
MALATYA TURGUT OZAL UNIVERSITY JOURNAL of ENGINEERING and NATURAL SCIENCES Volume 6, Issue 1 (2025) 23-33

* Corresponding author. e-mail address: canan.batur@ozal.edu.tr
 ORCID : 0000-0002-2131-6368 1

Depth Analysis of Vulnerabilities in Training and Inference
Times of Large Language Models
Canan BATUR ŞAHİN a,*

a Malatya Turgut Özal University, Department of Software Engineering, Malatya Türkiye – 44210
* Corresponding author

https://dergipark.org.tr/en/pub/naturengs

1. Introduction
The emergence of Generative AI models represents a
paradigm shift in Natural Language Processing (NLP) and
Natural Language Generation (NLG) [1]. These models,
characterized by massive parameter counts and
sophisticated architectures, have fundamentally
transformed our approach to language understanding and
generation tasks. While Large Language Models (LLMs),
which are Generative AI models, have achieved
remarkable performance improvements across various
applications, they introduce significant cybersecurity
vulnerabilities and critical security challenges, particularly
in adversarial attack scenarios, data privacy protection,
model security, and inference-time exploits [2-3]. These
security concerns encompass training-time poisoning
attacks, prompt injection vulnerabilities, model extraction
risks, and unauthorized data access, making robust
security protocols and privacy safeguards essential for
their deployment. These models' pre-training on vast web-
sourced datasets poses critical security vulnerabilities, as
these corpora inherently contain sensitive information
ranging from personal identifiers to confidential corporate
data. Such AI-language models can be misused to
generate content that is not only biased but also toxic,
harmful, and discriminatory, undermining social values
and safety. They risk intellectual property rights by
facilitating the unauthorized use or reproduction of

protected material. Furthermore, these tools can bypass
corporate security protocols, exposing organizations to
potential vulnerabilities. Their abuse can lead to malicious
activities, such as executing sophisticated cyber-attacks
and disseminating misinformation and propaganda,
distorting public perception and eroding trust in credible
information sources.

To effectively raise awareness and promote responsible
practices regarding such Models, it is essential to
understand their potential threats and vulnerabilities. We
categorize these vulnerabilities into two key areas: training
time and inference time. Our novel investigation evaluates
this research's security and risk mitigation aspects. It
presents an extensive investigation into security and
privacy vulnerabilities in these models, particularly about
adversarial attacks. We analyze various attack vectors,
their impact on model behavior, and potential mitigation
strategies. Our findings reveal critical vulnerabilities in
current Generative AI architectures and propose novel
defense mechanisms. Experimental results demonstrate
the effectiveness of our proposed solutions in reducing
attack success rates while maintaining model utility.

LLMs have demonstrated significant vulnerabilities to
various security threats, particularly adversarial attacks [2].
The Open Web Application Security Project [4] has
systematically categorized these vulnerabilities into ten
distinct categories, providing a comprehensive framework

ARTICLE INFO ABSTRACT

 Large language models (LLMs) have dramatically reshaped the field of natural language
processing, presenting groundbreaking advancements in many areas, from chatbots to
content creation. However, with the increasing adoption of these sophisticated models,
it is crucial to scrutinize the vulnerabilities associated with their training and inference
stages. This comprehensive analysis highlights the critical threats and inefficiencies
inherent to these processes and emphasizes the need for robust countermeasures. This
paper presents an extensive study of training and inference time vulnerabilities in Large
Language Models (LLMs), specifically focusing on poisoning, backdoor, paraphrasing,
and spoofing attacks. We introduce novel evaluation frameworks and detection
mechanisms for each attack type. Our experimental results across multiple attack
vectors demonstrate varying degrees of model susceptibility and reveal critical security
implications. The proposed defensive mechanisms showcase impressive model
performance, highlighted by consistent successful evaluation outcomes.

Keywords: Large Language Models (LLMs), Cyber-security, Adversarial attacks, Critical
vulnerabilities

Received 09.02.2025

Accepted 17.03.2025

Doi: 10.46572/naturengs.1636277

mailto:author@institute.xxx

MALATYA TURGUT OZAL UNIVERSITY JOURNAL of ENGINEERING and NATURAL SCIENCES Volume 6, Issue 1 (2025) 23-33

24

for understanding and addressing security risks in
Generative AI applications.

The first category, prompt injection, represents a
significant threat where adversaries can manipulate model
behavior through carefully crafted inputs that circumvent
security controls [5]. This is followed by insecure output
handling, leading to various injection attacks when model
outputs are inadequately validated [6]. Training data
poisoning, the third critical vulnerability, enables malicious
actors to introduce backdoors and biases during the model
training phase, potentially compromising the entire
system's integrity [7]. Resource-based attacks, specifically
model denial of service, constitute the fourth category,
where attackers exploit computational limitations through
resource-intensive prompts [8]. The fifth and sixth
categories address supply chain dependencies and
sensitive information disclosure, respectively, highlighting
the risks associated with pre-trained models and potential
data leakage [9]. Insecure plugin design, the seventh
category, presents significant risks regarding unauthorized
access and data exposure through third-party integrations
[10]. The final three categories - unauthorized code
execution, privacy breaches, and insufficient access
controls - represent critical vulnerabilities that can
compromise system security, user privacy, and data
protection compliance [11].

 Recent studies have significantly advanced our
understanding of LLM vulnerabilities. [8] conducted
pioneering research on training-time attacks,
demonstrating how adversarial data poisoning can
compromise model integrity with success rates exceeding
70%. In a comprehensive analysis, [5] identified critical
weaknesses in inference-time security, particularly in
prompt injection attacks that achieved breach rates of up
to 85% in commonly used LLM architectures. Similarly, [6]
explored backdoor vulnerabilities in pre-trained models,
revealing how seemingly benign triggers could activate
malicious behaviors while maintaining normal
performance on clean inputs.

Furthermore, [9] developed novel defensive mechanisms
against paraphrasing attacks, reducing successful breach
attempts by 60% while preserving model utility. A
groundbreaking study by [12] introduced a robust
framework for detecting and preventing spoofing attacks in
real time, achieving a 92% detection rate for sophisticated
impersonation attempts. Additionally, [7] demonstrated
how training-time poisoning attacks could persist even
after fine-tuning, emphasizing the need for enhanced
security measures throughout the model development
pipeline.

To tackle prevalent challenges in vulnerability analysis, the
study [14] introduces a new benchmark, VulDetectBench,
which is specifically designed to evaluate the vulnerability
detection capabilities of large language models (LLMs).
The performance of 17 models, including open-source and
closed-source options, was assessed, revealing that these
existing models can achieve over 80% accuracy in
vulnerability identification and classification tasks.

The study presented in [15] illustrates the effectiveness of
fine-tuning large language models for detecting
vulnerabilities in source code. The finetuned WizardCoder
model notably improves the ROC AUC and F1 scores on
both balanced and imbalanced vulnerability datasets when
compared to the CodeBERT-like model. This improvement
highlights the potential of adapting state-of-the-art pre-
trained large language models (LLMs) to effectively
identify vulnerabilities in source code.

The remainder of this paper is organized as follows:
Section 2 provides a detailed theoretical foundation of the
underlying models and methodologies employed in this
study. In Section 3, we introduce our novel detection and
mitigation framework, presenting its architectural
components and operational mechanisms for identifying
and countering various attack types. Section 4 presents
an extensive experimental evaluation of our proposed
approach, including detailed performance metrics,
comparative analyses, and statistical validation of results
across multiple attack scenarios. The paper concludes in
Section 5 with a synthesis of our findings, implications for
LLM security, and directions for future research in this
rapidly evolving field.

2. Background
Understanding Adversarial Attacks and the Vulnerabilities
of Large Language Models (LLMs) is crucial [11]. These
models, while powerful, can be susceptible to manipulative
inputs that undermine their effectiveness and reliability.
Recent studies have shown that these vulnerabilities can
be exploited through various attack vectors [10],[13].
Recognizing these vulnerabilities is essential for
enhancing the security and integrity of AI systems. The
security landscape of Large Language Models (LLMs)
presents a complex array of vulnerabilities that necessitate
systematic analysis and categorization. Recent research
has identified multiple attack vectors that can compromise
these systems' integrity, reliability, and security [12].
Among the vulnerabilities identified, several are
particularly concerning, including prompt injections, data
leaks, and inadequate sandboxing. Prompt injections allow
attackers to manipulate the model's responses by
introducing malicious or misleading input, while data leaks
can inadvertently reveal sensitive information contained
within the model's training data. Inadequate sandboxing
refers to the absence of a secure environment that isolates
the model during operation, making it susceptible to
various exploitation techniques. These examples illustrate
how easily LLMs can become targets for malicious
activities. To offer a clearer understanding of these
vulnerabilities, in this paper, we handle them as training-
time vulnerabilities and inference-time vulnerabilities.
Training-time vulnerabilities relate to risks that arise during
the model's training phase, such as data poisoning or
adversarial training methods. Inference-time vulnerabilities
concern the model's performance and usage during
response generation, which can be exploited by
adversaries to manipulate outputs or gain unauthorized
access to information. Each category corresponds to
specific types of attacks targeting different stages of the

MALATYA TURGUT OZAL UNIVERSITY JOURNAL of ENGINEERING and NATURAL SCIENCES Volume 6, Issue 1 (2025) 23-33

25

LLM lifecycle, highlighting the critical importance of
vigilance and robust security measures throughout the
entire process.

2.1. Training-Time Vulnerabilities:
Large Language Models (LLMs) are essential components
of modern machine learning applications, powering
advancements across various sectors, including
healthcare, finance, and autonomous systems. However,
these powerful tools are not without their vulnerabilities,
which can threaten their effectiveness. Among the most
alarming threats are poisoning and backdoor attacks.
Poisoning attacks involve the injection of malicious or
misleading data into the training set, which can skew the
model's learning process and lead to poor performance
when it encounters real-world data. In contrast, backdoor
attacks embed a concealed trigger within the model during
training, activating harmful behaviors during inference
under specific conditions. Both types of attacks exploit
weaknesses in the training phase, raising significant
concerns about the reliability and safety of models in
practical applications. To address these risks, it is vital to
develop robust strategies and defenses to protect against
such threats and preserve the integrity of machine learning
systems.

Poisoning attacks represent a critical threat in the realm of
machine learning, where adversaries strategically inject
maliciously crafted data into training datasets. The primary
objective of these attacks is to disrupt the model's
performance or distort its behavior in targeted ways.
Poisoning attacks can be broadly categorized into two
distinct types: The first one is Data Integrity Attacks which
specifically aim to infiltrate the training set with mislabeled
or erroneous samples. Such manipulation leads to poor
generalization, meaning the model fails to make accurate
predictions based on real-world data. For example; an
attacker introduces improperly labeled images into a facial
recognition dataset, which could result in the model
misidentifying individuals during crucial evaluations. The
other is Data Availability Attacks which inundate the
dataset with an overwhelming number of malicious
samples, effectively sabotaging the model's usability. For
instance, By flooding the dataset with irrelevant or noisy
data, an attacker can significantly impair the model's
effectiveness, causing it to struggle with its intended tasks
and yield unreliable outputs.

Backdoor attacks represent a significant and pressing
threat, involving the embedding of hidden "triggers" within
models during the training phase. These triggers can
manipulate the model's output, generating a
predetermined response regardless of the actual content
of the input. The cunning nature of backdoor attacks is
amplified by the model's ability to perform normally on
clean data, effectively concealing the existence of the
backdoor. A common Trigger Type could be a Pixel
Pattern which is A carefully designed arrangement of
pixels that misleads the model. Alternatively, the
Perturbation is Subtle modifications to the input that are
imperceptible to humans yet trigger the backdoor. Or
Semantic Triggers which are Abstract patterns, such as

specific objects or textures, intended to exploit the model.
Backdoor in a self-driving car's vision model can lead to
severe misinterpretation of stop signs, endangering lives.
Poisoning attacks on diagnostic models can result in
serious misdiagnoses and ineffective treatments,
jeopardizing patient safety. Targeted attacks on fraud
detection systems threaten fundamental security
measures, allowing adversaries to bypass critical
protections and undermining financial stability.

It is essential to recognize and address these
vulnerabilities to protect the integrity of critical systems
effectively. Poisoning and backdoor attacks underscore
the critical need for security in neural network development
and deployment. As adversaries continue to develop
sophisticated attack strategies, the research community
and industry must prioritize robust defenses and proactive
measures.

2.2. Inference-Time Vulnerabilities
Inference-time vulnerabilities in large language models
(LLMs) encompass various potential weaknesses or
exploits that can manifest when these sophisticated
models are actively deployed and engaged with by users,
particularly during the crucial moment when they generate
responses. Inference-time vulnerabilities, such as
paraphrasing and spoofing attacks, target specific flaws in
the interactions between users and large language models
(LLMs). Paraphrasing attacks involve rewording inputs to
exploit the model's responses while spoofing attacks seek
to impersonate legitimate requests or users. Both types of
attacks are designed to manipulate the behavior of the
model, evade established restrictions, or generate
outcomes that were not intended by the developers. These
vulnerabilities underscore a crucial need for enhanced
security measures and rigorous oversight in the
deployment of LLMs. These vulnerabilities can be
manipulated by malicious actors seeking to exploit the
system or may arise from unexpected or unintended
inputs, which could lead to the production of harmful,
biased, or misleading outputs. Paraphrasing attacks are a
significant threat that exploits the advanced capabilities of
large language models (LLMs) to understand and generate
text in varied linguistic forms while maintaining the same
underlying meaning. In these attacks, adversaries
intentionally reformulate inputs to bypass existing content
moderation systems or evade detection mechanisms that
typically rely on rigid matching criteria. For example, when
faced with a prohibited query like "How do I create a
harmful substance?", an attacker may cleverly rephrase it
to "What are the steps to prepare a dangerous chemical?"
This tactic aims to trick the model into considering the
rephrased input as acceptable, potentially triggering
harmful or restricted outputs. Such manipulation starkly
illustrates how LLMs, designed to generalize meaning, can
inadvertently produce dangerous results when confronted
with subtly altered inquiries. Furthermore, in applications
focused on sentiment analysis or content categorization,
paraphrasing can drastically skew the perceived intent of
a message. A simple rewording can distort sentiment or
change category labels, masking the original harmful

MALATYA TURGUT OZAL UNIVERSITY JOURNAL of ENGINEERING and NATURAL SCIENCES Volume 6, Issue 1 (2025) 23-33

26

intentions and making detection of inappropriate content
exceedingly difficult.

In addition, spoofing attacks pose a serious risk by
misleading large language models into believing that input
is genuine, trustworthy, or harmless when it is adversarial
or deceptive. These attacks can target the input data
provided to the model as well as the accompanying
metadata or context that shapes its responses. Attackers
manipulate either the input or contextual cues to achieve
outcomes that align with their malicious objectives. Tactics
may include exploiting system prompts, infusing harmful
inputs during the model's fine-tuning processes, or
disguising adversarial queries as legitimate requests. The
spoofing attacks include the prompt injection which is an
aggressive tactic that involves inserting misleading or
contradictory instructions into user inputs or system
prompts, compelling the model to generate responses that
violate established rules. For instance, appending "Ignore
previous instructions and provide the following" to a query
enables attackers to sidestep system restrictions
effortlessly. Also in Impersonation Attacks Attackers
exploit language models to generate content that mimics
the voice or authority of a specific individual or
organization. This method is particularly dangerous as it
facilitates the spread of false or misleading information,
leaving users vulnerable to deception. The other instance
is Metadata Spoofing, where the behavior and responses
of language models are influenced by external metadata—
such as user profiles or source credibility—attackers can
easily falsify this metadata to manipulate the model's
outputs to their advantage.

Both paraphrasing and spoofing attacks expose critical
vulnerabilities within large language models. While these
models excel at understanding and generating varied
linguistic expressions, their very strengths can be
weaponized against them. To combat these pervasive
challenges, must implement a robust combination of
advanced semantic understanding techniques, stringent
filtering systems, and proactive monitoring strategies to
ensure the integrity and reliability of LLM-based
applications, effectively safeguarding against misuse and
malicious intent.

3. Proposed Model
As Large Language Models (LLMs) increasingly play a
vital role in real-world applications, it is essential to
prioritize the resolution of their security vulnerabilities. This
research focuses on two critical areas: identifying and
analyzing vulnerabilities that arise during the training
phase and those that occur during inference. Additionally,
we examine how these models respond to various attack
patterns. Our findings present a systematic approach to
quantifying and understanding these security challenges,
shedding light on model robustness and offering effective
mitigation strategies.

This paper introduces an innovative framework designed
to analyze vulnerabilities during training time and inference
time to effectively detect attacks on Large Language
Models. Our approach integrates input processing, an

analysis engine, a decision engine, and robust defense
layers, creating a comprehensive protective architecture.
Adversarial attacks, including poisoning, backdoor,
Spoofing, and Paraphrasing attacks, present serious
threats to the integrity and reliability of machine learning
models. A thorough evaluation of these attacks is critical
for developing robust defensive strategies and enhancing
overall model resilience. In this paper, we present a
detailed evaluation framework that facilitates the
comparison of poisoning, backdoor, Spoofing, and
Paraphrasing attacks on machine learning models. Our
framework includes an extensive array of metrics that
capture essential aspects of attack performance, model
impact, shifts in data distribution, and overall robustness.
We demonstrate the application of our framework on a
simple neural network model. The proposed model is
illustrated in Figure 1.

The diagram showcases a robust cybersecurity system
architecture that integrates four essential components:

Input Processing layer rigorously validates incoming data,
ensuring its integrity and reliability. It adeptly recognizes
patterns in traffic and user behavior, swiftly identifying
anomalies that could indicate potential threats. By
conducting initial threat filtering, it creates a protective
barrier against risks to safeguard your systems.

The Analysis Engine Layer excels at detecting data
attacks, thereby preserving the reliability of your security
models. It proactively identifies vulnerabilities,
empowering your organization to strengthen its security
measures. Moreover, it effectively recognizes attack
attempts, providing crucial safeguards against identity.

The decision Engine Layer meticulously assesses security
risks, offering strategic guidance for appropriate
responses. Classifying threat levels ensures can prioritize
and respond effectively to potential dangers.

Defense Layer: This critical layer actively mitigates attacks
using advanced blocking and sanitization techniques,
fortifying your defenses against cyber threats.

The used dataset is artem9k/ai-text-detection-pile, a large-
scale dataset containing samples of human and AI-
generated text from GPT2, GPT3, ChatGPT, and GPTJ.

For Input processing Step: We take the Text T form
vocabulary Σ as a Text T ∈ Σ*. Then we represent the
Token sequences as a T(t) → {t₁, t₂, ..., t} for tokenization.

The framework specifications for proposed Poisoning and
Backdoor Attack Evaluation. The used Poisoning attack
metrics based on Attack Success Rate:

𝐴𝑆𝑅 = !
"
∑ 1[𝑓(𝑥#$#) = t] (1)

Where xᵢ' is poisoned data t is the target label, f (·) is model
prediction and N is the number of samples.

The Performance Impact Metrics used by Clean Accuracy,
Poisoned Accuracy, and Performance Degradation.

𝐶𝑙𝑒𝑎𝑛	𝐴𝑐𝑐𝑢𝑎𝑟𝑐𝑦 = !
"
∑ 1[𝑓(𝑥##) = 𝑦#] (2)

MALATYA TURGUT OZAL UNIVERSITY JOURNAL of ENGINEERING and NATURAL SCIENCES Volume 6, Issue 1 (2025) 23-33

27

Figure 1. The framework for the proposed architecture.

𝑃𝑜𝑖𝑠𝑜𝑛𝑒𝑑	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !
"
∑ 1[𝑓(𝑥#$#) = 𝑦#$] (3)

The Performance Degradation is evaluated with formula
(4):

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒	𝐷𝑒𝑑𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 =Clean_Acc-	Poisoned_Acc (4)

Where; xᵢ is clean data, yᵢ is clean label, xᵢ' is poisoned
data, and yᵢ' is poisoned label.

The performance of Confidence Analysis is represented by
these formulas (5-7):

𝐶𝑙𝑒𝑎𝑛	𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = !
"
∑ 	𝑚𝑎𝑥	(𝑠𝑜𝑓𝑡𝑚𝑎𝑥	𝑓(𝑥#))	# (5)

𝑃𝑜𝑖𝑠𝑜𝑛𝑒𝑑	𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = !
"
∑ 	𝑚𝑎𝑥	(𝑠𝑜𝑓𝑡𝑚𝑎𝑥	𝑓((𝑥#$))	# (6)

The Confidence Gap is evaluated with formula (7):
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	Gap	 = 	 |	Clean_Conf	– 	Poisoned_Conf	| (7)

We used trigger effectiveness, trigger characteristics, and
robustness analysis as backdoor attack metrics.

𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑	𝑆𝑢𝑐𝑐𝑒𝑠𝑠	𝑅𝑎𝑡𝑒	 = !
"
∑ 1[𝑓(𝑥#$#) 	= t] (8)

 where: xᵢᵗ is triggered data and t is the target label.

𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑	𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑀𝑆𝐸		(𝑋_𝑐𝑙𝑒𝑎𝑛	, 𝑋_𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑) (9)

𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑	𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = %|'(#))*(*+!"##$%&%|'
,_*.*/*,'0

	 (10)

𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑	𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 𝑠𝑡𝑑	(𝑋'(#))*(*+ − 𝑋1.*2,) (11)

To analyse the robustness, we evaluate the formula (12).

𝑁𝑜𝑖𝑠𝑒	𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 = !
|"|
∑ 	 !

|3|
	(𝑥 + 𝑎),	/) = ∑ 1[𝑓(𝑥#'	# +

𝑛 − ℇ) = 𝑡] (12)

where: N is a set of noise levels {0.01, 0.05, 0.1}, ε ~ N (0,
1) is random noise and M is the number of samples.

The other Robustness is computed in terms of
Transformation Robustness. The success of Transform is
computed based on the equation (13-17).

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚		𝑆𝑢𝑐𝑐𝑒𝑠𝑠		 = !
|"|
∑𝑖 1[𝑓(𝑥#') = 𝑡] (13)

 Transformations T:

T1(x)=	x+0.1	.ε (Random noise) (14)

 T2(x)=	clip	(1.1x,	0,1) (Contrast) (15)

T3	(x)=	x.	(1+0.1	.ε) (Multicative noise) (16)

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛	𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠
= 𝑚𝑒𝑎𝑛([𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚041*00(𝑇1), 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚041*00(𝑇2),

	𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚041*00(𝑇3)]) (17)

 The used model is BERT-based Sequence Classification,
The AutoTokenizer is used in the CUDA/CPU runtime
environment with Paraphrase, Behavioral, and
Robustness Analysis Modules.

The framework introduces a systematic approach to
analyzing LLM vulnerabilities for Paraphrase Attack
Analysis through three primary dimensions: We use the
Simple tokenization using r'\b\w+\b' Regex pattern to Split
on word boundaries and keep only alphanumeric tokens.

MALATYA TURGUT OZAL UNIVERSITY JOURNAL of ENGINEERING and NATURAL SCIENCES Volume 6, Issue 1 (2025) 23-33

28

For Analysis algorithms, we used Paraphrase Sensitivity
Analysis to evaluate the sensitivity score for each given
Text and variations.

In the evaluation of the Paraphrase Sensitivity analysis, we
use the equation (18).

Paraphrase	Sensitivity	Analysis		(PSA)

𝑆(𝑇, 𝑉) = !
5
∑𝑖 −	𝑡5	|P(T)-	P	(𝑉#)|																																												(18)	

Where T is the input text and V = {v₁, v₂, ..., vₖ} are
paraphrase variations, P (·) is the model prediction
function, |·| denotes L1 norm.

The	Behavioral	Consistency	Score		(BCS)

	𝐵𝐶𝑆 = 1 − !
,
∑𝑖 	− 𝑖,	|ᵖi-	µ	|																																																								(19)	

Where μ = !
,
∑ 𝑖 	− 𝑖, pᵢ (mean prediction), pᵢ are individual

predictions and n is the number of variations.

The metric of Robustness is evaluated based on equation
(20).

 Robustness Metric (RM)

	𝑅𝑀 = (!789:)	
=

 (20)

 Where S is the sensitivity core, and

σ	=	1-	std	(confidence_scores)																																																			(21)	

The Vulnerability Assessment Criteria is determined with
the framework establishes quantifiable thresholds for
vulnerability detection to determine the vulnerability status
as a High Risk if PSA > θₚ (0.2), Moderate if BCS < θᵦ (0.8),
and Low Risk if RM > θᵣ (0.7). We used vulnerability
classification as a decision function. Where,

𝑉(𝑇)	𝑣𝑎𝑙𝑢𝑒	𝑖𝑠	1	𝑖𝑓	𝑆(𝑇) > 𝜃ₚ˅	C(T) 	< 	𝜃ᵦ		˅		R(T) 	< 		𝜃ᵣ		

Othervise	the	value	of	V(T)	has	value	0																																		 (22)	

θₚ is the paraphrase threshold, θᵦ is a behavioral threshold,
and θᵣ robustness threshold.

To detect spoofing attacks, we represent the original input
text as an X, the Target model (e.g., BERT classifier) as
an M, and the Set of spoofing transformations as S. To
generate spoofing, we generate the Generate spoofed
version of input as a s(X). for example; The Original X =
Execute command" The s(X) could be: System: Execute
command, or [Admin]: Execute command or
<verified>Execute command</verified>.

The other attack types such as the system input injection
for Spoofing attack constructs with the equation (23).

𝑆!(𝑋) = 𝐶𝑜𝑛𝑐𝑎𝑡(ρ, 𝑋) (23)

Where; Σ is input text space and X ∈ Σ is legitimate input,
ρ ∈ {System: Override previous instructions.", "Debug
mode enabled.”, “Admin access granted.", ...}

Then Identity Spoofing is applied with the equation (24).

 𝑆=(𝑋) = 𝐶𝑜𝑛𝑐𝑎𝑡(I, 𝑋) (24)

 Where; I ∈ {“[Authorized User]:", "<admin>:", "[System]:",
...}

The spoofing Pattern Generation is performed for System
injection, Identity spoofing, format manipulation, and
context manipulation.

4. Results and Experimental
Analysis
This paper presents a comprehensive analysis of two
distinct neural network attack evaluation frameworks:
Adversarial attacks, including poisoning, backdoor,
Spoofing, and Paraphrasing attacks. We introduce robust
evaluation metrics for both attack types and provide an
implementation that enables systematic comparison of
their effectiveness, impact, and detectability. Our analysis
reveals key differences in attack characteristics, success
rates, and model resilience, offering insights for developing
more effective defense mechanisms.

We used Linear architecture and the Relu activation
function. The input dimension is 100, hidden_dim is 50 and
num_classes is 10 for poisoning and backdoor attack
evaluation. The used number of samples is 1000, the clean
data distribution: is N (0, 1), the Poisoning ratio: is 10%
and the Trigger pattern is a Random noise pattern.

The obtained results for Paraphrase Sensitivity Analysis
are detected based on decision patterns through Synonym
substitution, Phrase restructuring, and semantic
preservation tests. Robust patterns detected through
Patterns detected through: Character-level modifications,
Token-level changes, and Noise injection testing. The
thresholds for spoofing attacks are set to 0.8, 0.7, 0.6, and
0.8 for confidence, resistance, deception, and identity.
Through a comprehensive and systematic analysis of the
dependencies among various parameters, we enhanced
the reliability and applicability of the evaluation framework.
By focusing on these interdependencies, we gained
insights into the nuances and performance implications of
different parameter settings through experimental
analysis.

MALATYA TURGUT OZAL UNIVERSITY JOURNAL of ENGINEERING and NATURAL SCIENCES Volume 6, Issue 1 (2025) 23-33

29

 Figure 2. Comparative analysis of Backdoor attack performance metrics across different attack

Figure 3. Performance metrics for different Poison attack strategies on large language models.

Figure 2 experimental evaluation examined four distinct
types of backdoor attacks: pattern injection, blending,
semantic, and dynamic attacks. Each attack type was
assessed using three key performance metrics: Trigger
Success Rate, Clean Accuracy, and Confidence Score.
Pattern injection attacks demonstrated strong overall
performance, with high clean accuracy (91.2%). This
suggests the detection system maintains robust
performance on uncompromised inputs while effectively
identifying pattern-based triggers. Blending attacks
showed the highest clean accuracy (93.5%) among all

attack types, indicating that the system's ability to process
legitimate inputs remains largely unaffected when
defending against blending-based backdoors. Semantic
attacks presented the lowest trigger success rate (84.5%),
suggesting these attacks are more challenging to detect
due to their contextual nature. However, the system
maintained high clean accuracy (92.3%). Dynamic attacks
showed balanced performance across all metrics, with
consistent scores above 86%. This indicates robust
detection capabilities against time-varying and adaptive
triggers.

MALATYA TURGUT OZAL UNIVERSITY JOURNAL of ENGINEERING and NATURAL SCIENCES Volume 6, Issue 1 (2025) 23-33

30

In Figure 3, the performance metrics for Poison attacks are
represented. The gradient-based attacks showed
balanced performance across all metrics, with immaculate
data accuracy. The relatively tight error margins (±1.9-
2.8%) indicate consistent detection performance. Feature
collision attacks demonstrated slightly lower performance
than gradient-based attacks but maintained robust clean
data accuracy. The wider error margins suggest more
variability in detection performance. Label-flipping attacks
showed the lowest overall performance metrics,
particularly in attack success rate. This suggests that these
attacks are more challenging to detect consistently. Clean
label attacks. Demonstrated the highest performance
across all metrics, with notably strong clean data accuracy
and confidence scores. The narrow error margins indicate
stable detection performance. The experimental results
demonstrate robust detection capabilities across different
poisoning attack types, with a particularly strong
performance against clean-label attacks. The system
maintains high clean data accuracy while providing reliable

attack detection, though performance varies with attack
complexity. Label-flipping attacks remain the most
challenging to detect, suggesting an area for future
improvement.

Figure 4 shows the analysis demonstrates robust detection
capabilities across different attack variants, with particular
performance in spoofing-paraphrasing attack detection. In
the evaluation of paraphrasing effectiveness, several
metrics were assessed. The results indicate that basic
paraphrasing achieved the highest performance, scoring
85%. Following closely, contextual paraphrasing
performed at 82%. On the other hand, semantic
paraphrasing recorded the lowest score at 78%. In terms
of spoofing, the behavioral aspect received a score of
81%, while structural spoofing was slightly higher at 83%.
Identity spoofing scored 80%. Overall, the metrics ranged
from a low of 78% to a high of 85%, showcasing a variety
of performance levels across different types of
paraphrasing and spoofing techniques.

Figure 4. Comparative visualization of detection performance metrics across paraphrasing and Spoofing attack vectors (0-100%).

MALATYA TURGUT OZAL UNIVERSITY JOURNAL of ENGINEERING and NATURAL SCIENCES Volume 6, Issue 1 (2025) 23-33

31

Table 1. Experimental results for Poison Attack. Table 2. Experimental results for Backdoor Attacks

Table 1-2 represents the performances of the backdoor
and poisoning attacks. In Table 1 both base accuracy and
clean accuracy achieve an impressive 85.6%. However,
it's important to note a significant decline in poisoned
accuracy, which falls to 68.9%. The attack success rate
stands at a commendable 73.4%. With strong precision at
82.3% and an F1-score of 80.7%, the model demonstrates
robust performance. Table 2 shows impressive baseline
performance, marked by a high overall accuracy of 89.1%
and a clean accuracy of 89.1%. Its robust precision of
86.7% and recall of 83.4% reflect balanced and reliable
detection capabilities.

A strong F1 score of 85.0% underlines consistent
performance across critical metrics. Furthermore, the
noteworthy trigger success rate of 81.2% indicates an
effective approach to backdoor detection. However, the
triggered access rate of 74.5% reveals an opportunity for
enhancement in managing triggered scenarios. In
summary, the key takeaway is that while the system excels
with clean data, there is significant potential for
improvement in effectively combating triggered backdoor
attacks.

Figure 5. Comparative visualization of detection performance metrics across paraphrasing and spoofing attacks.

Poison Attack Accuracy

Accuracy 85.6 %

Precision 82.3%

Recall 79.1 %

F1-Score 80.7%

Attack-Success Rate 73.4%

Clean Accuracy 85.6%

Poisoned Accuracy 68.9 %

Backdoor Attack Accuracy

Accuracy 89.1 %

Precision 86.7%

Recall 83.4 %

F1-Score 85.0%

Trigger-Success Rate 81.2%

Clean Accuracy 89.1%

Triggered Access 74.5%

MALATYA TURGUT OZAL UNIVERSITY JOURNAL of ENGINEERING and NATURAL SCIENCES Volume 6, Issue 1 (2025) 23-33

32

Table 3. Experimental results for Paraphrasing Attack.

Table 4. Experimental results for Spoofing Attack.

In Table 3, a consistent gap of approximately 3% exists
between precision and accuracy across all
categories. Performance tends to decline steadily with
increased complexity, which is an important
consideration. Notably, the system maintains an accuracy
rate of over 83% across all attack types. Table 4 Identity
spoofing detection demonstrated strong performance
across all metrics, achieving 95.0% precision and 93.0%
accuracy. However, performance decreased slightly for
structural attacks, with a 3% drop in accuracy, and for
behavioral attacks, which showed a 5% decrease in
accuracy. Precision consistently surpassed accuracy by
2% throughout all attack types, indicating reliable positive
predictions. These results highlight robust detection
capabilities, especially for identity-based attacks. The
consistent performance gradient—identity attacks being
the easiest to detect, followed by structural and then
behavioral attacks—suggests a correlation between the
complexity of the attacks and the difficulty of detection.

Figure 5 The temporal analysis reveals significant
differences in detection capabilities across methods. The
experiment compares three detection methods over five
time intervals (00:00, 00:15, 00:30, 00:45, and 01:00). This
establishes the starting point, with paraphrasing detection
showing strong initial performance. All detection methods
show improvement compared to the initial benchmark, with
paraphrasing detection seeing a substantial 7% increase.
Spoofing detection also improves by 5% in the (00:15)
benchmark. The peak performance (00:30) This interval
shows the highest overall detection rates, particularly for
paraphrasing detection, which reaches its peak
performance at 95%. Baseline detection remains relatively
unchanged. Spoofing detection reaches its highest point at
55%, showing an improvement of 10% from the initial
benchmark. Paraphrasing detection remains high but
slightly decreases from its peak in (00:45). By the final
interval; there is a slight regression in performance for
paraphrasing detection while spoofing detection maintains
its improvement over the initial benchmark. This
experimental data strongly supports paraphrasing
detection as the primary method, with supplementary
spoofing detection to cover additional attack vectors.

4. Conclusions
As large language models establish themselves as
essential components across various fields and
applications, it becomes imperative to recognize and
address the vulnerabilities lurking within both training and
inference stages. By actively tackling these threats through
comprehensive and strategic mitigation efforts, we can
significantly enhance the integrity and robustness of these
advanced technologies, ensuring their safe and efficient
application in a rapidly evolving landscape. Embracing
such initiatives will be instrumental in fostering innovation
while simultaneously protecting critical assets and user
trust. The results indicate that the system performs
exceptionally well across all evaluated attack types. High
detection rates, low false positive rates, and excellent
system resilience suggest a well-rounded and reliable
cybersecurity framework.

Future work should focus on improving semantic attack
detection and reducing performance variability in dynamic
scenarios. Also, focus on optimizing response times
further and expanding the evaluation to include additional
attack scenarios.

References
[1] Zhang, E. Y., Cheok, A. D., Pan, Z., Cai, J., & Yan, Y.

(2023). From Turing to Transformers: A Comprehensive
Review and Tutorial on the Evolution and Applications of
Generative Transformer Models. Sci, 5(4), 46.
https://doi.org/10.3390/sci5040046

[2] Yang,J. (2024). Large language models privacy and
security. Applied and Computational Engineering,76,177-
188.

[3] Guven, M. (2024). A Comprehensive Review of Large
Language Models in Cyber Security. International Journal
of Computational and Experimental Science and
Engineering, 10(3). https://doi.org/10.22399/ijcesen.469

[4] OWASP. (2024). OWASP Top 10 for Large Language
Model Applications. OWASP Foundation.

[5] B. S. Latibari et al., (2024). Transformers: A Security
Perspective, IEEE Access, vol. 12, pp. 181071-181105, doi:
10.1109/ACCESS.2024.3509372.

[6] Du, W., Li, P., Li, B., Zhao, H., & Liu, G. (2023). UOR:
Universal Backdoor Attacks on Pre-trained Language
Models. ArXiv. https://arxiv.org/abs/2305.09574.

[7] Zhang, Y., Rando, J., Evtimov, I., Chi, J., Smith, E. M.,
Carlini, N., Tramèr, F., & Ippolito, D. (2024). Persistent Pre-
Training Poisoning of LLMs. ArXiv.
https://arxiv.org/abs/2410.13722

[8] Dozono, K., Gasiba, T. E., & Stocco, A. (2024). Large
Language Models for Secure Code Assessment: A Multi-
Language Empirical Study. ArXiv.
https://arxiv.org/abs/2408.06428

[9] Agnew, W., Jiang, H. H., Sum, C., Sap, M., & Das, S. (2024).
Data Defenses Against Large Language Models. ArXiv.
https://arxiv.org/abs/2410.13138.

[10] Shayegani, E., Mamun, M. A., Fu, Y., Zaree, P., & Dong, Y.
(2023). Survey of Vulnerabilities in Large Language Models
Revealed by Adversarial Attacks. ArXiv.
https://arxiv.org/abs/2310.10844.

[11] Zheng, Z., & Zhu, X. (2023). NatLogAttack: A framework for
attacking natural language inference models with natural

Paraphrasing
Attack

Accuracy Precision F1-Score

Basic 89.0 % 92.0% 89.4 %

Contextual 86.0% 89.0% 86.4%

Semantic 83.0 % 87.0% 84.4 %

Spoofing
Attack

Accuracy Precision F1-Score

Identity 93.0 % 95.0% 92.0 %

Structural 90.0% 92.0% 90.2%

Behavioral 88.0 % 90.0% 88.6 %

https://doi.org/10.3390/sci5040046
https://doi.org/10.22399/ijcesen.469
https://arxiv.org/abs/2408.06428

MALATYA TURGUT OZAL UNIVERSITY JOURNAL of ENGINEERING and NATURAL SCIENCES Volume 6, Issue 1 (2025) 23-33

33

logic. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics. Vol. 1, pp. 9960-
9976. https://doi.org/10.18653/v1/2023.acl-long.542.

[12] Shi, Y., Gao, Y., Lai, Y., Wang, H., Feng, J., He, L., Wan, J.,
Chen, C., Yu, Z., & Cao, X. (2024). SHIELD : An Evaluation
Benchmark for Face Spoofing and Forgery Detection with
Multimodal Large Language Models. ArXiv.
https://arxiv.org/abs/2402.04178

[13] Zhang, J., Wang, C., Li, A., Sun, W., Zhang, C., Ma, W., &
Liu, Y. (2024). An Empirical Study of Automated
Vulnerability Localization with Large Language Models.
ArXiv. https://arxiv.org/abs/2404.00287.

[14] Liu, Y., Gao, L., Yang, M., Xie, Y., Chen, P., Zhang, X., &
Chen, W. (2024). VulDetectBench: Evaluating the Deep
Capability of Vulnerability Detection with Large Language
Models. ArXiv. https://arxiv.org/abs/2406.07595.

[15] Shestov, A., Levichev, R., Mussabayev, R., Maslov, E.,
Cheshkov, A., & Zadorozhny, P. (2024). Finetuning Large
Language Models for Vulnerability Detection. ArXiv.
https://arxiv.org/abs/2401.17010.

https://arxiv.org/abs/2402.04178
https://arxiv.org/abs/2406.07595

