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Abstract  Keywords 

This study focuses on the development of a novel numerical technique used to solve 

Equal Width (EW) equation. The spatial discretization of the EW equation is 

accomplished using a trigonometric quartic B-spline collocation technique. To 

achieve a fully discretized formulation of the EW equation, the third-order implicit 

Adams-Moulton method is employed. The efficiency and applicability of the 

recommended computational scheme are validated through numerical experiments, 

which include the analysis of single solitary wave propagation and the interaction of 

two solitary waves. The results obtained are compared with those from existing 

methods documented in the literature. These comparisons demonstrate that the 

proposed numerical scheme outperforms other methods in terms of accuracy. 
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1. INTRODUCTION 
 

Nonlinear dispersive wave equations play an important role in modeling many physical phenomena, 

such as the movement of shallow water waves. One of these equations is the Equal Width (EW) 

equation, introduced by Peregrine [1], which is considered a valuable replacement for the well-

established Korteweg–de Vries (KdV) equation. The EW equation is written in the following form of 

𝑤𝑡  + 𝑤𝑤𝑥 − 𝜇𝑤𝑥𝑥𝑡 = 0, 𝑥 ∈ [𝛼, 𝛽]  (1) 

with the boundary conditions (BCs) 

𝑤(𝛼, 𝑡)  = 0
𝑤𝑥(𝛼, 𝑡) = 0

   
𝑤(𝛽, 𝑡)  = 0

𝑤𝑥(𝛽, 𝑡) = 0
, 𝑡 ∈ (0, 𝑇] (2) 

and the initial condition (IC) 

𝑤(𝑥, 0) = 𝑓(𝑥), 𝑥 ∈ [𝛼, 𝛽]  (3) 

where 𝑤 describes the wave amplitude and the parameter 𝜇 is a positive constant. 
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Because of the nonlinear term in the EW equation, its exact solution can only be found under limited 

boundary and initial conditions. As a result, recent researches has mainly focused on computational 

methods, leading to the development of various numerical techniques for solving the EW equation. 

These techniques include the Petrov-Galerkin method [2, 3], lumped Galerkin method [4], B-spline 

Galerkin methods [5–9], B-spline collocation methods [10–14], the least-squares method [15], finite 

difference methods [16, 17], the RBF-PS scheme [18], meshless kernel-based methods [19], 

multiquadric quasi-interpolation [20], the Haar wavelet method [21], and a numerical method using 

polynomial scaling functions [22]. 

 

In this study, a novel numerical scheme is developed to derive approximate solutions for the EW 

equation. This scheme combines the trigonometric quartic B-spline collocation technique with the 

Adams-Moulton method. This work aims primarily to show how using the Adams-Moulton method for 

time integration affects the results. The paper is organized as follows: Section 2 discusses the time and 

space discretization of the EW equation. Section 3 examines the behavior and interaction of two solitary 

waves to test the impact and validity of the suggested method. The results are shown in tables, and a 

comparison is made between the proposed method and existing approaches. Finally, Section 4 provides 

an outline of the method's key discoveries and contributions of the method. 

 

2. DISCRETIZATION SCHEME 

 

To establish the temporal and spatial discretization of the EW equation, the domain [𝛼, 𝛽] × (0, 𝑇]  
is first discretized using uniformly distributed grid points (𝑥𝑟, 𝑡𝑛), where 𝑥𝑟 = 𝛼 + 𝑟ℎ, 𝑟 =
0,1,… ,𝑀 and 𝑡𝑛 = 𝑛Δ𝑡, 𝑛 = 0,1, … ,𝑁. Here, ℎ and Δ𝑡 represent the spatial and temporal step 

sizes, respectively. 

 

2.1. Temporal Discretization 

Considering the EW equation of the form 

𝑣𝑡 = (𝑤 − 𝜇𝑤𝑥𝑥)𝑡 = −𝑤𝑤𝑥  (4) 

and utilizing the following one and two-step methods 

𝑣𝑛+1 = 𝑣𝑛 +
Δ𝑡

2
(𝑣𝑡

𝑛+1 + 𝑣𝑡
𝑛) + 𝑂(Δ𝑡3)  (5) 

 

𝑣𝑛+1 = 𝑣𝑛 + Δ𝑡 (
5

12
𝑣𝑡
𝑛+1 +

2

3
𝑣𝑡
𝑛 −

1

12
𝑣𝑡
𝑛−1) + 𝑂(Δ𝑡4)  (6) 

we set up the temporal integration of the Equation (4). The methods given in Equation (5) and 

Equation (6) can be rewritten in the general form as 

𝑣𝑛+1 = 𝑣𝑛 + Δ𝑡(𝜃1𝑣𝑡
𝑛+1 + 𝜃2𝑣𝑡

𝑛 + 𝜃3𝑣𝑡
𝑛−1)  (7) 

Selecting the coefficients in Equation (7) as 𝜃1 =
1

2
, 𝜃2 =

1

2
, 𝜃3 = 0 provides Crank - Nicolson (CN) 

method which is second order in time and substituting the coefficients in Equation (7) as 𝜃1 =
5

12
, 𝜃2 =

2

3
, 𝜃3 = −

1

12
 yields the two-step implicit Adams Moulton scheme. Using Equation (7), the 

temporal integration of the Equation (4) is achieved as 

𝑤𝑛+1 − 𝜇𝑤𝑥𝑥
𝑛+1 + 𝜃1Δ𝑡𝑤

𝑛+1𝑤𝑥
𝑛+1 = 𝑤𝑛 − 𝜇𝑤𝑥𝑥

𝑛 − 𝜃2Δ𝑡𝑤
𝑛𝑤𝑥

𝑛 − 𝜃3Δ𝑡𝑤
𝑛−1𝑤𝑥

𝑛−1  (8) 
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2.1. Spatial Discretization 

Consider subdividing the spatial domain [𝑎, 𝑏] into M uniformly spaced finite elements at the specified 

points 

𝛼 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑀 = 𝛽 (9) 

Then, the quartic trigonometric B-splines 𝑇𝑟
4(𝑥), 𝑟 = −2,… ,𝑀 + 1, at these knots are derived by the 

recurrence relation given in [23] as 

𝑇𝑟
4(𝑥) =

1

𝜃

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝜌4(𝑥𝑟−2), 𝑥𝑟−2 ≤ 𝑥 < 𝑥𝑟−1,

−𝜌3(𝑥𝑟−2)𝜌(𝑥𝑟) − 𝜌
2(𝑥𝑟−2)𝜌(𝑥𝑟+1)𝜌(𝑥𝑟−1) 𝑥𝑟−1 ≤ 𝑥 < 𝑥𝑟,

−𝜌(𝑥𝑟−2)𝜌(𝑥𝑟+2)𝜌
2(𝑥𝑟−1) − 𝜌(𝑥𝑟+3)𝜌

3(𝑥𝑟−1),

𝜌2(𝑥𝑟−2)𝜌
2(𝑥𝑟+1) + 𝜌(𝑥𝑟−2)𝜌(𝑥𝑟+2)𝜌(𝑥𝑟−1)𝜌(𝑥𝑟+1)

+𝜌(𝑥𝑟−2)𝜌
2(𝑥𝑟+2)𝜌(𝑥𝑟) + 𝜌(𝑥𝑟+3)𝜌

2(𝑥𝑟−1)𝜌(𝑥𝑟+1) 𝑥𝑟 ≤ 𝑥 < 𝑥𝑟+1,

+𝜌(𝑥𝑟+3)𝜌(𝑥𝑟−1)𝜌(𝑥𝑟+2)𝜌(𝑥𝑟) + 𝜌
2(𝑥𝑟+3)𝜌

2(𝑥𝑟),

−𝜌(𝑥𝑟−2)𝜌
3(𝑥𝑟+2) − 𝜌(𝑥𝑟+3)𝜌(𝑥𝑟−1)𝜌

2(𝑥𝑟+2) 𝑥𝑟+1 ≤ 𝑥 < 𝑥𝑟+2,

−𝜌2(𝑥𝑟+3)𝜌(𝑥𝑟)𝜌(𝑥𝑟+2) − 𝜌
3(𝑥𝑟+3)𝜌(𝑥𝑟+1),

𝜌4(𝑥𝑟+3), 𝑥𝑟+2 ≤ 𝑥 < 𝑥𝑟+3,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10) 

 

where 

𝜃 = sin (
ℎ

2
) sin (ℎ)sin (

3ℎ

2
) sin (2ℎ)

𝜌(𝑥𝑟) = sin (
𝑥 − 𝑥𝑟
2

)
 

The collection of the quartic trigonometric B-spline functions {𝑇−2
4 (𝑥), 𝑇−1

4 (𝑥),… , 𝑇𝑀
4(𝑥), 𝑇𝑀+1

4 (𝑥)}  
creates a basis for the smooth functions defined across the spatial domain.  

To perform the spatial integration of Equation (1), we begin by assuming that 𝑊(𝑥, 𝑡) is the 

quartic trigonometric B-spline approximation to the exact solution 𝑤(𝑥, 𝑡) to the problem. Following 

that form 𝑊(𝑥, 𝑡) in terms of the trigonometric B-splines 𝑇𝑗
4 and the temporal terms 𝛿𝑗(𝑡) as 

𝑊(𝑥, 𝑡) = ∑ 𝛿𝑗𝑇𝑗
4

𝑀+1

𝑗=−2

 (11) 

where the temporal terms 𝛿𝑗(𝑡) will be calculated using the BCs and collocation method. Since each 

subinterval [𝑥𝑟−1, 𝑥𝑟] is represented by five quartic trigonometric B-spline functions, the unknown 

function 𝑊 and its first two spatial derivatives at the knots 𝑥𝑟 are calculated in terms of the temporal 

terms as 

𝑊𝑟 = 𝑎1𝛿𝑟−2 + 𝑎2𝛿𝑟−1 + 𝑎2𝛿𝑟 + 𝑎1𝛿𝑟+1
𝑊𝑟

′ = 𝑏1𝛿𝑟−2 + 𝑏2𝛿𝑟−1 − 𝑏2𝛿𝑟 − 𝑏1𝛿𝑟+1
𝑊𝑟

′′ = 𝑐1𝛿𝑟−2 − 𝑐1𝛿𝑟−1 − 𝑐1𝛿𝑟 + 𝑐1𝛿𝑟+1

 (12) 

 

where 
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𝑎1 =
sin4 (

ℎ
2
)

𝜃
, 𝑎2 =

sin4 (
ℎ
2
) (12cos2 (

ℎ
2
) − 1)

𝜃
,

𝑏1 = −
2 sin3 (

ℎ
2
) cos (

ℎ
2
)

𝜃
, 𝑏2 = −

2 sin3 (
ℎ
2
) cos (

ℎ
2
) (4cos2 (

ℎ
2
) − 1)

𝜃
,

𝑐1 =
sin2 (

ℎ
2
) (4cos2 (

ℎ
2
) − 1)

𝜃
.

 
 

 

Using (12) in (8), the fully-discretized form of EW equation is obtained as 

𝛿𝑟−2
𝑛+1(𝛼1 − 𝜇𝑐1 + Δt𝑊𝑟

𝑛+1𝑏1) + 𝛿𝑟−1
𝑛+1(𝛼2 + 𝜇𝑐1 + 𝜃1Δt𝑊𝑟

𝑛+1𝑏2)

+𝛿𝑟
𝑛+1(𝛼2 + 𝜇𝑐1 − 𝜃1Δt𝑊𝑟

𝑛+1𝑏2) + 𝛿𝑟+1
𝑛+1(𝛼1 − 𝜇𝑐1 − 𝜃1Δt𝑊𝑟

𝑛+1𝑏1)

= 𝑊𝑟
𝑛 − 𝜇(𝑊𝑥𝑥)𝑟

𝑛 − 𝜃2Δt𝑊𝑟
𝑛(𝑊𝑥)𝑟

𝑛 − 𝜃3Δt𝑊𝑟
𝑛−1(𝑊𝑥)𝑟

𝑛−1, 0 ≤ 𝑟 ≤ 𝑀.

 (13) 

 

Hence, we achieve a system (13) involving 𝑀+ 1 equations and 𝑀 + 4 unknowns. Using the BCs (3) 

enables to equalize the number of equations and unknowns and the variables  

 

𝛿−2
𝑛+1, 𝛿−1

𝑛+1 𝑎𝑛𝑑 𝛿𝑀+1
𝑛+1  

 

are eliminated from the system (13), simplifying it into a solvable (𝑀 + 1) × (𝑀 + 1) matrix system. 

So as to commence the iterative procedure, the initial vectors 𝛿0 = (𝛿−2
0 , 𝛿−1

0 , … , 𝛿𝑀+1
0  )𝑇 and 𝛿1 =

(𝛿−2
1 , 𝛿−1

1 , … , 𝛿𝑀+1
1  )𝑇 need to be computed.  The initial vector 𝛿0 is first calculated by the use of IC 

and BCs as follows : 
 

𝑊′(𝛼, 0) = 0
𝑊′′(𝛼, 0) = 0
𝑊(𝑥𝑟, 0) = 𝑓(𝑥𝑟)

𝑊′(𝛽, 0) = 0

 

 

where 𝑟 = 0,1,… ,𝑀. Then, the other initial vector 𝜹1 is achieved by using CN technique. Therefore, 

the unknown vector 𝜹𝑛+1 = (𝛿−2
𝑛+1, 𝛿−1

𝑛+1, … , 𝛿𝑀+1
𝑛+1 )𝑇 (𝑛 = 1,2, … ) can be computed iteratively at any 

desired time by using two previous 𝜹𝑛 and 𝜹𝑛−1 unknown vectors. Since we have an implicit system 

(13) with respect to the term 𝛿, an inner iterative algorithm is used three times at all-time steps to 

obtain better accuracy. 

 

3. NUMERICAL RESULTS 

 

This section presents two test problems to demonstrate the efficiency and applicability of the proposed 

scheme. The accuracy of the solution is assessed by calculating the error norm 𝐿∞ 
 

𝐿∞ = max
𝑚
|𝑤𝑚 −𝑊𝑚|, (14) 

 

and the following formulae is used to calculate the order of the temporal-convergence  
 



Kırlı and Mersin / Estuscience – Se , 26 (2) – 2025 
 

154 

𝑜𝑟𝑑𝑒𝑟 =

log |
(𝐿∞)Δ𝑡𝑖
(𝐿∞)Δ𝑡𝑖+1

|

log |
Δ𝑡𝑖
Δ𝑡𝑖+1

|
 (15) 

 

where (𝐿∞)Δ𝑡𝑖 represents the error norm 𝐿∞ for temporal step Δ𝑡𝑖. The three invariants corresponding 

to mass 𝐼1, momentum 𝐼2 and energy 𝐼3 are worked out by means of the following formulae [24] 
 

𝐼1 = ∫ 𝑤𝑑𝑥
∞

−∞

≈ ∫ 𝑊𝑑𝑥
𝛽

𝛼

                                                  

𝐼2 = ∫ (𝑤2 + 𝜇(𝑤𝑥)
2)𝑑𝑥

∞

−∞

≈ ∫ (𝑊2 + 𝜇(𝑊𝑥)
2)𝑑𝑥

𝛽

𝛼

𝐼3 = ∫ 𝑤3𝑑𝑥
∞

−∞

≈ ∫ 𝑊3𝑑𝑥
𝛽

𝛼

                                                    

 

 

 

The trapezoidal rule for the spatial domain [𝛼, 𝛽] is employed to evaluate approximately the above 

integrals at all-time steps. 

 

  
(a)                       (b) 

Figure 1. 𝑊(𝑥, 𝑡) for ℎ = 0.1 and Δ𝑡 = 0.1 

 

3.1. Motion of a Single Solitary Wave 

 

In the first test problem, the analytical single solitary wave solution of the EW equation is expressed 

with equation: 

𝑤(𝑥, 𝑡) = 3𝑐 sec ℎ2 (𝑘[𝑥 − 𝑥̃0 − 𝑣𝑡]) (16) 

in which the velocity of the solitary wave 𝑣 = 𝑐, amplitude of the solitary wave is 3𝑐, 𝑘 = √
𝑐

4𝜇𝑣
 

represents the width of the solitary wave and 𝑥̃0 denotes the initial wave peak position.  The BCs are 

set to zero at both ends. By taking 𝑡 = 0 in the analytical solution (16), the IC is obtained as  

 

𝑤(𝑥, 0) = 3𝑐 sec ℎ2 (𝑘[𝑥 − 𝑥̃0]) (17) 

 

Using IC (16) in the integrals 𝐼1, 𝐼2, 𝐼3, the analytical values of three invariants are calculated for the 

first problem as follows 
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𝐼1 =
6𝑐

𝑘
,  𝐼2 =

12𝑐2

𝑘
+

48𝑘𝜇𝑐2

5
, 𝐼3 =

144𝑐3

5𝑘
  

 

The calculations are done with the parameters 𝜇 = 1, 𝑥̃0 = 10, amplitudes 3𝑐 = 0.3, 3𝑐 = 0.09. The 

graphs of the simulations of the single solitary wave for various values of 𝑐 at 𝑡 = 0 and 𝑡 = 80 are 

displayed in Figure 1. It is obvious from Figure 1 that the solitary wave maintains its initial shape, 

velocity and amplitude during the simulation. The algorithm is run up to 𝑡 =  80 over various spatial 

domains with different temporal and spatial step widths. The error norm 𝐿∞ and three invariants are 

reported in Table 1a and Table 1b to compare the present method with existing methods. The 

comparison demonstrates that the proposed method yields significantly more accurate results than the 

existing techniques outlined in [2, 3, 4, 5, 6, 14, 21]. Additionally, the invariants computed using the 

present method align closely with the analytical values, as illustrated in Table 1a and Table 1b. Table 

2a and Table 2b present the conservation invariants, temporal rate of convergence, and error norms, 

which confirm that for a fixed spatial step size, reducing the temporal step size from 2 to 0.25 results 

in a numerical convergence rate approaching three. Furthermore, the computed invariants remain 

consistent with their analytical counterparts. Figure 2 displays the absolute error plot for the 

parameters 𝑐 = 0.1, ℎ = 0.05, and 𝛥𝑡 = 0.25. 
 

Table 1a. Error norms and invariants of single solitary wave for 𝑐 = 0.1,ℎ = 0.03, Δ𝑡 = 0.05, 0 ≤ 𝑥 ≤30 at t=80 

 

Method 𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑳∞ 

Present Method 1.19999 0.28800 0.05760 7.37 × 10−6 
[2] 1.19100 0.28550 0.05582 2.64 × 10−3 
[5] 1.23387 0.29915 0.06097 1.64 × 10−2 
[4] 1.19995 0.28798 0.05759 2.10 × 10−5 
[3] 1.20004 0.28880 0.05760 5.15 × 10−5 

[14] 1.19999 0.28800 0.05760 9.60 × 10−6 
[21] 1.19999 0.28799 0.05759 1.26 × 10−5 

Analytical 1.2 0.288 0.0576 − 

 

Table 1b. Error norms and invariants of single solitary wave for 𝑐 = 0.03, ℎ = 0.1, Δ𝑡 = 0.1, 0 ≤ 𝑥 ≤30 at t=80 

 

Method 𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑳∞ 

Present Method 0.3599970 0.0259200 0.0015552 1.48 × 10−6 

[6] QBGM 0.3599964 0.0259252 0.0015525 2.09 × 10−6 

Analytical 0.36 0.02592 0.00155520 − 

 
Table 2a. Error norms, invariants and order of convergence with 𝑐 = 0.1, ℎ = 0.05,−10 ≤ 𝑥 ≤ 40 at t=80 

 

𝛥𝑡 𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑳∞ order 

2 1.199050 0.288127 0.057365 2.96 × 10−4 − 

1 1.199882 0.288016 0.057605 3.64 × 10−5 3.02 

0.5 1.199998 0.288002 0.576001 4.50 × 10−6 3.02 

0.25 1.199999 0.288000 0.576001 5.47 × 10−7 3.04 
 

Table 2b. Error norms, invariants and order of convergence with 𝑐 = 0.03,ℎ = 0.05,−10 ≤ 𝑥 ≤ 40 at t=80 
 

𝛥𝑡 𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑳∞ order 

2 0.359998 0.025920 0.001555 1.24 × 10−6 − 

1 0.360000 0.025920 0.001555 1.54 × 10−7 3.00 

0.5 0.360000 0.025920 0.001555 1.89 × 10−8 3.03 

0.25 0.360000 0.025920 0.001555 2.53 × 10−9 2.90 
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Figure 2. Absolute error at 𝑡 = 80 

 

3.1. Interaction of Two Solitary Waves 

 

In the problem of interaction of two solitary waves, the following IC is tackled  

 

𝑤(𝑥, 0) = 3𝑐1 sec ℎ
2 (
1

2
[𝑥 − 𝑥̃1 − 𝑐1]) + 3𝑐2 sec ℎ

2 (
1

2
[𝑥 − 𝑥̃2 − 𝑐2]) (18) 

where the parameters 𝜇 = 1, 𝑐1 = 1.5, 𝑐2 = 0.75, 𝑥̃1 = 10 and 𝑥̃2 = 25 are selected. 

 

These parameters yield two well-separated solitary waves initially situated at 𝑥̃1 and 𝑥̃2 and moving in 

the same directions. To make a comparison our results with the results of the method given in [18], 
the algorithm is run on the spatial domain [0, 80] with time step Δ𝑡 = 0.05 and space step ℎ = 0.2 

until 𝑡 =  30. Simulation of the interaction process is given in Figure 3. As shown in Figure 3, the 

interaction takes place at nearly 𝑡 = 15 and then two waves proceed without change their original 

shape. The values of analytical invariants are determined as 

 

𝐼1 = 12(𝑐1 + 𝑐2) = 27,

𝐼2 = 28.8(𝑐1
2 + 𝑐2

2) = 81,

𝐼3 = 57.6(𝑐1
3 + 𝑐2

3) = 218.7.

 

 

The comparison of the computed invariants with invariants presented by the method [18] is given in 

Table 3. It can obviously be seen that the three invariants computed by the present method are closer 

to the analytical values of the invariants. Also, the calculated invariants are reported in Table 4 at 

various time levels. When Table 4 is examined, the calculated invariants are observed to align with the 

analytical values throughout the interaction process 

 
Table 3. Comparison of the invariants for the interaction of two solitary waves at 𝑡 = 30 

 

 

 Present Method [𝟏𝟖](RK4) 

𝐼1 26.99643 26.92975 

𝐼1 81.00892 80.79845 

𝐼1 218.73882 218.15719 
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Table 4. Invariants for the interaction of two solitary waves with ℎ = 0.2, Δ𝑡 = 0.05 at various time levels 

 

t 𝑰𝟏 𝑰𝟐 𝑰𝟑 

1 26.99948 81.00053 218.70239 

5 26.99928 81.00173 218.70778 

10 26.99858 81.00322 218.71455 

15 26.99810 81.00457 218.71992 

20 26.99778 81.00560 218.72461 

25 26.99714 81.00739 218.73210 

30 26.99643 81.00892 218.73882 

Exact 27 81 218.7 

 

(a) (b) 

(c) (d) 

 
(e) 

 
Figure 3. The simulation of interaction process 
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4. CONCLUSION 

 

In the present work, a novel numerical scheme is introduced to derive approximate solutions for the 

EW equation. This scheme is developed by integrating the trigonometric quartic B-spline collocation 

technique with the third-order implicit Adams-Moulton method. To evaluate the performance and 

efficiency of the proposed approach, two test problems are investigated, focusing on the behavior of a 

solitary wave and the interaction between two solitary waves. The results demonstrate that the error 

norms produced by the present method are significantly smaller than studies of [2, 3, 4, 5, 6,14, 21]. 
The invariant constants are computed numerically and compared with their analytical values, revealing 

that the invariants remain well-preserved throughout the simulation. This indicates an accurate 

representation of soliton propagation and interaction. Additionally, the calculated temporal rate of 

convergence aligns closely with the theoretical value. In conclusion, the proposed numerical scheme 

offers notable advantages in terms of both accuracy and computational efficiency, making it a highly 

suitable method for addressing problems that model physical phenomena in engineering and scientific 

applications. 
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