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1. Introduction   
The emergence of Generative AI models represents a 
paradigm shift in Natural Language Processing (NLP) and 
Natural Language Generation (NLG) [1]. These models, 
characterized by massive parameter counts and 
sophisticated architectures, have fundamentally 
transformed our approach to language understanding and 
generation tasks. While Large Language Models (LLMs), 
which are Generative AI models, have achieved 
remarkable performance improvements across various 
applications, they introduce significant cybersecurity 
vulnerabilities and critical security challenges, particularly 
in adversarial attack scenarios, data privacy protection, 
model security, and inference-time exploits [2-3]. These 
security concerns encompass training-time poisoning 
attacks, prompt injection vulnerabilities, model extraction 
risks, and unauthorized data access, making robust 
security protocols and privacy safeguards essential for 
their deployment. These models' pre-training on vast web-
sourced datasets poses critical security vulnerabilities, as 
these corpora inherently contain sensitive information 
ranging from personal identifiers to confidential corporate 
data. Such AI-language models can be misused to 
generate content that is not only biased but also toxic, 
harmful, and discriminatory, undermining social values 
and safety. They risk intellectual property rights by 
facilitating the unauthorized use or reproduction of 

protected material. Furthermore, these tools can bypass 
corporate security protocols, exposing organizations to 
potential vulnerabilities. Their abuse can lead to malicious 
activities, such as executing sophisticated cyber-attacks 
and disseminating misinformation and propaganda, 
distorting public perception and eroding trust in credible 
information sources. 

To effectively raise awareness and promote responsible 
practices regarding such Models, it is essential to 
understand their potential threats and vulnerabilities. We 
categorize these vulnerabilities into two key areas: training 
time and inference time. Our novel investigation evaluates 
this research's security and risk mitigation aspects. It 
presents an extensive investigation into security and 
privacy vulnerabilities in these models, particularly about 
adversarial attacks. We analyze various attack vectors, 
their impact on model behavior, and potential mitigation 
strategies. Our findings reveal critical vulnerabilities in 
current Generative AI architectures and propose novel 
defense mechanisms. Experimental results demonstrate 
the effectiveness of our proposed solutions in reducing 
attack success rates while maintaining model utility. 

LLMs have demonstrated significant vulnerabilities to 
various security threats, particularly adversarial attacks [2]. 
The Open Web Application Security Project [4] has 
systematically categorized these vulnerabilities into ten 
distinct categories, providing a comprehensive framework 
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for understanding and addressing security risks in 
Generative AI applications. 

The first category, prompt injection, represents a 
significant threat where adversaries can manipulate model 
behavior through carefully crafted inputs that circumvent 
security controls [5]. This is followed by insecure output 
handling, leading to various injection attacks when model 
outputs are inadequately validated [6]. Training data 
poisoning, the third critical vulnerability, enables malicious 
actors to introduce backdoors and biases during the model 
training phase, potentially compromising the entire 
system's integrity [7]. Resource-based attacks, specifically 
model denial of service, constitute the fourth category, 
where attackers exploit computational limitations through 
resource-intensive prompts [8]. The fifth and sixth 
categories address supply chain dependencies and 
sensitive information disclosure, respectively, highlighting 
the risks associated with pre-trained models and potential 
data leakage [9]. Insecure plugin design, the seventh 
category, presents significant risks regarding unauthorized 
access and data exposure through third-party integrations 
[10]. The final three categories - unauthorized code 
execution, privacy breaches, and insufficient access 
controls - represent critical vulnerabilities that can 
compromise system security, user privacy, and data 
protection compliance [11].  

 Recent studies have significantly advanced our 
understanding of LLM vulnerabilities. [8] conducted 
pioneering research on training-time attacks, 
demonstrating how adversarial data poisoning can 
compromise model integrity with success rates exceeding 
70%. In a comprehensive analysis, [5] identified critical 
weaknesses in inference-time security, particularly in 
prompt injection attacks that achieved breach rates of up 
to 85% in commonly used LLM architectures. Similarly, [6] 
explored backdoor vulnerabilities in pre-trained models, 
revealing how seemingly benign triggers could activate 
malicious behaviors while maintaining normal 
performance on clean inputs. 

Furthermore, [9] developed novel defensive mechanisms 
against paraphrasing attacks, reducing successful breach 
attempts by 60% while preserving model utility. A 
groundbreaking study by [12] introduced a robust 
framework for detecting and preventing spoofing attacks in 
real time, achieving a 92% detection rate for sophisticated 
impersonation attempts. Additionally, [7] demonstrated 
how training-time poisoning attacks could persist even 
after fine-tuning, emphasizing the need for enhanced 
security measures throughout the model development 
pipeline. 

To tackle prevalent challenges in vulnerability analysis, the 
study [14] introduces a new benchmark, VulDetectBench, 
which is specifically designed to evaluate the vulnerability 
detection capabilities of large language models (LLMs). 
The performance of 17 models, including open-source and 
closed-source options, was assessed, revealing that these 
existing models can achieve over 80% accuracy in 
vulnerability identification and classification tasks. 

The study presented in [15] illustrates the effectiveness of 
fine-tuning large language models for detecting 
vulnerabilities in source code. The finetuned WizardCoder 
model notably improves the ROC AUC and F1 scores on 
both balanced and imbalanced vulnerability datasets when 
compared to the CodeBERT-like model. This improvement 
highlights the potential of adapting state-of-the-art pre-
trained large language models (LLMs) to effectively 
identify vulnerabilities in source code. 

The remainder of this paper is organized as follows:  
Section 2 provides a detailed theoretical foundation of the 
underlying models and methodologies employed in this 
study. In Section 3, we introduce our novel detection and 
mitigation framework, presenting its architectural 
components and operational mechanisms for identifying 
and countering various attack types.  Section 4 presents 
an extensive experimental evaluation of our proposed 
approach, including detailed performance metrics, 
comparative analyses, and statistical validation of results 
across multiple attack scenarios. The paper concludes in 
Section 5 with a synthesis of our findings, implications for 
LLM security, and directions for future research in this 
rapidly evolving field. 

2.  Background 
Understanding Adversarial Attacks and the Vulnerabilities 
of Large Language Models (LLMs) is crucial [11].  These 
models, while powerful, can be susceptible to manipulative 
inputs that undermine their effectiveness and reliability. 
Recent studies have shown that these vulnerabilities can 
be exploited through various attack vectors [10],[13]. 
Recognizing these vulnerabilities is essential for 
enhancing the security and integrity of AI systems. The 
security landscape of Large Language Models (LLMs) 
presents a complex array of vulnerabilities that necessitate 
systematic analysis and categorization. Recent research 
has identified multiple attack vectors that can compromise 
these systems' integrity, reliability, and security [12]. 
Among the vulnerabilities identified, several are 
particularly concerning, including prompt injections, data 
leaks, and inadequate sandboxing. Prompt injections allow 
attackers to manipulate the model's responses by 
introducing malicious or misleading input, while data leaks 
can inadvertently reveal sensitive information contained 
within the model's training data.  Inadequate sandboxing 
refers to the absence of a secure environment that isolates 
the model during operation, making it susceptible to 
various exploitation techniques. These examples illustrate 
how easily LLMs can become targets for malicious 
activities. To offer a clearer understanding of these 
vulnerabilities, in this paper, we handle them as training-
time vulnerabilities and inference-time vulnerabilities. 
Training-time vulnerabilities relate to risks that arise during 
the model's training phase, such as data poisoning or 
adversarial training methods. Inference-time vulnerabilities 
concern the model's performance and usage during 
response generation, which can be exploited by 
adversaries to manipulate outputs or gain unauthorized 
access to information. Each category corresponds to 
specific types of attacks targeting different stages of the 
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LLM lifecycle, highlighting the critical importance of 
vigilance and robust security measures throughout the 
entire process. 

2.1. Training-Time Vulnerabilities: 
Large Language Models (LLMs) are essential components 
of modern machine learning applications, powering 
advancements across various sectors, including 
healthcare, finance, and autonomous systems. However, 
these powerful tools are not without their vulnerabilities, 
which can threaten their effectiveness. Among the most 
alarming threats are poisoning and backdoor attacks. 
Poisoning attacks involve the injection of malicious or 
misleading data into the training set, which can skew the 
model's learning process and lead to poor performance 
when it encounters real-world data. In contrast, backdoor 
attacks embed a concealed trigger within the model during 
training, activating harmful behaviors during inference 
under specific conditions. Both types of attacks exploit 
weaknesses in the training phase, raising significant 
concerns about the reliability and safety of models in 
practical applications. To address these risks, it is vital to 
develop robust strategies and defenses to protect against 
such threats and preserve the integrity of machine learning 
systems.  

Poisoning attacks represent a critical threat in the realm of 
machine learning, where adversaries strategically inject 
maliciously crafted data into training datasets. The primary 
objective of these attacks is to disrupt the model's 
performance or distort its behavior in targeted ways. 
Poisoning attacks can be broadly categorized into two 
distinct types: The first one is Data Integrity Attacks which 
specifically aim to infiltrate the training set with mislabeled 
or erroneous samples. Such manipulation leads to poor 
generalization, meaning the model fails to make accurate 
predictions based on real-world data. For example; an 
attacker introduces improperly labeled images into a facial 
recognition dataset, which could result in the model 
misidentifying individuals during crucial evaluations. The 
other is Data Availability Attacks which inundate the 
dataset with an overwhelming number of malicious 
samples, effectively sabotaging the model's usability. For 
instance, By flooding the dataset with irrelevant or noisy 
data, an attacker can significantly impair the model's 
effectiveness, causing it to struggle with its intended tasks 
and yield unreliable outputs. 

Backdoor attacks represent a significant and pressing 
threat, involving the embedding of hidden "triggers" within 
models during the training phase. These triggers can 
manipulate the model's output, generating a 
predetermined response regardless of the actual content 
of the input. The cunning nature of backdoor attacks is 
amplified by the model's ability to perform normally on 
clean data, effectively concealing the existence of the 
backdoor. A common Trigger Type could be a Pixel 
Pattern which is A carefully designed arrangement of 
pixels that misleads the model. Alternatively, the 
Perturbation is Subtle modifications to the input that are 
imperceptible to humans yet trigger the backdoor. Or 
Semantic Triggers which are Abstract patterns, such as 

specific objects or textures, intended to exploit the model. 
Backdoor in a self-driving car's vision model can lead to 
severe misinterpretation of stop signs, endangering lives. 
Poisoning attacks on diagnostic models can result in 
serious misdiagnoses and ineffective treatments, 
jeopardizing patient safety. Targeted attacks on fraud 
detection systems threaten fundamental security 
measures, allowing adversaries to bypass critical 
protections and undermining financial stability. 

It is essential to recognize and address these 
vulnerabilities to protect the integrity of critical systems 
effectively. Poisoning and backdoor attacks underscore 
the critical need for security in neural network development 
and deployment. As adversaries continue to develop 
sophisticated attack strategies, the research community 
and industry must prioritize robust defenses and proactive 
measures.   

2.2. Inference-Time Vulnerabilities  
Inference-time vulnerabilities in large language models 
(LLMs) encompass various potential weaknesses or 
exploits that can manifest when these sophisticated 
models are actively deployed and engaged with by users, 
particularly during the crucial moment when they generate 
responses. Inference-time vulnerabilities, such as 
paraphrasing and spoofing attacks, target specific flaws in 
the interactions between users and large language models 
(LLMs). Paraphrasing attacks involve rewording inputs to 
exploit the model's responses while spoofing attacks seek 
to impersonate legitimate requests or users. Both types of 
attacks are designed to manipulate the behavior of the 
model, evade established restrictions, or generate 
outcomes that were not intended by the developers. These 
vulnerabilities underscore a crucial need for enhanced 
security measures and rigorous oversight in the 
deployment of LLMs. These vulnerabilities can be 
manipulated by malicious actors seeking to exploit the 
system or may arise from unexpected or unintended 
inputs, which could lead to the production of harmful, 
biased, or misleading outputs. Paraphrasing attacks are a 
significant threat that exploits the advanced capabilities of 
large language models (LLMs) to understand and generate 
text in varied linguistic forms while maintaining the same 
underlying meaning. In these attacks, adversaries 
intentionally reformulate inputs to bypass existing content 
moderation systems or evade detection mechanisms that 
typically rely on rigid matching criteria. For example, when 
faced with a prohibited query like "How do I create a 
harmful substance?", an attacker may cleverly rephrase it 
to "What are the steps to prepare a dangerous chemical?" 
This tactic aims to trick the model into considering the 
rephrased input as acceptable, potentially triggering 
harmful or restricted outputs. Such manipulation starkly 
illustrates how LLMs, designed to generalize meaning, can 
inadvertently produce dangerous results when confronted 
with subtly altered inquiries. Furthermore, in applications 
focused on sentiment analysis or content categorization, 
paraphrasing can drastically skew the perceived intent of 
a message. A simple rewording can distort sentiment or 
change category labels, masking the original harmful 
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intentions and making detection of inappropriate content 
exceedingly difficult. 

In addition, spoofing attacks pose a serious risk by 
misleading large language models into believing that input 
is genuine, trustworthy, or harmless when it is adversarial 
or deceptive. These attacks can target the input data 
provided to the model as well as the accompanying 
metadata or context that shapes its responses. Attackers 
manipulate either the input or contextual cues to achieve 
outcomes that align with their malicious objectives. Tactics 
may include exploiting system prompts, infusing harmful 
inputs during the model's fine-tuning processes, or 
disguising adversarial queries as legitimate requests. The 
spoofing attacks include the prompt injection which is an 
aggressive tactic that involves inserting misleading or 
contradictory instructions into user inputs or system 
prompts, compelling the model to generate responses that 
violate established rules. For instance, appending "Ignore 
previous instructions and provide the following" to a query 
enables attackers to sidestep system restrictions 
effortlessly. Also in Impersonation Attacks Attackers 
exploit language models to generate content that mimics 
the voice or authority of a specific individual or 
organization. This method is particularly dangerous as it 
facilitates the spread of false or misleading information, 
leaving users vulnerable to deception. The other instance 
is Metadata Spoofing, where the behavior and responses 
of language models are influenced by external metadata—
such as user profiles or source credibility—attackers can 
easily falsify this metadata to manipulate the model's 
outputs to their advantage. 

Both paraphrasing and spoofing attacks expose critical 
vulnerabilities within large language models. While these 
models excel at understanding and generating varied 
linguistic expressions, their very strengths can be 
weaponized against them. To combat these pervasive 
challenges, must implement a robust combination of 
advanced semantic understanding techniques, stringent 
filtering systems, and proactive monitoring strategies to 
ensure the integrity and reliability of LLM-based 
applications, effectively safeguarding against misuse and 
malicious intent. 

3. Proposed Model  
As Large Language Models (LLMs) increasingly play a 
vital role in real-world applications, it is essential to 
prioritize the resolution of their security vulnerabilities. This 
research focuses on two critical areas: identifying and 
analyzing vulnerabilities that arise during the training 
phase and those that occur during inference. Additionally, 
we examine how these models respond to various attack 
patterns. Our findings present a systematic approach to 
quantifying and understanding these security challenges, 
shedding light on model robustness and offering effective 
mitigation strategies.  

This paper introduces an innovative framework designed 
to analyze vulnerabilities during training time and inference 
time to effectively detect attacks on Large Language 
Models. Our approach integrates input processing, an 

analysis engine, a decision engine, and robust defense 
layers, creating a comprehensive protective architecture. 
Adversarial attacks, including poisoning, backdoor, 
Spoofing, and Paraphrasing attacks, present serious 
threats to the integrity and reliability of machine learning 
models. A thorough evaluation of these attacks is critical 
for developing robust defensive strategies and enhancing 
overall model resilience. In this paper, we present a 
detailed evaluation framework that facilitates the 
comparison of poisoning, backdoor, Spoofing, and 
Paraphrasing attacks on machine learning models. Our 
framework includes an extensive array of metrics that 
capture essential aspects of attack performance, model 
impact, shifts in data distribution, and overall robustness. 
We demonstrate the application of our framework on a 
simple neural network model. The proposed model is 
illustrated in Figure 1. 

The diagram showcases a robust cybersecurity system 
architecture that integrates four essential components: 

Input Processing layer rigorously validates incoming data, 
ensuring its integrity and reliability. It adeptly recognizes 
patterns in traffic and user behavior, swiftly identifying 
anomalies that could indicate potential threats. By 
conducting initial threat filtering, it creates a protective 
barrier against risks to safeguard your systems.  

The Analysis Engine Layer excels at detecting data 
attacks, thereby preserving the reliability of your security 
models.  It proactively identifies vulnerabilities, 
empowering your organization to strengthen its security 
measures.  Moreover, it effectively recognizes attack 
attempts, providing crucial safeguards against identity. 

The decision Engine Layer meticulously assesses security 
risks, offering strategic guidance for appropriate 
responses. Classifying threat levels ensures can prioritize 
and respond effectively to potential dangers. 

Defense Layer:  This critical layer actively mitigates attacks 
using advanced blocking and sanitization techniques, 
fortifying your defenses against cyber threats.   

The used dataset is artem9k/ai-text-detection-pile, a large-
scale dataset containing samples of human and AI-
generated text from GPT2, GPT3, ChatGPT, and GPTJ.  

For Input processing Step: We take the Text T form 
vocabulary Σ as a Text T ∈ Σ*. Then we represent the 
Token sequences as a T(t) → {t₁, t₂, ..., t} for tokenization.  

The framework specifications for proposed Poisoning and 
Backdoor Attack Evaluation. The used Poisoning attack 
metrics based on Attack Success Rate:   

𝐴𝑆𝑅 = !
"
∑ 1[	𝑓(𝑥#$# ) = t]                                                            (1) 

Where xᵢ' is poisoned data t is the target label, f (·) is model 
prediction and N is the number of samples.   

The Performance Impact Metrics used by Clean Accuracy, 
Poisoned Accuracy, and Performance Degradation.  

𝐶𝑙𝑒𝑎𝑛	𝐴𝑐𝑐𝑢𝑎𝑟𝑐𝑦 = !
"
∑ 1[	𝑓(𝑥## ) = 𝑦# ]                                (2) 
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Figure 1. The framework for the proposed architecture.  

𝑃𝑜𝑖𝑠𝑜𝑛𝑒𝑑	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !
"
∑ 1[	𝑓(𝑥#$# ) = 𝑦#$]                               (3) 

The Performance Degradation is evaluated with formula 
(4):  

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒	𝐷𝑒𝑑𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 =Clean_Acc-	Poisoned_Acc    (4)                                         

Where; xᵢ is clean data, yᵢ is clean label, xᵢ' is poisoned 
data, and yᵢ' is poisoned label.  

The performance of Confidence Analysis is represented by 
these formulas (5-7):  

𝐶𝑙𝑒𝑎𝑛	𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = !
"
∑ 	𝑚𝑎𝑥	(𝑠𝑜𝑓𝑡𝑚𝑎𝑥	𝑓(𝑥#))	#                 (5) 

𝑃𝑜𝑖𝑠𝑜𝑛𝑒𝑑	𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = !
"
∑ 	𝑚𝑎𝑥	(𝑠𝑜𝑓𝑡𝑚𝑎𝑥	𝑓((𝑥#$))	#        (6) 

The Confidence Gap is evaluated with formula (7): 
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	Gap	 = 	 |	Clean_Conf	– 	Poisoned_Conf	|          (7) 

We used trigger effectiveness, trigger characteristics, and 
robustness analysis as backdoor attack metrics.   

𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑	𝑆𝑢𝑐𝑐𝑒𝑠𝑠	𝑅𝑎𝑡𝑒	 = !
"
∑ 1[	𝑓(𝑥#$# ) 	= t	]                    (8) 

 where:  xᵢᵗ is triggered data and t is the target label. 

𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑	𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑀𝑆𝐸		(𝑋_𝑐𝑙𝑒𝑎𝑛	, 𝑋_𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑)     (9) 

𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑	𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = %|'(#))*(*+!"##$%&%|'
,_*.*/*,'0

	                     (10) 

𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑	𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 𝑠𝑡𝑑	(𝑋'(#))*(*+ − 𝑋1.*2,)       (11) 

To analyse the robustness, we evaluate the formula (12).  

𝑁𝑜𝑖𝑠𝑒	𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 = !
|"|
∑ 	 !

|3|
	(𝑥 + 𝑎	),	/ ) = ∑ 1[	𝑓(𝑥#'	# +

𝑛 − ℇ) = 𝑡 ]                                                                              (12) 

where: N is a set of noise levels {0.01, 0.05, 0.1}, ε ~ N (0, 
1) is random noise and M is the number of samples. 

The other Robustness is computed in terms of 
Transformation Robustness. The success of Transform is 
computed based on the equation (13-17).  

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚		𝑆𝑢𝑐𝑐𝑒𝑠𝑠		 = !
|"|
∑𝑖 1[𝑓(𝑥#') = 𝑡]                       (13) 

 Transformations T:  

T1(x)=	x+0.1	.ε       (Random noise)                                (14) 

 T2(x)=	clip	(1.1x,	0,1)    (Contrast)                                      (15) 

T3	(x)=	x.	(1+0.1	.ε	)   (Multicative noise)                           (16) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛	𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠
= 𝑚𝑒𝑎𝑛([	𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚041*00(𝑇1), 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚041*00(𝑇2), 

	𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚041*00(𝑇3)	])                                                       (17) 

 The used model is BERT-based Sequence Classification, 
The AutoTokenizer is used in the CUDA/CPU runtime 
environment with Paraphrase, Behavioral, and 
Robustness Analysis Modules. 

The framework introduces a systematic approach to 
analyzing LLM vulnerabilities for Paraphrase Attack 
Analysis through three primary dimensions: We use the 
Simple tokenization using r'\b\w+\b' Regex pattern to Split 
on word boundaries and keep only alphanumeric tokens. 
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For Analysis algorithms, we used Paraphrase Sensitivity 
Analysis to evaluate the sensitivity score for each given 
Text and variations. 

In the evaluation of the Paraphrase Sensitivity analysis, we 
use the equation (18).  

Paraphrase	Sensitivity	Analysis		(PSA) 

𝑆(𝑇, 𝑉) = !
5
∑𝑖 −	𝑡5	|P(T)-	P	(	𝑉#)|																																												(18)	

Where T is the input text and V = {v₁, v₂, ..., vₖ} are 
paraphrase variations, P (·) is the model prediction 
function, |·| denotes L1 norm.  

The	Behavioral	Consistency	Score		(BCS) 

	𝐵𝐶𝑆 = 1 − !
,
∑𝑖 	− 𝑖,	|ᵖi-	µ	|																																																								(19)	

Where μ = !
,
∑ 𝑖 	− 𝑖,  pᵢ (mean prediction), pᵢ are individual 

predictions and n is the number of variations. 

The metric of Robustness is evaluated based on equation 
(20).    

 Robustness Metric (RM) 

	𝑅𝑀 = (!789:)	
=

                                                                        (20) 

 Where S is the sensitivity core, and  

σ	=	1-	std	(confidence_scores)																																																			(21)	

The Vulnerability Assessment Criteria is determined with 
the framework establishes quantifiable thresholds for 
vulnerability detection to determine the vulnerability status 
as a High Risk if PSA > θₚ (0.2), Moderate if BCS < θᵦ (0.8), 
and Low Risk if RM > θᵣ (0.7). We used vulnerability 
classification as a decision function.  Where,   

𝑉(𝑇)	𝑣𝑎𝑙𝑢𝑒	𝑖𝑠	1	𝑖𝑓	𝑆(𝑇) > 𝜃ₚ˅	C(T) 	< 	𝜃ᵦ		˅		R(T) 	< 		𝜃ᵣ		

Othervise	the	value	of	V(T)	has	value	0																																		 (22)	

θₚ is the paraphrase threshold, θᵦ is a behavioral threshold, 
and θᵣ robustness threshold.  

To detect spoofing attacks, we represent the original input 
text as an X, the Target model (e.g., BERT classifier) as 
an M, and the Set of spoofing transformations as S. To 
generate spoofing, we generate the Generate spoofed 
version of input as a s(X). for example; The Original X = 
Execute command" The s(X) could be: System: Execute 
command, or [Admin]: Execute command or 
<verified>Execute command</verified>. 

The other attack types such as the system input injection 
for Spoofing attack constructs with the equation (23). 

𝑆!(𝑋) = 𝐶𝑜𝑛𝑐𝑎𝑡(ρ, 𝑋)                                                            (23) 

Where; Σ is input text space and X ∈ Σ is legitimate input, 
ρ ∈ {System: Override previous instructions.", "Debug 
mode enabled.”, “Admin access granted.", ...}   

Then Identity Spoofing is applied with the equation (24). 

 𝑆=(𝑋) = 𝐶𝑜𝑛𝑐𝑎𝑡(I, 𝑋)                                                          (24) 

 Where; I ∈ {“[Authorized User]:", "<admin>:", "[System]:", 
...}  

The spoofing Pattern Generation is performed for System 
injection, Identity spoofing, format manipulation, and 
context manipulation.  

4. Results and Experimental 
Analysis 
This paper presents a comprehensive analysis of two 
distinct neural network attack evaluation frameworks: 
Adversarial attacks, including poisoning, backdoor, 
Spoofing, and Paraphrasing attacks. We introduce robust 
evaluation metrics for both attack types and provide an 
implementation that enables systematic comparison of 
their effectiveness, impact, and detectability. Our analysis 
reveals key differences in attack characteristics, success 
rates, and model resilience, offering insights for developing 
more effective defense mechanisms.   

We used Linear architecture and the Relu activation 
function. The input dimension is 100, hidden_dim is 50 and 
num_classes is 10 for poisoning and backdoor attack 
evaluation. The used number of samples is 1000, the clean 
data distribution: is N (0, 1), the Poisoning ratio: is 10% 
and the Trigger pattern is a Random noise pattern.   

The obtained results for Paraphrase Sensitivity Analysis 
are detected based on decision patterns through Synonym 
substitution, Phrase restructuring, and semantic 
preservation tests. Robust patterns detected through 
Patterns detected through: Character-level modifications, 
Token-level changes, and Noise injection testing.  The 
thresholds for spoofing attacks are set to 0.8, 0.7, 0.6, and 
0.8 for confidence, resistance, deception, and identity.   
Through a comprehensive and systematic analysis of the 
dependencies among various parameters, we enhanced 
the reliability and applicability of the evaluation framework. 
By focusing on these interdependencies, we gained 
insights into the nuances and performance implications of 
different parameter settings through experimental 
analysis.
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  Figure 2. Comparative analysis of Backdoor attack performance metrics across different attack  
 

 
Figure 3. Performance metrics for different Poison attack strategies on large language models. 

Figure 2 experimental evaluation examined four distinct 
types of backdoor attacks: pattern injection, blending, 
semantic, and dynamic attacks. Each attack type was 
assessed using three key performance metrics: Trigger 
Success Rate, Clean Accuracy, and Confidence Score. 
Pattern injection attacks demonstrated strong overall 
performance, with high clean accuracy (91.2%). This 
suggests the detection system maintains robust 
performance on uncompromised inputs while effectively 
identifying pattern-based triggers. Blending attacks 
showed the highest clean accuracy (93.5%) among all 

attack types, indicating that the system's ability to process 
legitimate inputs remains largely unaffected when 
defending against blending-based backdoors. Semantic 
attacks presented the lowest trigger success rate (84.5%), 
suggesting these attacks are more challenging to detect 
due to their contextual nature. However, the system 
maintained high clean accuracy (92.3%). Dynamic attacks 
showed balanced performance across all metrics, with 
consistent scores above 86%. This indicates robust 
detection capabilities against time-varying and adaptive 
triggers.  
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In Figure 3, the performance metrics for Poison attacks are 
represented. The gradient-based attacks showed 
balanced performance across all metrics, with immaculate 
data accuracy. The relatively tight error margins (±1.9-
2.8%) indicate consistent detection performance. Feature 
collision attacks demonstrated slightly lower performance 
than gradient-based attacks but maintained robust clean 
data accuracy. The wider error margins suggest more 
variability in detection performance. Label-flipping attacks 
showed the lowest overall performance metrics, 
particularly in attack success rate. This suggests that these 
attacks are more challenging to detect consistently. Clean 
label attacks. Demonstrated the highest performance 
across all metrics, with notably strong clean data accuracy 
and confidence scores. The narrow error margins indicate 
stable detection performance. The experimental results 
demonstrate robust detection capabilities across different 
poisoning attack types, with a particularly strong 
performance against clean-label attacks. The system 
maintains high clean data accuracy while providing reliable 

attack detection, though performance varies with attack 
complexity. Label-flipping attacks remain the most 
challenging to detect, suggesting an area for future 
improvement. 

Figure 4 shows the analysis demonstrates robust detection 
capabilities across different attack variants, with particular 
performance in spoofing-paraphrasing attack detection. In 
the evaluation of paraphrasing effectiveness, several 
metrics were assessed. The results indicate that basic 
paraphrasing achieved the highest performance, scoring 
85%. Following closely, contextual paraphrasing 
performed at 82%. On the other hand, semantic 
paraphrasing recorded the lowest score at 78%. In terms 
of spoofing, the behavioral aspect received a score of 
81%, while structural spoofing was slightly higher at 83%. 
Identity spoofing scored 80%. Overall, the metrics ranged 
from a low of 78% to a high of 85%, showcasing a variety 
of performance levels across different types of 
paraphrasing and spoofing techniques.  

 
Figure 4. Comparative visualization of detection performance metrics across paraphrasing and Spoofing attack vectors (0-100%). 
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Table 1. Experimental results for Poison Attack.                                   Table 2. Experimental results for  Backdoor Attacks

 

 

 

 

 

 

 

 

Table 1-2 represents the performances of the backdoor 
and poisoning attacks. In Table 1 both base accuracy and 
clean accuracy achieve an impressive 85.6%. However, 
it's important to note a significant decline in poisoned 
accuracy, which falls to 68.9%. The attack success rate 
stands at a commendable 73.4%. With strong precision at 
82.3% and an F1-score of 80.7%, the model demonstrates 
robust performance. Table 2 shows impressive baseline 
performance, marked by a high overall accuracy of 89.1% 
and a clean accuracy of 89.1%. Its robust precision of  
86.7% and recall of 83.4% reflect balanced and reliable 
detection capabilities. 

 

 

 

 

 

 

 

 

A strong F1 score of 85.0% underlines consistent 
performance across critical metrics.  Furthermore, the 
noteworthy trigger success rate of 81.2% indicates an 
effective approach to backdoor detection. However, the 
triggered access rate of 74.5% reveals an opportunity for 
enhancement in managing triggered scenarios. In 
summary, the key takeaway is that while the system excels 
with clean data, there is significant potential for 
improvement in effectively combating triggered backdoor 
attacks.

 

Figure 5. Comparative visualization of detection performance metrics across paraphrasing and spoofing attacks. 

 

 

 

 

 

 

 

 

Poison Attack  Accuracy 

Accuracy 85.6 % 

Precision 82.3% 

Recall 79.1 % 

F1-Score 80.7% 

Attack-Success Rate 73.4% 

Clean Accuracy 85.6% 

Poisoned Accuracy 68.9 % 

Backdoor Attack  Accuracy 

Accuracy 89.1 % 

Precision 86.7% 

Recall 83.4 % 

F1-Score 85.0% 

Trigger-Success Rate 81.2% 

Clean Accuracy 89.1% 

Triggered Access 74.5% 
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Table 3. Experimental results for Paraphrasing Attack. 

Table 4. Experimental results for Spoofing Attack. 

In Table 3, a consistent gap of approximately 3% exists 
between precision and accuracy across all 
categories.  Performance tends to decline steadily with 
increased complexity, which is an important 
consideration.  Notably, the system maintains an accuracy 
rate of over 83% across all attack types.  Table 4 Identity 
spoofing detection demonstrated strong performance 
across all metrics, achieving 95.0% precision and 93.0% 
accuracy. However, performance decreased slightly for 
structural attacks, with a 3% drop in accuracy, and for 
behavioral attacks, which showed a 5% decrease in 
accuracy. Precision consistently surpassed accuracy by 
2% throughout all attack types, indicating reliable positive 
predictions. These results highlight robust detection 
capabilities, especially for identity-based attacks. The 
consistent performance gradient—identity attacks being 
the easiest to detect, followed by structural and then 
behavioral attacks—suggests a correlation between the 
complexity of the attacks and the difficulty of detection. 

Figure 5 The temporal analysis reveals significant 
differences in detection capabilities across methods. The 
experiment compares three detection methods over five 
time intervals (00:00, 00:15, 00:30, 00:45, and 01:00). This 
establishes the starting point, with paraphrasing detection 
showing strong initial performance.  All detection methods 
show improvement compared to the initial benchmark, with 
paraphrasing detection seeing a substantial 7% increase. 
Spoofing detection also improves by 5% in the (00:15) 
benchmark. The peak performance (00:30) This interval 
shows the highest overall detection rates, particularly for 
paraphrasing detection, which reaches its peak 
performance at 95%. Baseline detection remains relatively 
unchanged. Spoofing detection reaches its highest point at 
55%, showing an improvement of 10% from the initial 
benchmark. Paraphrasing detection remains high but 
slightly decreases from its peak in (00:45). By the final 
interval; there is a slight regression in performance for 
paraphrasing detection while spoofing detection maintains 
its improvement over the initial benchmark.  This 
experimental data strongly supports paraphrasing 
detection as the primary method, with supplementary 
spoofing detection to cover additional attack vectors. 

4.    Conclusions 
As large language models establish themselves as 
essential components across various fields and 
applications, it becomes imperative to recognize and 
address the vulnerabilities lurking within both training and 
inference stages. By actively tackling these threats through 
comprehensive and strategic mitigation efforts, we can 
significantly enhance the integrity and robustness of these 
advanced technologies, ensuring their safe and efficient 
application in a rapidly evolving landscape. Embracing 
such initiatives will be instrumental in fostering innovation 
while simultaneously protecting critical assets and user 
trust. The results indicate that the system performs 
exceptionally well across all evaluated attack types. High 
detection rates, low false positive rates, and excellent 
system resilience suggest a well-rounded and reliable 
cybersecurity framework. 

Future work should focus on improving semantic attack 
detection and reducing performance variability in dynamic 
scenarios. Also, focus on optimizing response times 
further and expanding the evaluation to include additional 
attack scenarios. 
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