, 𝒮, ⊕, ⊚) satisfies the 

conditions of IFPMS. 

Corollary 1. In Example 2, if we take for all 𝛾1, 𝛾2 ∈ 𝒳, 

ℛ(𝛾1, 𝛾2, 𝜌) = 1 and 𝒮(𝛾1, 𝛾2, 𝜌) = 0. 

then, (𝒳, ℛ, 𝒮, ⊕, ⊚) satisfies the conditions of IFMS. Thus, from Definition 13 and    Definition 

9, every IFMS is also an IFPMS.  

Corollary 2. From Example 2, we can obtain an IFPMS from every partial metric space.  

Example 3. In Example 1, if we take for all 𝑝1 ∈ [0, ∞), 

ℛ(𝛾1, 𝛾2, 𝜌) = 
𝜌+𝑝1

𝜌+𝑝1+𝑑(𝛾1,𝛾2)
  and 𝒮(𝛾1, 𝛾2, 𝜌) = 

𝑑(𝛾1,𝛾2)

𝜌+𝑝1+𝑑(𝛾1,𝛾2)
 

instead of   

ℛ(𝛾1, 𝛾2, 𝜌) = 
𝜌

𝜌+𝑑(𝛾1,𝛾2)
  and 𝒮(𝛾1, 𝛾2, 𝜌) = 

𝑑(𝛾1,𝛾2)

𝑡+𝑑(𝛾1,𝛾2)
 

then, (𝒳, ℛ, 𝒮, ⊕, ⊚) satisfies the conditions of IFPMS. 

Corollary 3. From Example 3, we can obtain an IFPMS from every IFMS.  

Definition 13. Let (𝒳, ℛ, 𝒮, ⊕, ⊚) be an IFPMS and 

0 ≤  𝒮(𝛾1, 𝛾1, 𝜌) < r < ℛ(𝛾1, 𝛾1, 𝜌), 𝑝1 ≥ 𝜌 > 0 and 𝛾1 ∈ 𝒳. 

The set  

B(𝛾1, 𝛾2, 𝜌) = {𝛾1 ∈ 𝒳: ℛ(𝛾1, 𝛾2, 𝜌) ⊕ ℛ(𝛾1, 𝛾1, 𝜌) > ℛ(𝛾1, 𝛾1, 𝜌) − 𝑟,                                         

𝒮(𝛾1, 𝛾2, 𝜌)  ⊚ 𝒮(𝛾1, 𝛾1, 𝜌)  < 𝒮(𝛾1, 𝛾1, 𝜌) +  𝑟} 

is called the open ball with center 𝛾2 and radius r with respect to ρ.  

Corollary 4: In Definition 13, if we take for all 𝛾1, 𝛾2 ∈ 𝒳, 

ℛ(𝛾1, 𝛾2, 𝜌) = 1 and 𝒮(𝛾1, 𝛾2, 𝜌) = 0 
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then, (𝒳, ℛ, 𝒮, ⊕, ⊚) satisfies the conditions in Definition 10 for IFMS. 

Remark 2. Let (𝒳, ℛ, 𝒮, ⊕, ⊚) be an IFPMS. Define  

τ(ℛ, 𝒮) = {A ⊂ 𝒳: for each 𝛾1 ∈ 𝐴, there exists ρ > 0 and 

0 ≤  𝒮(𝛾1, 𝛾1, 𝜌) < r < ℛ(𝛾1, 𝛾1, 𝜌) such that B(𝛾1, 𝛾2, 𝜌) ⊂A}. 

Then, τ(ℛ, 𝒮) is a topology on 𝒳.  

Lemma 3. Let (𝒳, ℛ, 𝒮, ⊕, ⊚) be an IFPMS. Then, ℛ(𝛾1, 𝛾2, . ) is non-decreasing and 

𝒮(𝛾1, 𝛾2, . ) is non-increasing for all 𝛾1, 𝛾2 ∈ 𝒳. 

Proof.  

Assume that ℛ is strictly decreasing. Then, 

ℛ(𝛾1, 𝛾2, 𝑝1) < ℛ(𝛾1, 𝛾2, 𝑝2) for 0 < 𝑝2 < 𝑝1 and ℛ(𝛾2, 𝛾2, 𝑝1) < ℛ(𝛾2, 𝛾2, 𝑝1 − 𝑝2).     (1) 

From Definition 12, we get 

ℛ(𝛾1, 𝛾2, 𝑝1) ⊕  ℛ(𝛾2, 𝛾2, 𝑝1) ≥ ℛ(𝛾1, 𝛾2, 𝑝2) ⊕  ℛ(𝛾2, 𝛾2, 𝑝1 − 𝑝2).                            (2) 

From Definition 3 and (1), we have 

ℛ(𝛾1, 𝛾2, 𝑝1) ⊕  ℛ(𝛾2, 𝛾2, 𝑝1) ≤ ℛ(𝛾2, 𝛾2, 𝑝2) ⊕  ℛ(𝛾2, 𝛾2, 𝑝1 − 𝑝2).                            (3) 

where there is a contradiction because of (1), (2), and (3). 

Hence, ℛ(𝛾1, 𝛾2, . ) is non-decreasing. 

Assume that 𝒮 is strictly increasing. Then  

 𝒮(𝛾1, 𝛾2, 𝑝1) > 𝒮(𝛾1, 𝛾2, 𝑝2) for 0 < 𝑝2 < 𝑝1 and 𝒮(𝛾2, 𝛾2, 𝑝1) > 𝒮(𝛾2, 𝛾2, 𝑝1 − 𝑝2).       (4)                                         

From Definition 12, we obtain 

𝒮(𝛾1, 𝛾2, 𝑝1) ⊚  𝒮(𝛾2, 𝛾2, 𝑝1) ≤ 𝒮(𝛾1, 𝛾2, 𝑝2) ⊚  𝒮(𝛾2, 𝛾2, 𝑝1 − 𝑝2).                               (5) 

From Definition 4 and (5), we obtain 

𝒮(𝛾1, 𝛾2, 𝑝1) ⊚  𝒮(𝛾2, 𝛾2, 𝑝1) ≥ 𝒮(𝛾1, 𝛾2, 𝑝2) ⊚  (𝛾2, 𝛾2, 𝑝1 − 𝑝2).                                 (6) 

where there is a contradiction because of (4), (5), and (6). 
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Hence, 𝒮(𝛾1, 𝛾2, . ) is non-increasing. 

Theorem 3. Let (𝒳, ℛ, 𝒮, ⊕, ⊚) be an IFPMS. Every open ball B(𝛾2, 𝑟, 𝜌) in this space 

is an open set. 

Proof. We assume that  

𝛾1 ∈ B(𝛾2, 𝑟, 𝜌). 

Since B(𝛾2, 𝑟, 𝜌) is an open ball in (𝒳, ℛ, 𝒮, ⊕, ⊚), then 

ℛ(𝛾1, 𝛾2, 𝜌) ⊕ ℛ(𝛾1, 𝛾1, 𝜌1) > ℛ(𝛾1, 𝛾1, 𝜌1) − 𝑟 

 and  

 𝒮(𝛾1, 𝛾2, 𝜌) ⊚ 𝒮(𝛾1, 𝛾1, 𝜌1)  < 𝒮(𝛾1, 𝛾1, 𝜌1) + 𝑟 

for 𝜌1 ≥ 𝜌 > 0. From Lemma 3, since ℛ(𝛾1, 𝛾2, . ) is non-decreasing, 𝒮(𝛾1, 𝛾2, . ) is non-

increasing, there exists 𝜌2 ∈ (0, ρ) such that 

ℛ(𝛾1, 𝛾2, 𝜌2) ⊕ ℛ(𝛾1, 𝛾1, 𝜌1) > ℛ(𝛾1, 𝛾1, 𝜌1) − 𝑟  

and  

𝒮(𝛾1, 𝛾2, 𝜌2) ⊚ 𝒮(𝛾1, 𝛾1, 𝜌1)  < 𝒮(𝛾1, 𝛾1, 𝜌1) + 𝑟. 

We assume that 𝑟1 = ℛ(𝛾1, 𝛾2, 𝜌2) ⊕ ℛ(𝛾1, 𝛾1, 𝜌1). Since 𝑟1 > ℛ(𝛾1, 𝛾1, 𝜌1) − 𝑟, there exist 𝑟2 ∈ 

(0, 1) such that 

𝑟1 > ℛ(𝛾1, 𝛾1, 𝜌1) − 𝑟2 > ℛ(𝛾1, 𝛾1, 𝜌1) − 𝑟. 

Thus, there exist 𝑟3, 𝑟4 ∈ (0, 1) such that 

𝑟1 ⊕ 𝑟3 > ℛ(𝛾1, 𝛾1, 𝜌1) − 𝑟2 and (𝒮(𝛾1, 𝛾1, 𝜌1) − 𝑟1)⊚(𝒮(𝛾1, 𝛾1, 𝜌1) − 𝑟4) ≤ 𝑟2. 

We assume that 𝑟5 = max{𝑟3, 𝑟4} and B(𝛾1, ℛ(𝛾1, 𝛾1, 𝜌1) − 𝑟5, 𝜌 − 𝜌2) is an open ball. We claim 

that 

B(𝛾1, ℛ(𝛾1, 𝛾1, 𝜌1) − 𝑟5, 𝜌 − 𝜌2) ⊂ B(γ, 𝑟, 𝜌). 

We assume that 𝛾3 ∈ B(𝛾1, ℛ(𝛾1, 𝛾1, 𝜌1) − 𝑟5, 𝜌 − 𝜌2). Hence, we obtain 

ℛ(𝛾3, 𝛾2, 𝜌 − 𝜌2)>𝑟5 and 𝒮(𝛾3, 𝛾2, 𝜌2)<2ℛ(𝛾1, 𝛾1, 𝜌 − 𝜌2) − 𝑟5. 
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Thus, we get 

ℛ(𝛾3, 𝛾2, 𝜌) ⊕ ℛ(𝛾1, 𝛾1, 𝜌1) ≥  ℛ(𝛾3, 𝛾1, 𝜌2) ⊕ ℛ(𝛾1, 𝛾2, 𝜌 − 𝜌2) 

                                                          ≥ 𝑟1 ⊕ 𝑟5 

                                                          ≥ 𝑟1 ⊕ 𝑟3 

                                                          ≥ ℛ(𝛾1, 𝛾1, 𝜌1) − 𝑟2 

                                                          > ℛ(𝛾1, 𝛾1, 𝜌1) − 𝑟 

and 

𝒮(𝛾3, 𝛾2, 𝜌) ⊚ 𝒮(𝛾1, 𝛾1, 𝜌1) ≤  𝒮(𝛾3, 𝛾1, 𝜌2) ⊚ 𝒮(𝛾1, 𝛾2, 𝜌 − 𝜌2) 

                                              ≤ (𝒮(𝛾1, 𝛾1, 𝜌1) − 𝑟1) ⊚ (𝒮(𝛾1, 𝛾1, 𝜌1) − 𝑟5) 

                                              ≤ (𝒮(𝛾1, 𝛾1, 𝜌1) − 𝑟1) ⊚ (𝒮(𝛾1, 𝛾1, 𝜌1) − 𝑟4) 

                    ≤ 𝑟2 

                    < 𝑟 

                    < 𝒮(𝛾1, 𝛾1, 𝜌1)+r. 

Therefore, we obtain 

𝛾3 ∈ B(𝛾2, 𝑟, 𝜌). 

Hence, we get 

B(𝛾1, ℛ(𝛾1, 𝛾1, 𝜌1) − 𝑟5, 𝜌 − 𝜌2) ⊂ B(γ, 𝑟, 𝜌). 

Corollary 5. Let (𝒳, ℛ, 𝒮, ⊕, ⊚)  be an IFPMS. The set  

τ(ℛ, 𝒮) = {A ⊂ 𝒳: for each 𝛾1 ∈ 𝐴, there exists ρ > 0 and 0 ≤  𝒮(𝛾1, 𝛾1, 𝜌) < r <ℛ(𝛾1, 𝛾1, 𝜌)  

such that B(𝛾2, 𝑟, 𝜌) ⊂A}. 

is a topology on 𝒳.  

Theorem 4. Let (𝒳, ℛ, 𝒮, ⊕, ⊚) be an IFPMS and τ(ℛ, 𝒮) be a topology on 𝒳 induced 

by the (𝒳, ℛ, 𝒮, ⊕, ⊚). Then for a sequence {𝛾𝑛} in (𝒳, ℛ, 𝒮, ⊕, ⊚), 
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𝛾𝑛 → 𝛾1 

if and only if 

lim
𝑛→∞

ℛ(𝛾1, 𝛾𝑛, 𝜌) =  ℛ(𝛾1, 𝛾1, 𝜌) and lim
𝑛→∞

𝒮(𝛾1, 𝛾𝑛, 𝜌) =  𝒮(𝛾1, 𝛾1, 𝜌). 

Proof. We assume that for ρ > 0, 

𝛾𝑛 → 𝛾1. 

Then for r ∈ (0, 1), there exists 𝑛0 ∈ ℕ, n > 𝑛0 such that  

𝛾𝑛 ∈ B(𝛾1, 𝑟, 𝜌). 

Hence, we get 

ℛ(𝛾1, 𝛾𝑛, 𝜌) ⊕ ℛ(𝛾1, 𝛾1, 𝜌) > ℛ(𝛾1, 𝛾1, 𝜌) − 𝑟 

and   

𝒮(𝛾1, 𝛾𝑛, 𝜌) ⊚ 𝒮(𝛾1, 𝛾1, 𝜌)  < 𝒮(𝛾1, 𝛾1, 𝜌) + 𝑟. 

Thus, we obtain 

ℛ(𝛾1, 𝛾1, 𝜌) −  ℛ(𝛾1, 𝛾𝑛, 𝜌) ⊕ ℛ(𝛾1, 𝛾1, 𝜌) < 𝑟 

and 

𝒮(𝛾1, 𝛾𝑛, 𝜌) ⊚ 𝒮(𝛾1, 𝛾1, 𝜌) − 𝒮(𝛾1, 𝛾1, 𝜌) < 𝑟. 

From Definition 12, clearly 

ℛ(𝛾1, 𝛾𝑛, 𝜌) ≤ ℛ(𝛾1, 𝛾1, 𝜌) ≤ 1 

and from Definition 12, clearly  

ℛ(𝛾1, 𝛾𝑛, 𝜌) ⊕ ℛ(𝛾1, 𝛾1, 𝜌) ≤  ℛ(𝛾1, 𝛾1, 𝜌). 

Hence, we have  

ℛ(𝛾1, 𝛾1, 𝜌) −  ℛ(𝛾1, 𝛾𝑛, 𝜌) ⊕ ℛ(𝛾1, 𝛾1, 𝜌) < ℛ(𝛾1, 𝛾1, 𝜌) −  ℛ(𝛾1, 𝛾𝑛, 𝜌) < 𝑟. 

Since 𝛾𝑛 → 𝛾1, we obtain 

ℛ(𝛾1, 𝛾1, 𝜌) −  ℛ(𝛾1, 𝛾𝑛, 𝜌) = 0. 
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Hence, 

ℛ(𝛾1, 𝛾1, 𝜌) →  ℛ(𝛾1, 𝛾𝑛, 𝜌). 

From Definition 12, clearly 

𝒮(𝛾1, 𝛾𝑛, 𝜌) ≤  𝒮(𝛾1, 𝛾𝑛, 𝜌), 

0≤ (𝛾1, 𝛾1, 𝜌), 

and from Definition 12, clearly 

𝒮(𝛾1, 𝛾𝑛, 𝜌) ≤ 𝒮(𝛾1, 𝛾𝑛, 𝜌) ⊚ 𝒮(𝛾1, 𝛾1, 𝜌). 

Hence, we have   

𝒮(𝛾1, 𝛾𝑛, 𝜌) ⊚ 𝒮(𝛾1, 𝛾1, 𝜌) − 𝒮(𝛾1, 𝛾1, 𝜌) <  𝒮(𝛾1, 𝛾𝑛, 𝜌) − 𝒮(𝛾1, 𝛾1, 𝜌) < 𝑟. 

Since 𝛾𝑛 → 𝛾1, we obtain 

𝒮(𝛾1, 𝛾𝑛, 𝜌) − 𝒮(𝛾1, 𝛾1, 𝜌) = 0. 

Hence,  

𝒮(𝛾1, 𝛾𝑛, 𝜌) → 𝒮(𝛾1, 𝛾1, 𝜌). 

Conversely, we assume that  

lim
𝑛→∞

ℛ(𝛾1, 𝛾𝑛, 𝜌) =  ℛ(𝛾1, 𝛾1, 𝜌),  lim
𝑛→∞

𝒮(𝛾1, 𝛾𝑛, 𝜌) =  𝒮(𝛾1, 𝛾1, 𝜌) 

and  

lim
𝑛→∞

ℋ(𝛾1, 𝛾𝑛, 𝜌) =  ℋ(𝛾1, 𝛾1, 𝜌). 

Thus, for r ∈ (0, 1), there exists there exists 𝑛0 ∈ ℕ, n > 𝑛0 such that 

ℛ(𝛾1, 𝛾1, 𝜌) −  ℛ(𝛾1, 𝛾𝑛, 𝜌) < 𝑟 and <  𝒮(𝛾1, 𝛾𝑛, 𝜌) − 𝒮(𝛾1, 𝛾1, 𝜌) < 𝑟. 

Since 

ℛ(𝛾1, 𝛾𝑛, 𝜌) ⊕ ℛ(𝛾1, 𝛾1, 𝜌) ≤  ℛ(𝛾1, 𝛾1, 𝜌) and (𝛾1, 𝛾𝑛, 𝜌) ≤ 𝒮(𝛾1, 𝛾𝑛, 𝜌) ⊚ 𝒮(𝛾1, 𝛾1, 𝜌), 

we obtain  

ℛ(𝛾1, 𝛾1, 𝜌) −  ℛ(𝛾1, 𝛾𝑛, 𝜌) ⊕ ℛ(𝛾1, 𝛾1, 𝜌) < 𝑟  
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and  

𝒮(𝛾1, 𝛾𝑛, 𝜌) ⊚ 𝒮(𝛾1, 𝛾1, 𝜌) − 𝒮(𝛾1, 𝛾1, 𝜌) < 𝑟. 

Thus, from Definition 13, we get  

𝛾𝑛 ∈ B(𝛾1, 𝑟, 𝜌) and 𝛾𝑛 → 𝛾1. 

Lemma 4. Let (𝒳, ℛ, 𝒮, ⊕, ⊚) be an IFPMS. Then, 

i. If ℛ(𝛾1, 𝛾2, 𝜌) = 1 and 𝒮(𝛾1, 𝛾2, 𝜌) = 0, then 𝛾1 = 𝛾2. 

ii. If  𝛾1 ≠  𝛾2, then ℛ(𝛾1, 𝛾2, 𝜌) <1 and 𝒮(𝛾1, 𝛾2, 𝜌) > 0 

iii. If 𝛾𝑛 → 𝛾3 with ℛ(𝛾3, 𝛾3, 𝜌) = 1 and 𝒮(𝛾3, 𝛾3, 𝜌) = 0, then 

lim
𝑛→∞

ℛ(𝛾𝑛, 𝛾2, 𝜌) =  ℛ(𝛾3, 𝛾2, 𝜌) and lim
𝑛→∞

𝒮(𝛾𝑛, 𝛾2, 𝜌) =  𝒮(𝛾3, 𝛾2, 𝜌) 

for all 𝛾2 ∈ 𝒳. 

Proof. 

i) From Definition 12, clearly, 

ℛ(𝛾1, 𝛾2, 𝜌) ≤1, ℛ(𝛾1, 𝛾1, 𝜌) ≥ ℛ(𝛾1, 𝛾2, 𝜌)  and ℛ(𝛾2, 𝛾2, 𝜌) ≥ ℛ(𝛾1, 𝛾2, 𝜌). 

If  ℛ(𝛾1, 𝛾2, 𝜌) = 1, then 

ℛ(𝛾1, 𝛾1, 𝜌) ≥ ℛ(𝛾1, 𝛾2, 𝜌) = 1. 

Hence, we get 

ℛ(𝛾1, 𝛾1, 𝜌) = 1. 

Similarly, 

 If  ℛ(𝛾1, 𝛾2, 𝜌)  = 1, then 

ℛ(𝛾2, 𝛾2, 𝜌) ≥ ℛ(𝛾1, 𝛾2, 𝜌) = 1. 

Thus, we obtain 

ℛ(𝛾2, 𝛾2, 𝜌) = 1.  

Therefore, 

ℛ(𝛾1, 𝛾2, 𝜌) = ℛ(𝛾1, 𝛾1, 𝜌) = ℛ(𝛾2, 𝛾2, 𝜌) = 1. 



Kargın (2025) ADYU J SCI, 15(1), 77-97 
 

 92 

From Definition 12, we obtain 

𝛾1 = 𝛾2. 

Similarly, we get 

0 ≤ 𝒮(𝛾1, 𝛾2, 𝜌), 𝒮(𝛾2, 𝛾2, 𝜌) ≤ 𝒮(𝛾1, 𝛾2, 𝜌) and 𝒮(𝛾1, 𝛾1, 𝜌) ≤ 𝒮(𝛾1, 𝛾2, 𝜌). 

If  𝒮(𝛾1, 𝛾2, 𝜌) = 0, then 

𝒮(𝛾1, 𝛾1, 𝜌) ≤ 𝒮(𝛾1, 𝛾2, 𝜌) = 0. 

Thus, 

𝒮(𝛾1, 𝛾1, 𝜌) = 0. 

If  𝒮(𝛾1, 𝛾2, 𝜌) = 0, then  

𝒮(𝛾2, 𝛾2, 𝜌) ≤ 𝒮(𝛾1, 𝛾2, 𝜌) = 0. 

Thus, 

𝒮(𝛾2, 𝛾2, 𝜌) = 0. 

Therefore, 

𝒮(𝛾1, 𝛾2, 𝜌) = 𝒮(𝛾1, 𝛾1, 𝜌) = 𝒮(𝛾2, 𝛾2, 𝜌) = 0. 

From Definition 12, we obtain  

𝛾1 = 𝛾2. 

ii) Let 𝛾1 ≠ 𝛾2. We assume that 

ℛ(𝛾1, 𝛾2, 𝜌) ≥1 and 𝒮(𝛾1, 𝛾2, 𝜌) ≤ 0. 

 Thus, From Definition 12, 

ℛ(𝛾1, 𝛾2, 𝜌) =1 and 𝒮(𝛾1, 𝛾2, 𝜌) = 0                                                                                 (7) 

since ℛ(𝛾1, 𝛾2, 𝜌), 𝒮(𝛾1, 𝛾2, 𝜌) ∈ [0, 1]. 

From (7) and i), we obtain 𝛾1 = 𝛾2.                                                                                                                             (8) 

where there is a contradiction because of (7) and (8). 
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Hence, 

ℛ(𝛾1, 𝛾2, 𝜌) <1 and 𝒮(𝛾1, 𝛾2, 𝜌) > 0. 

iii) From Theorem 4, if 𝛾𝑛 → 𝛾3, then 

lim
𝑛→∞

ℛ(𝛾3, 𝛾𝑛, 𝜌) =  ℛ(𝛾3, 𝛾3, 𝜌) and lim
𝑛→∞

𝒮(𝛾3, 𝛾𝑛, 𝜌) =  𝒮(𝛾3, 𝛾3, 𝜌). 

 Thus, since  

ℛ(𝛾3, 𝛾3, 𝜌) = 1 and 𝒮(𝛾3, 𝛾3, 𝜌) = 0, 

we obtain  

lim
𝑛→∞

ℛ(𝛾3, 𝛾𝑛, 𝜌) = 1 and lim
𝑛→∞

𝒮(𝛾3, 𝛾𝑛, 𝜌) = 0.                                                               (9) 

From Definition 12, we obtain 

ℛ(𝛾𝑛, 𝛾3, 𝜌) ⊕ ℛ(𝛾3, 𝛾𝑛, 𝜌) ≤ ℛ(𝛾𝑛, 𝛾𝑛, 2𝜌) ⊕ ℛ(𝛾3, 𝛾3, 𝜌).                                        (10) 

Also, from (9) and (10), it is held that 

1 ⊕ 1 ≤ ℛ(𝛾𝑛, 𝛾𝑛, 2𝜌) ⊕ 1. 

From Definition 3, clearly 

ℛ(𝛾𝑛, 𝛾𝑛, 2𝜌) = 1.                                                                                                            (11) 

Also, from Definition 12 and for 𝑝1 − 𝜌 ≤ 𝜌 and 0 <ρ < 𝑝1, we have 

ℛ(𝛾2, 𝛾3, 𝑝1 − 𝜌) ⊕ ℛ(𝛾3, 𝛾𝑛, 𝜌) ≤ ℛ(𝛾2, 𝛾𝑛, 𝜌) ⊕  ℛ(𝛾3, 𝛾3, 𝜌) 

and 

ℛ(𝛾2, 𝛾𝑛, 𝜌) ⊕ ℛ(𝛾𝑛, 𝛾3, 𝜌) ≤ ℛ(𝛾2, 𝛾3, 2𝜌) ⊕  ℛ(𝛾𝑛, 𝛾𝑛, 2𝜌).                                     (12) 

From (9), (11) and (12), we obtain 

ℛ(𝛾2, 𝛾3, 𝑝1 − 𝜌) ≤ ℛ(𝛾2, 𝛾𝑛, 𝜌) 

and 

ℛ(𝛾2, 𝛾𝑛, 𝜌) ≤ ℛ(𝛾2, 𝛾3, 2𝜌)                                                                                           (13) 

since  ℛ(𝛾1, 𝛾2, . ): [0, ∞)  → [0,1] is continuous. From (13), we obtain 
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ℛ(𝛾3, 𝛾2, 𝜌) ≤ lim
𝑛→∞

ℛ(𝛾𝑛, 𝛾2, 𝜌) 

and 

lim
𝑛→∞

ℛ(𝛾𝑛, 𝛾2, 𝜌) ≤ ℛ(𝛾3, 𝛾2, 𝜌). 

Hence, we get 

lim
𝑛→∞

ℛ(𝛾𝑛, 𝛾2, 𝜌) =  ℛ(𝛾3, 𝛾2, 𝜌). 

Also, similarly, we have 

lim
𝑛→∞

𝒮(𝛾𝑛, 𝛾2, 𝜌) =  𝒮(𝛾3, 𝛾2, 𝜌) 

for all 𝛾2 ∈ 𝒳.           

Corollary 6. In Lemma 4, if we take for all 𝛾1, 𝛾2 ∈ 𝒳, 

ℛ(𝛾1, 𝛾2, 𝜌) = 1 and 𝒮(𝛾1, 𝛾2, 𝜌) = 0 

then, (𝒳, ℛ, 𝒮, ⊕, ⊚) satisfies the conditions for IFMS.                                                            

Definition 14. Let (𝒳, ℛ, 𝒮, ⊕, ⊚) be an IFPMS and 𝜏(ℛ, 𝒮) be a topology on 𝒳 induced 

by the (𝒳, ℛ, 𝒮, ⊕, ⊚). 

a) Then a sequence {𝛾𝑛} in (𝒳, ℛ, 𝒮, ⊕, ⊚) is said to be a Cauchy sequence with respect to τ(ℛ, 

𝒮) if for ρ > 0, r ∈ (0, 1), there exists 𝑛0 ∈ ℕ; n, m > 𝑛0 such that 

ℛ(𝛾𝑚, 𝛾𝑛, 𝜌) ⊕ ℛ(𝛾𝑚, 𝛾𝑚, 𝜌) > ℛ(𝛾𝑚, 𝛾𝑚, 𝜌) − 𝑟 

and   

𝒮(𝛾𝑚, 𝛾𝑛, 𝜌) ⊚ 𝒮(𝛾𝑚, 𝛾𝑚, 𝜌)  < 𝒮(𝛾𝑚, 𝛾𝑚, 𝜌) + 𝑟. 

b) (𝒳, ℛ, 𝒮, ⊕, ⊚) is called complete if every Cauchy sequence is convergent in this space.  

Corollary 7. Let (𝒳, ℛ, 𝒮, ⊕, ⊚) be an IFPMS and τ(ℛ, 𝒮) be a topology on 𝒳 induced 

by the (𝒳, ℛ, 𝒮, ⊕, ⊚). Then a sequence {𝛾𝑛} in (𝒳, ℛ, 𝒮, ⊕, ⊚) is said to be a Cauchy with 

respect to τ(ℛ, 𝒮) if  

lim
𝑛,𝑚→∞

ℛ(𝛾𝑚, 𝛾𝑛, 𝜌) and lim
𝑛,𝑚→∞

𝒮(𝛾𝑚, 𝛾𝑛, 𝜌) 

exists and finite. 
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4. Conclusion 

In this paper, IFPMS are defined and their basic properties and examples are achieved. For 

IFPMS, open ball, convergent sequence, and Cauchy sequence are defined and their basic 

properties are obtained. Furthermore, the relations between IFPMS and classical metric spaces, 

FMSs, FPMS, and IFMS are analyzed.  

Thanks to this paper, researchers can define some partial metric spaces based on IFS. For 

example, researchers can define intuitionistic fuzzy partial G-metric spaces, intuitionistic fuzzy 

partial m-metric spaces, and intuitionistic fuzzy partial b-metric spaces. Also, Researchers can 

introduce new fixed point theories for these new types of metrics. Furthermore, researchers can 

define intuitionistic fuzzy partial normed space and neutrosophic partial metric space by taking 

advantage of IFPMS. 

Abbreviations 

Continuous t-conorm: CTCN 

Continuous t-norm: CTN 

Intuitionistic Fuzzy Partial Metric Spaces: IFPMS 

Intuitionistic Fuzzy Metric Spaces: IFMS 

Fuzzy Partial Metric Spaces: FPMS 

Fuzzy Metric Spaces: FMS 

Intuitionistic Fuzzy Sets: IFS 

Fuzzy Sets: FS 

Fuzzy Logic: FL 

Fixed Point Theorem: FPT 
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