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ABSTRACT

This study empirically compares the accuracy of two common methods for estimating time-varying betas in Turkish industry 
portfolios: rolling-window OLS regression and the DCC model. Using daily return from 2004 to 2024, the methods are evaluated 
based on their alignment with CAPM predictions, specifically the insignificance of Jensen’s alpha and the significance of the 
market risk premium. Findings show that despite its complexity, the DCC model does not outperform the rolling-window 
approach. The rolling-window approach produces insignificant Jensen’s alpha estimates for more industries and yields slightly 
higher mean and t-statistics for the market risk premium. These findings challenge the view that rolling-window estimators 
are inefficient due to assuming beta constancy within short windows and suggest that the DCC model’s reliance on multiple 
constant parameters imposes a rigid structure that may hinder its adaptability to evolving market conditions. This study 
contributes to the literature by directly comparing these two widely used methods and highlighting the importance of carefully 
considering model assumptions when estimating time-varying betas.
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INTRODUCTION

Sharpe (1964), Lintner (1965), and Mossin (1966) 
independently developed the CAPM, which uses market 
beta to quantify an asset’s exposure to market risk and 
estimate its expected return. This framework has been a 
crucial development in finance, significantly influencing 
capital budgeting, asset pricing, performance evaluation 
and academic research on market efficiency. However, 
Fama and French (1992) showed that market beta alone 
cannot explain return differences across size and book-
to-market portfolios. Graham and Harvey (2001) showed 
that it continued to be widely used. Hence, empirical 
failure of the model lead to a search for improvements to 
the model instead of abandoning it.

Fama and French (2004) identified several potential 
explanations for the empirical failures of the basic CAPM 
and its multifactor extensions. These explanations 
include irrational stock pricing, the inadequacy of 
the model, and poor proxies for the market portfolio. 
Additionally, Lettau and Ludvigson (2001) and Adrian 
and Franzoni (2009) argued that the poor empirical 
performance could be attributed to neglecting the time-

varying nature of conditional moments of returns as 
well as beta. Jagannathan and Wang (1996) were among 
the early studies to criticize the basic CAPM’s implicit 
presumption of time-invariant beta, which underpinned 
the use of straight ordinary least squares (OLS) in earlier 
studies. There are concerns that a constant beta may 
not accurately reflect real-world conditions in which 
investors’ expectations change over time.

Empirical investigations overwhelmingly confirm that 
beta is time-varying and this concept is well acknowledged 
in the literature. One of the earlier studies, Fabozzi and 
Francis (1977), showed that beta changes with bull and 
bear market conditions. Alexander and Chervany (1980) 
examined how time-variation of beta is associated with 
the portfolio formation approach and the size of the 
portfolios. Brooks, Faff and Lee (1992) compared varying-
coefficient models for describing beta. Several other 
studies have introduced new methods for modeling 
the time-variation in beta, including the rolling-window 
OLS regression (Fama & MacBeth, 1973), multivariate 
GARCH models (Bollerslev, Engle & Wooldridge, 1988), 
state variable approach (Ferson & Harvey, 1991), Kalman 
filter (Shah & Moonis, 2003), regime-switching models 
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(Korkmaz et al., 2010), and nonparametric models 
(Esteban & Orbe-Mandaluniz, 2010).

Among the many alternatives, using the rolling-window 
OLS regression is the oldest and simplest, yet a common 
method for estimating time-varying betas. This approach 
is commonly associated with Fama and MacBeth (1973), 
although they neither named nor specifically promoted 
it. They calculated betas from five years of monthly 
observations to use in the cross-sectional regressions 
carried out every month over the subsequent four years. 
At the end of each four-year period, they rolled the 
estimation window forward. Estimating beta using data 
from the latest five-year window has become a standard 
procedure, and Groenewold and Fraser (2000) referred to 
it as the “five-year rule of thumb”. Agrrawal, Gilbert and 
Harkins (2022) questioned this rule and investigated the 
optimal return frequency and window length to produce 
betas that better forecast subsequent period’s returns. 
Nonparametric models, such as the one developed 
by Baillie, Calonaci and Kapetanios (2022), are general 
versions of the rolling-window OLS regression. These 
models don’t require determining a fixed window length 
but are not as commonly used as the rolling-window OLS 
regression approach.

A prominent alternative method for calculating time-
varying betas is using one of the multivariate GARCH 
models. These models are formulated to address the time 
variation in volatility of return series and the clustering 
of that volatility. Multivariate versions of GARCH extend 
this capability by modeling co-movements in financial 
volatilities, providing conditional variances as well as 
covariances that can be used to calculate conditional 
betas. Silvennoinen and Teräsvirta (2009), as well as the 
earlier study by Bauwens, Laurent, and Rombouts (2006), 
carried out detailed surveys of multivariate GARCH 
models, highlighting the diversity within this family of 
models. The BEKK and DCC models are the most widely 
used among multivariate GARCH models, leading Caporin 
and McAleer (2012) to carefully select them for analytical 
comparison. Notably, the DCC model is the more recent 
of the two and avoids over-parameterization.

The Dynamic Conditional Correlations (DCC) 
model, a widely recognized framework in financial 
econometrics, was initially developed by Engle and 
Sheppard (2001). They designed it to provide strong 
estimation performance while allowing for ease of 
implementation across many assets by reducing the 
number of parameters that need to be estimated. Engle 
(2002) subsequently refined the model, enhancing its 
applicability and theoretical foundations, and found that 

the DCC model provides the most accurate correlation 
estimates among multivariate GARCH models in the two-
asset case. Building on this work, Bali, Engle and Tang 
(2016) conducted an analysis and found that dynamic 
conditional betas estimated with the DCC model 
significantly predict the cross-sectional variation in daily 
stock returns. Shortly after, Engle (2016) developed a new 
approach based on the DCC model that allows for joint 
estimation of multiple covariance matrices, enabling the 
estimation of time-varying betas for multifactor CAPM. 
They applied it to industry portfolios and found lower 
significance for alphas, as predicted by the theoretical 
model, compared to traditional models other than the 
rolling-window approach.

A group of studies focused on comparing alternative 
methods using some in- and out-of-sample forecasting 
accuracy criteria on Australian industry portfolios 
(Brooks, Faff & McKenzie, 1998), European industry 
portfolios (Mergner & Bulla, 2008) and UK company stocks 
(Choudhry & Wu, 2008) However, they didn’t include the 
rolling-window approach or DCC model. Nieto, Orbe 
and Zarraga (2014) conducted a more comprehensive 
comparison, including both methods, using time series 
and cross-section criteria on Mexican stock returns. They 
didn’t provide conclusive evidence of better performance 
for the DCC model compared to the rolling-window 
approach. Recently, Aloy et al. (2021) found that the 
DCC model has unsatisfactory out-of-sample predictive 
performance on the US and European REITs data. These 
studies concluded that Kalman filter models are superior 
to other methods but the majority did not compare the 
relative performance of the DCC and the rolling-window 
approaches, despite their widespread use.

There is no consensus on whether the newer DCC 
model or the rolling-window approach is superior for 
estimating time-varying betas to be used in financial 
applications. The rolling-window approach is simple but 
has limitations, such as ignoring the behavior of return 
volatility and assuming a constant beta within each 
window. As noted by Adrian and Franzoni (2009), Aloy et 
al. (2021), and Lettau and Ludvigson (2001), an incomplete 
or inadequate treatment of time-variation in conditional 
moments can lead to model misspecification, resulting 
in both subpar empirical performance of the CAPM and 
suboptimal financial decisions. The DCC model attempts 
to mitigate these limitations by specifying a dynamic 
process for modeling conditional correlations, from which 
conditional moments are then calculated. However, the 
DCC model is inherently predicated on the assumption 
of constant parameters over the entire sample period, an 



Time-Varying Beta Estimation: A Comparison of DCC-GARCH and Rolling-Window Methods in Turkish Industry Portfolios

755

overly simplifying assumption which may not hold for 
long horizons and may lead to misspecification either. 
The solution of Lewellen and Nagel (2006) to avoid the 
challenges of specifying conditioning information and 
beta instability over longer windows was estimating 
CAPM regressions over shorter windows.

Mixed findings on the DCC model’s effectiveness 
and the enduring relevance of the rolling-window 
approach raise the question of whether increased model 
complexity necessarily leads to more accurate beta 
estimates. The author’s review of the literature reveals 
that no study has directly compared these two specific 
methods within the context of industry portfolio beta 
estimation. This study aims to fill that gap by evaluating 
the estimation accuracy of the DCC model relative to 
the rolling-window approach, based on how each aligns 
with two key CAPM implications: (1) insignificant Jensen’s 
alphas in time-series regressions, and (2) a significant 
positive relationship between betas and expected returns 
in cross-sectional regressions. Using Turkish industry 
portfolio data from 2004 to 2024 with daily returns, the 
study assesses which model produces time-varying 
betas that more faithfully reflect these CAPM predictions.

This study contributes to the time-varying beta 
literature by empirically comparing two widely used 
estimation methods and highlighting the importance 
of carefully considering the assumptions underlying 
these methods. It builds on recent work examining the 
time-varying nature of asset pricing model parameters. 
For instance, Çatık, Huyugüzel Kışla, and Akdeniz (2020) 
used OLS recursive regression betas, and Ustaoğlu (2022) 
employed DCC betas to demonstrate beta variability in 
Turkish industry returns. İlbasmış (2024) compared two 
versions of the DCC model for forecasting accuracy. In 
contrast, this study directly compares the basic DCC 
model with the traditional rolling-window approach, 
focusing on their consistency with CAPM implications.

The remaining sections are arranged as follows. Section 
2 describes the data and outlines the methodology for 
obtaining time-varying betas using rolling-window 
regressions and DCC model covariance estimates. Section 
3 presents the comparison results of the two estimation 
methods and examines their robustness to parameter 
instability. Finally, Section 4 ends the paper by discussing 
the findings.

DATA AND METHODOLOGY

The data is retrieved from the Financial Information 
News Network (Finnet) database, which contains sector 

and market index values for Turkish stocks listed on 
Borsa Istanbul (BIST), as well as index values for Turkish 
government bonds. BIST calculates sector and market 
indices using the free-float market values of the included 
stocks. It systematically identifies and selects the top 100 
stocks based on specific criteria and designates their 
index as the main equity market index. This index was 
thus selected to function as the proxy for the market 
portfolio. The risk-free interest rate is proxied by the 
yield of the most actively traded Turkish government 
bond. The data available for the analysis spans the period 
from April 1, 2004 to August 2, 2024 at a daily frequency 
and covers 24 industry indices some of which are not 
mutually exclusive. The following subsections describe 
how the data are transformed into excess returns, 
detail the estimation procedures for time-varying betas 
using both the rolling-window and DCC approaches, 
and interpret summary statistics for excess returns and 
conditional betas.

Calculation of Excess Returns

The excess return for each industry index, along with 
that of the market, was derived by subtracting the 
risk-free rate from each portfolio’s return. Specifically, 
the excess returns at day  for industry  and the market  
are calculated as  and , 
respectively. In this formulation,  represents the daily 
risk-free rate expressed in percentage terms, obtained 
by dividing the annual bond yield at time  by 365.   
and  denote the daily continuously compounded 
returns for the industry and market indexes, respectively, 
both expressed in percentage.  was computed as the 
log return using , where  is the 
index value at time , and  was calculated from the 
market index analogously. Annualized values reported 
throughout the paper are calculated using the standard 
compounding formula , assuming 251 
trading days per year, where  denotes the daily return, 
Jensen’s alpha or risk premium.

Table 1 presents summary statistics for the excess 
returns of the industry indices and the market index. 
The transportation and storage industry recorded the 
highest average daily excess return at 0.0773% (21.4% 
annually), followed by the wholesale and retail trade 
industry at 0.0617% (16.7% annually), and the technology 
industry at 0.0591% (16.0% annually). In contrast, the 
property trusts industry had the lowest average return 
at 0.0125% (3.2% annually). These figures reflect the 
influence of government-led investments, sector-specific 
incentives and an inflation-related policy mix. Robust 
infrastructure projects such as the construction of 
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Istanbul Airport boosted the transportation and storage 
industry. The extension of Region 5 incentives to defense 
and aerospace investments nationwide bolstered the 
technology industry’s returns. Low real interest rates 
encouraged short-term consumer spending, contributing 
to the strong performance of the wholesale and retail 
trade industry. Conversely, high nominal mortgage 
rates constrained housing affordability and limited long-
term housing investments. This, coupled with restrictive 
measures such as the 25% cap on rental income growth, 
contributed to the underperformance of the property 
trusts industry.

Table 1 also reports the standard deviations of excess 
returns, highlighting substantial variation in return 
volatility across industries. For instance, the leasing and 
factoring industry shows a high standard deviation of 

2.4554% despite a modest average daily excess return 
of 0.0381% (10% annually), suggesting that returns in 
this sector are highly volatile relative to their mean. In 
contrast, the industrials and services industries exhibit 
more stable performance, with standard deviations of 
1.4822% and 1.4908%, respectively. This variation in the 
return volatility aligns with the number of constituent 
stocks in each industry index. The industrials and services 
indices exhibit lower return volatility due to greater 
diversification,  each comprising more than a hundred 
stocks. In contrast, the leasing and factoring industry 
shows significantly higher volatility, reflecting its limited 
diversification, with fewer than ten constituent.

Table 1: Summary statistics of returns 

Code Index Mean Std. Dev. Skew. Kurtosis J-B test  ADF test 

XU100 BIST100 Turkish Market Index 0.0358 1.6754 -0.4223 6.9439 3461.54 -12.0320 

XUSIN Industrials 0.0441 1.4822 -0.8169 8.4557 6901.65 -11.8893 

XGIDA   Food, Beverage & Tobacco 0.0386 1.7343 -0.5695 7.3482 4299.35 -12.8357 

XTEKS   Textıle & Leather 0.0442 1.6895 -1.1315 9.5581 10241.59 -12.5415 

XKAGT   Wood & Paper Products 0.0248 1.8357 -0.6366 6.9137 3604.32 -12.8238 

XKMYA   Chemicals 0.0492 1.7679 -0.4578 6.8945 3405.78 -11.4833 

XMANA   Basic Metal 0.0501 2.0928 -0.1981 6.5054 2648.07 -12.3458 

XTAST   Mineral Products 0.0411 1.5831 -0.6011 8.2806 6241.19 -13.1292 

XMESY   Fabrıcated Metal Products 0.0444 1.7408 -0.6234 7.5554 4746.60 -12.6506 

XUHIZ Services 0.0467 1.4908 -0.4500 7.1977 3921.85 -11.9935 

XELKT   Electricity Gas & Steam 0.0210 2.0126 -0.4562 8.4065 6397.11 -12.4850 

XTCRT   Wholesale & Retail Trade 0.0617 1.7038 -0.2333 9.1823 8179.27 -10.8475 

XULAS   Transportation & Storage 0.0773 2.3371 -0.0888 5.8565 1742.98 -13.5450 

XSPOR   Sports Activities 0.0187 2.4117 -0.3744 10.7372 12857.84 -9.6696 

XTRZM   Hotels & Restaurants 0.0277 2.2413 -0.5200 7.2945 4154.54 -13.0898 

XILTM   Telecommunications 0.0211 2.1163 -0.1347 6.2081 2205.48 -13.1623 

XUTEK Technology 0.0591 1.9272 -0.5680 7.5501 4680.17 -11.8573 

XBLSM   Information Technology 0.0446 1.9435 -0.5330 7.5523 4651.56 -11.3383 

XUMAL Financial Institutions 0.0322 1.9319 -0.2629 6.2053 2245.09 -12.1105 

XBANK   Banks 0.0338 2.2912 -0.0451 5.6902 1541.74 -12.9480 

XSGRT   Insurance 0.0585 1.8321 -0.3197 7.7411 4870.19 -11.5079 

XFINK   Leasing & Factoring  0.0381 2.4554 -0.2648 10.5740 12266.70 -12.3813 

XHOLD   Holding & Investment 0.0306 1.7917 -0.4401 6.7655 3181.96 -12.1535 

XYORT   Brokerage Houses 0.0195 1.7189 -0.8905 11.6020 16420.40 -11.3147 

XGMYO   Property Trusts 0.0125 1.7474 -0.6899 6.9501 3725.40 -10.3424 

Table 1: Summary statistics of returns

Notes: The statistics are based on daily percentage excess returns for 24 Turkish industry indices and the market index, covering 

the period from April 1, 2004, to August 2, 2024. Each series includes 5,107 daily observations. All Jarque-Bera and Augmented 

Dickey-Fuller test statistics are significant at the 1% level, with ADF tests using MacKinnon p-values.
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matrix  contains the expected conditional correlations  
 as its elements, defined as:

where  denotes the quasi-correlation between 
industry  and market . This normalization ensures that 

.

The quasi-correlations  are updated recursively 
according to:

where  and  are the standardized residuals 
from the GARCH models fitted to the excess returns of 
industry portfolio  and the market index, respectively. The 
term  denotes the unconditional sample correlation 
between the two returns (or their standardized residuals). 
The scalars  and  govern the responsiveness of the 
quasi-correlations to new shocks and their persistence 
over time, implying an exponentially decaying weight 
on past observations. This updating mechanism gives 
greater weight to recent information, enabling the 
DCC betas to adapt more rapidly to changes in market 
conditions while still incorporating longer-term trends. 
Although this greater responsiveness can help capture 
sudden market movements, it may also lead to over-
adjustment, causing short-term fluctuations in beta 
estimates that diverge from underlying systematic 
risk. By contrast, the rolling-window approach assigns 
equal weights to all observations within a fixed 
window, resulting in smoother beta dynamics that limit 
responsiveness to sudden shifts and yield a more stable 
relationship between beta and expected returns.

The bivariate DCC model described above involves 
a total of 11 parameters. These include two mean 
parameters (  for the industry and market returns), six 
GARCH parameters ( , ,   for each series), two DCC 
parameters ( , ), and one unconditional correlation 

. The number of estimated parameters directly 
determines the degrees of freedom used in the likelihood 
ratio tests for parameter stability, discussed later in the 
Parameter Stability of the DCC Model section. Since the 
model is specified in bivariate form, with industry and 
market returns as the two variables, the DCC parameters 
are estimated separately for each industry. However, this 
specification implicitly assumes that GARCH parameters 
and the DCC parameters remain constant over the 
estimation period. While the DCC model is designed to 
capture evolving conditional correlations, this constant-
parameter assumption may limit its flexibility in adapting 
to structural changes in financial relationships over 

Table 1 further shows that all of the excess return series 
exhibit negative skewness, indicating longer left tails 
than would be expected under a normal distribution. 
Their kurtosis values exceed 3, suggesting a more peaked 
distribution compared to a normal distribution. As 
expected, the null of normality is rejected for these series 
with very high Jarque-Bera test statistics significant at 
the 0.01 level. These characteristics are compatible with 
the common observation that financial return series 
exhibit negative skewness and leptokurtosis. To ensure 
the validity of subsequent empirical analyses, testing 
for stationarity in the excess return series is essential 
to prevent spurious regression results arising from unit 
roots. The results of the stationarity check based on 
the ADF unit root test with a constant are displayed in 
the last column of Table 1. Unit roots are strongly and 
consistently rejected based on statistical evidence for 
all series at the 0.01 significance level using MacKinnon 
p-values. This confirms that the excess return series are 
stationary and therefore suitable for use in time-series 
modelling.

Estimation of Conditional Betas

The rolling-window approach estimates the conditional 
beta at each date by applying OLS regression to a fixed-
size subsample of prior observations, referred to as the 
window. For period , the window includes observations 
from  to , where w is the window size. Within each 
window, the following market model is re-estimated to 
generate the rolling beta series:

where  and  are the excess returns of industry 
portfolio  and the market index, respectively, at each 
observation point  within the window ending at time ;  

 denotes the regression residual;  is the intercept; 
and  corresponds to the market beta estimated for 
time . 

Alternatively, the DCC model estimates conditional 
variances and covariances, which are subsequently 
employed to calculate conditional betas. Engle (2002) 
decomposed the conditional covariance matrix in the 
following form:

 is a diagonal matrix containing the conditional 
standard deviation  on its th diagonal, which is 
obtained from a univariate GARCH(1,1) model with 
variance equation  and 
mean equation  where . The 
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time. In contrast, the rolling-window approach re-
estimates parameters over shorter intervals, potentially 
offering greater responsiveness to such changes. These 
considerations motivate the parameter stability tests 
presented in a later section.

Estimation of the DCC model involves finding the 
maximum of the log-likelihood function:

where  denotes the vector of standardized residuals 
and  represents the number of observations. The 
DCC beta series associated with each industry portfolio 
is calculated by utilizing the entries of conditional 
covariance matrix  using the following formula:

where  denotes the conditional covariance 
between the market and -th industry portfolio, and  

represents the conditional variance of the market 
return on day .   corresponds to the market beta 
estimated for day . 

For brevity, market betas estimated by the methods 
described above are referred to as rolling betas and DCC 
betas. Both are calculated using the information available 
from the prior time period to provide one-period-ahead 
forecasts. The rolling-window approach uses a window 
size of 120 days, following prior literature (Nieto, Orbe & 
Zarraga, 2014). Unreported results indicate that among 
60-, 120- and 180-day windows, the 60-day window 
produces rolling beta means closest to DCC beta means 
for the highest number of industries, while the 180-day 
window yields rolling beta standard deviations closest 
to those of DCC betas for the most industries. The 120-
day window provides a balance between these two 
metrics, facilitating comparisons. Since rolling beta 
estimates are unavailable for the first 120 days, the first 
120 DCC beta estimates are also excluded from further 
analysis to ensure consistency across two approaches. 
This limits the sample of beta estimates to the timeframe 
from September 22, 2004 to August 2, 2024. Note that 
although the DCC model provides beta estimates from 
the beginning of the sample, the first few estimates may 
contain biases due to the initial values assigned to the 
lagged factors used in DCC estimation. Excluding these 
early estimates also mitigates the issue. 

Table 2 provides a summary of the means and standard 
deviations of time-varying beta estimates derived from 
the rolling-window approach and the DCC model for 
Turkish industry portfolios, along with comparisons of 

their means and standard deviations. The average beta 
values reflect meaningful variation in systematic risk 
exposure across industries. For example, based on rolling 
betas, the banks industry exhibits the highest average 
beta (1.2635), consistent with its high financial leverage 
and macroeconomic sensitivity. In contrast, the sports 
activities industry has the lowest (0.5157), reflecting an 
investor base driven by team loyalty, which dampens 
responsiveness to market-wide movements.

The DCC beta means are numerically close to the 
rolling beta means. The largest difference between 
two approaches appears in the mineral products 
industry, where the rolling beta exceeds the DCC beta 
by 0.0241, corresponding to approximately 3.5% of 
their average beta value. Assuming a daily market risk 
premium of 0.0358%, this beta difference translates 
into an expected return differential of about 0.00086% 
per day (0.0241×0.0358%), or 0.22% annually. This is 
economically small, as beta differences across industries 
can lead to larger variation in expected returns. However, 
t-tests reject the equality of means for most industries, 
suggesting statistically significant differences between 
the two estimation methods. This result confirms that, 
although the long-run averages of beta estimates 
appear similar, the two methods capture fundamentally 
different dynamics in beta evolution. Specifically, the 
rolling-window approach’s equal weighting leads to 
smoother but slower adjustments to recent market 
shocks. In contrast, the exponential decay in the DCC 
model enables its betas to respond more quickly to 
new information. This difference in responsiveness likely 
explains the divergence in short-term beta estimates, 
even when their long-run means remain comparable.

The standard deviations of DCC betas are close to 
those of rolling betas, though they are slightly lower 
in most cases. The sports activities industry displays 
the largest difference in standard deviations between 
the two methods with the rolling beta has a standard 
deviation that is 0.0484 higher than the DCC beta, 
corresponding to approximately 9.6% of their average 
beta. This implies that, in this industry, the rolling-
window approach attributes nearly 10 percent more day-
to-day variation in systematic risk exposure than the DCC 
model. Assuming the same daily market risk premium 
of 0.0358%, this additional beta volatility translates into 
a swing of about ±0.0017% in daily expected returns. 
This amounts to 0.44% annually, which though small 
may still impact return forecasting and risk assessments. 
These comparisons depend on the chosen window 
length in the rolling-window approach. As discussed 
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Evaluation Based on Jensen’s Alpha

Jensen’s alpha estimated from conditional beta time-
series serves as a metric for comparing beta estimation 
methods. In particular, it quantifies how much the 
realized return diverges from the expected under a given 
asset pricing model. For the CAPM, the model-implied 
expected excess return is a risk-adjusted premium 
calculated as an asset’s beta multiplied by the market’s 
excess return. Hence, Jensen’s alpha is computed as 
the difference between the realized and model-implied 
excess returns, as follows:

where  is Jensen’s alpha at day ,  and  denote 
the realized excess returns for industry portfolio  and 
the market index.  refers to the estimated conditional 

earlier, increasing the window size reduces the standard 
deviation of rolling betas, making them more comparable 
to those of DCC betas. Yet this adjustment comes at the 
cost of greater differences in mean estimates, which may 
complicate comparisons by obscuring whether observed 
performance differences reflect genuine predictive 
differences or simply shifts in beta levels.

COMPARISON OF CONDITIONAL BETAS

This section presents the comparison results of rolling 
and DCC betas based on two criteria. The first criterion, 
pertaining to time-series analysis, is the insignificance 
of Jensen’s alpha. The second criterion, related to cross-
sectional analysis, is the significance of the market risk 
premium.

Table 2: Summary statistics of conditional betas 

Industry Roll. 𝜷𝜷 
Mean 

DCC 𝜷𝜷 
Mean 

Mean 
Difference 

Roll. 𝜷𝜷  
St. Dev. 

DCC 𝜷𝜷  
St. Dev. 

St. Dev. 
Difference 

Industrials 0.7906 0.7895 0.0011       0.1090 0.0920  0.0170 
  Food, Beverage & Tobacco 0.6497 0.6582 -0.0085*** 0.1603 0.1407  0.0196 
  Textile & Leather 0.7083 0.6943 0.0140*** 0.2044 0.1729  0.0315 
  Wood & Paper Products 0.7749 0.7567 0.0182*** 0.1738 0.1798 -0.0060 
  Chemicals 0.8073 0.8243 -0.0170*** 0.1246 0.1200  0.0046 
  Basic Metal 0.8940 0.9013 -0.0073**   0.1449 0.1415  0.0034 
  Mineral Products 0.7000 0.6759 0.0241*** 0.1758 0.1699  0.0059 
  Fabricated Metal Products 0.8245 0.8190 0.0055**   0.1258 0.1186  0.0072 
Services 0.7639 0.7681 -0.0042**   0.0939 0.0899  0.0040 
  Electricity Gas & Steam 0.7951 0.7887 0.0064*     0.1687 0.1725 -0.0038 
  Wholesale & Retail Trade 0.6421 0.6567 -0.0146*** 0.1326 0.1235  0.0091 
  Transportation & Storage 0.9950 0.9840 0.0110**   0.2394 0.2024  0.0370 
  Sports Activities 0.5157 0.4944 0.0213*** 0.3000 0.2516  0.0484 
  Hotels & Restaurants 0.7770 0.7676 0.0094*     0.2565 0.2369  0.0196 
  Telecommunications 0.8268 0.8391 -0.0123*** 0.1844 0.1649  0.0195 
Technology 0.8053 0.7917 0.0136*** 0.1985 0.1751  0.0234 
  Information Technology 0.7540 0.7440 0.0100*** 0.1917 0.2008 -0.0091 
Financial Institutions 1.1311 1.1355 -0.0044*** 0.0820 0.0790  0.0030 
  Banks 1.2635 1.2627 0.0008       0.1677 0.1629  0.0048 
  Insurance 0.6766 0.6784 -0.0018       0.3125 0.2783  0.0342 
  Leasing & Factoring  0.7564 0.7461 0.0103**   0.2359 0.2642 -0.0283 
  Holding & Investment 0.9661 0.9694 -0.0033*     0.0922 0.0819  0.0103 
  Brokerage Houses 0.5705 0.5802 -0.0097**   0.2032 0.1741  0.0291 
  Property Trusts 0.8150 0.8080 0.0070**   0.1540 0.1447  0.0093 

Notes: Mean differences are calculated as rolling beta mean minus DCC beta mean. Standard deviation 

differences are calculated as rolling beta standard deviation minus DCC beta standard deviation. 

Statistical significance of mean differences (based on t-tests) is indicated by asterisks: * (10%), ** (5%), 

*** (1%).  

  

Table 2: Summary statistics of conditional betas

Notes: Mean differences are calculated as rolling beta mean minus DCC beta mean. Standard deviation differences are calculated 

as rolling beta standard deviation minus DCC beta standard deviation. Statistical significance of mean differences (based on t-tests) 

is indicated by asterisks: * (10%), ** (5%), *** (1%). 
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beta at day , estimated in the previous section using 
either rolling-window approach or the DCC model. The 
term  represents the model-implied expected 
excess return.

Any insignificant deviations from the expected 
return can be considered random noise. However, a 
significant non-zero alpha can signal either superior 
performance, potentially due to skillful management 
as in the case of actively managed funds, or significant 
model misspecifications. These misspecifications might 
arise from unaccounted-for risk factors, such as industry-
specific influences, unobserved risk dimensions, or 
market anomalies. When comparing rolling beta and 
DCC beta, the model that yields a smaller Jensen’s alpha 
is considered more accurate in capturing the portfolio’s 
systematic risk and, consequently, its true performance.

Table 3 presents the Jensen’s alpha statistics calculated 
using both rolling beta and DCC beta, along with 
t-statistics for the mean tests and mean equality tests. 
The transportation and storage industry exhibits the 
highest mean alphas of 0.0474% and 0.0411%, based 
on rolling and DCC betas, respectively. The technology 
industry follows, with 0.0355% and 0.0389%. The 
property trusts industry has the smallest mean alphas, 
at -0.0170% and -0.0110%. In approximately three-
quarters of the industries, mean Jensen’s alpha values 
remain close to zero and statistically indistinguishable 
from zero. This finding reflects the success of the CAPM 
in the time-series context, suggesting that market beta 
alone, whether estimated via the rolling-window or DCC 
approach, adequately captures the variation in industry 
returns.

Table 3: Jensen’s Alpha Means and t-tests 

Industry Roll. 𝜶𝜶 
Mean 

Roll. 𝜶𝜶 
t-stat. 

DCC 𝜶𝜶 
Mean 

DCC 𝜶𝜶 
t-stat. 

Mean 
Diff. 

Mean Eq. 
t-stat. 

Industrials 0.0113 1.3200     0.0139 1.6536*   -0.0026 -0.2206 
  Food, Beverage & Tobacco 0.0145 0.7646     0.0128 0.6796     0.0017 0.0631 
  Textile & Leather 0.0219 1.2899     0.0211 1.2699     0.0008 0.0356 
  Wood & Paper Products -0.0024 -0.1275     0.0007 0.0400     -0.0031 -0.1187 
  Chemicals 0.0154 1.0034     0.0167 1.0927     -0.0013 -0.0587 
  Basic Metal 0.0084 0.4131     0.0190 0.9392     -0.0106 -0.3712 
  Mineral Products 0.0139 0.9321     0.0193 1.3044     -0.0054 -0.2581 
  Fabricated Metal Products 0.0108 0.7465     0.0108 0.7508     0.0000 -0.0004 
Services 0.0193 1.8646*   0.0181 1.7549*   0.0011 0.0780 
  Electricity Gas & Steam -0.0040 -0.1863     -0.0083 -0.3940     0.0044 0.1458 
  Wholesale & Retail Trade 0.0324 1.7510*   0.0319 1.7287*   0.0005 0.0189 
  Transportation & Storage 0.0474 1.9860** 0.0411 1.7163*   0.0062 0.1848 
  Sports Activities 0.0011 0.0340     0.0043 0.1349     -0.0032 -0.0710 
  Hotels & Restaurants 0.0086 0.3386     0.0136 0.5471     -0.0051 -0.1426 
  Telecommunications -0.0103 -0.4711     -0.0095 -0.4349     -0.0008 -0.0245 
Technology 0.0355 1.8712*   0.0389 2.0636** -0.0034 -0.1286 
  Information Technology 0.0281 1.3613     0.0297 1.4515     -0.0016 -0.0551 
Financial Institutions -0.0047 -0.6941     -0.0057 -0.8499     0.0010 0.1065 
  Banks -0.0062 -0.4344     -0.0079 -0.5557     0.0017 0.0819 
  Insurance 0.0301 1.6923*   0.0329 1.8537*   -0.0027 -0.1085 
  Leasing & Factoring  0.0013 0.0472     0.0068 0.2401     -0.0055 -0.1360 
  Holding & Investment -0.0087 -0.8843     -0.0065 -0.6610     -0.0022 -0.1560 
  Brokerage Houses -0.0043 -0.2196     -0.0041 -0.2091     -0.0002 -0.0077 
  Property Trusts -0.0170 -1.1044     -0.0110 -0.7160     -0.0060 -0.2783 

Notes: Jensen’s alphas are calculated using either the rolling beta or the DCC beta, both estimated from 

daily returns. Roll. α t-stat. and DCC α t-stat. are the t-statistics testing whether each alpha mean differs 

from zero. Mean Eq. t-stat. is the t-statistic testing equality of mean alphas between the two methods. 

Significance levels are indicated by asterisks: * (10%), ** (5%), *** (1%). 

  

Table 3: Jensen’s Alpha Means and t-tests

Notes: Jensen’s alphas are calculated using either the rolling beta or the DCC beta, both estimated from daily returns. Roll. α 

t-stat. and DCC α t-stat. are the t-statistics testing whether each alpha mean differs from zero. Mean Eq. t-stat. is the t-statistic 

testing equality of mean alphas between the two methods. Significance levels are indicated by asterisks: * (10%), ** (5%), *** (1%).
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Conducting a one-time cross-sectional regression 
analysis, wherein the average returns of assets are 
regressed upon their estimated betas, fails to produce 
correct t-ratios. Fama and MacBeth (1973) put forward 
a solution which involves performing cross-sectional 
regressions for each individual time period and 
conducting hypothesis tests on the average of the 
coefficient estimates. Following their methodology, a 
cross-sectional analysis is conducted by running the 
following regression for each day  using the estimated 
conditional betas for each industry portfolio:

where  is the realized excess return,  is the 
conditional beta estimated either by the rolling-window 
approach or the DCC model and  refers to the residual 
for industry portfolio . The intercept term, , is expected 
to have a value close to zero as the market is the sole 
factor affecting the returns in the basic market model. 
The coefficient, , is the estimated risk premium and is 
expected to have a value near the average excess return 
of the equity market because, theoretically, portfolios 
with a beta equal to one should generate same return as 
the market. 

A rough pattern emerges when comparing alpha 
rankings in Table 3 to the mean excess return rankings 
presented in Table 1, with industries exhibiting the 
highest (or lowest) excess returns also tending to 
outperform (or underperform) on a risk-adjusted basis. 
For instance, the transportation and storage industry, 
which recorded the highest average daily excess return, 
also shows the highest Jensen’s alpha (12.6% annually). 
In practical terms, an alpha of this scale is attractive 
to active managers and can motivate sector rotation 
strategies seeking to exploit persistent excess returns. 
This elevated alpha likely reflects industry-specific factors, 
such as large-scale infrastructure investments during the 
sample period (as discussed earlier), that are not fully 
captured by market beta alone. It should be viewed as an 
exception rather than as evidence of a systematic failure 
of the CAPM.

To compare the estimation methods based on their 
Jensen’s alphas, Table 3 also reports the differences 
in alpha values computed using DCC beta and rolling 
beta for each industry. These differences are generally 
small, and the mean equality test fails to reject the null 
hypothesis of equal means at conventional significance 
levels, suggesting no systematic advantage for either 
estimation method. However, rolling betas tend 
to produce alpha values closer to zero more often, 
indicating more accurate estimation of systematic risk 
under the CAPM framework. Specifically, in 15 out of 24 
industries, the alpha based on rolling beta is lower. One 
illustrative case is the industrials portfolio, where the DCC 
alpha is statistically significant at 10% level ( ), while 
the rolling alpha is smaller and insignificant ( ). 
Although the overall differences are modest, this pattern 
points to lower beta estimation accuracy for the DCC 
model. Based on the Jensen’s alpha criterion, the findings 
provide no evidence that the more sophisticated DCC 
model outperforms the traditional rolling-window 
approach in estimating time-varying beta.

Evaluation Based on Market Risk Premium

Estimating the market risk premium through cross-
sectional regressions offers another way to compare beta 
estimation methods. Since the CAPM posits that an asset’s 
model-implied expected excess return equals the market 
risk premium scaled by the asset’s beta, a more accurate 
beta estimate should yield a market risk premium that is 
significantly different from zero and more closely aligned 
with the realized average excess return when tested in 
cross-sectional regressions.

 

 

 

 

Table 4: Fama-MacBeth results 

 Roll. 𝜷𝜷 DCC 𝜷𝜷 

𝜆𝜆$ Estimate 0.0275 0.0350 

  Std. Error 0.0234 0.0219 

  t-Statistic 1.1753 1.5984 

  p-Value 0.2399 0.1100 

𝜆𝜆% Estimate 0.0133 0.0063 

  Std. Error 0.0306 0.0295 

  t-Statistic 0.4341 0.2143 

  p-Value 0.6643 0.8303 

Adjusted 𝑅𝑅' 0.0701 0.0714 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Fama-MacBeth results

Notes: Results are based on daily excess returns expressed in 

percentage terms.  is the time-series average intercept,  

is the time-series average slope on conditional betas, and the 

adjusted  is the time-series average from the cross-sectional 

regressions. Standard errors (and the resulting t-statistics and 

p-values) are based on the Fama-MacBeth procedure.
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Table 4 reports the time-series averages of the intercept 
( ) and slope ( ) coefficients from cross-sectional 
regressions of the industry portfolios’ returns on their 
respective conditional market betas, estimated using 
either a rolling-window or a DCC approach. The associated 
Fama-MacBeth t-statistics assess the significance of these 
coefficients. For the rolling-window beta, the average 
intercept is 0.0275% and the average slope is 0.0133%. 
For the DCC beta, the intercept is slightly higher at 
0.0350%, while the slope is lower at 0.0063%. All estimated 
coefficients are positive, but none are statistically 
significant at the 10% level. The adjusted  values are 0.0701 
for the rolling betas and 0.0714 for the DCC betas.

The slope estimates reported in Table 4 can be viewed 
as daily market risk premia. A one-unit increase in beta 
raises the model-implied expected excess returns by just 
0.0133% per day (3.4% annually) for the rolling beta and 
0.0063% per day (1.6% annually) for the DCC beta. Both 
estimated market risk premia are statistically insignificant 
and lie well below the realized average daily excess 
return of the BIST 100 Turkish Market Index, 0.0358% 
(9.4% annually; see Table 1). Moreover, the adjusted  
values, both around %7, indicate that the conditional 
betas explain only a small fraction of the cross-industry 
return variation. Although these betas produce alpha 
values close to zero in the time-series context, consistent 
with CAPM predictions, they are less informative in 
explaining return difference across industries. These 
results challenge a central implication of the CAPM 
that higher systematic risk reliably commands higher 
expected returns. For portfolio managers, they imply that 
beta-tilting strategies aimed at earning superior returns 
by overweighting high-beta industries may yield limited 
benefit for cross-industry allocation in the Turkish market.

When comparing the two estimation methods, the DCC 
model offers only marginal gains in explanatory power, 
as reflected by its slightly higher adjusted . However, 
it yields a weaker empirical relationship between beta 
and expected return. Its higher average intercept and 
lower average slope imply a flatter securities market 
line, contrary to the CAPM’s core prediction that higher 
beta should be associated with higher expected return. 
In contrast, the rolling-window approach produces 
a steeper, though still statistically insignificant, risk-
return relation and a slope coefficient that is closer in 
magnitude to the observed market premium. While 
neither model generates a significant or economically 
meaningful risk premium, the smoother beta dynamics of 
the rolling-window approach appear to better preserve 
the theoretical pricing relation. The findings provide no 

compelling evidence that the DCC model offers a clear 
advantage over the simpler rolling-window approach in 
capturing cross-sectional return variation either.

Parameter Stability of the DCC Model

Given that the previous analysis is based on a 20-year 
sample, it is important to assess whether the DCC model’s 
relatively weak performance stems from parameter 
instability. To investigate this, the stability of the DCC 
parameters is formally tested. Subsequently, model 
performance is re-evaluated on shorter subsamples 
to determine whether estimation over these intervals 
improves results according to both the Jensen’s alpha 
criterion and the market risk premium criterion.

Because the DCC model is estimated via maximum 
likelihood, a likelihood ratio (LR) test is employed to 
evaluate parameter stability. In this procedure, the 
full sample is first divided into two equal halves. The 
DCC model estimated over the full sample is regarded 
as the restricted model because it imposes constant 
parameters. Estimating the DCC model separately on 
each subsample forms a composite model, regarded as 
the unrestricted model since it allows parameters to vary 
between subsamples. The restricted and unrestricted 
models are then compared using the LR test statistic, 
computed as

where ​ denotes the log-likelihood of the restricted 
model, and  ​is the log-likelihood of 
the unrestricted model, obtained by summing the log-
likelihoods from the two subsamples. Under the null 
hypothesis that the full-sample DCC parameters apply 
to each subsample, implying parameter stability, the test 
statistic follows a chi-squared distribution with degrees 
of freedom equal to the difference between the total 
number of parameters estimated in the composite model 
and those in the full-sample model.

Table 5 reports the results of likelihood ratio tests 
for parameter stability across three time spans: the 
most recent 20-year, 10-year, and 5-year periods of the 
dataset. The reported test statistics follow a chi-squared 
distribution with 11 degrees of freedom, calculated as 

. Under the null hypothesis, the 
test statistic is expected to fall within the typical range 
of this distribution. A high test statistic indicates that the 
composite model fits the data significantly better than 
the full-sample model, suggesting that the parameters 
differ between the two halves of the sample and the 
null hypothesis should be rejected. For the 20-year 
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practical limitation of the model. In the 10-year sample, 
the null hypothesis of parameter stability is rejected 
for all industries, indicating that instability remains 
pervasive. Even in the 5-year sample, the null is rejected 
in 18 industries, suggesting that parameter shifts persist 
despite the shorter estimation span. The test is not 
applied to smaller samples, such as the last 2.5 years, 
because each half of that period contains fewer than 500 
observations, a treshold recommended by Hwang and 
Valls Pereira (2006) to ensure convergence and reduce 
estimation bias in GARCH(1,1) models. 

Following the parameter stability tests on the three 
samples, the performance of the DCC model is re-
evaluated using the second halves of these samples, 
namely the most recent 10-year, 5-year, and 2.5-year 
periods, to assess whether shorter estimation spans yield 

sample, parameter stability is rejected at conventional 
significance levels in 17 out of 24 industries. In particular, 
industries such as textile & leather, mineral products, and 
sports activities exhibit especially large test statistics, 
implying substantial shifts in conditional dynamics over 
time and a clear violation of the constant-parameter 
assumption.

Given the widespread rejections in the 20-year sample, 
the test is repeated using more recent and shorter 
samples to examine whether parameter stability can 
be achieved over reduced time spans. This question 
is particularly relevant because instability in longer 
samples could undermine the earlier findings regarding 
the DCC model’s underperformance in capturing time-
varying betas. If, however, stability cannot be attained 
even in shorter periods, this would point to a more broad 

Table 5: Results of Likelihood Ratio Tests for DCC Parameter Stability 

Industry 𝝌𝝌𝟐𝟐 (20-Year) 𝝌𝝌𝟐𝟐 (10-Year) 𝝌𝝌𝟐𝟐 (5-Year) 
Industrials 67.06*** 77.32*** 29.53*** 
  Food, Beverage & Tobacco 29.19*** 43.87*** 11.97       
  Textıle & Leather 111.73*** 48.23*** 28.11*** 
  Wood & Paper Products 13.12       85.70*** 24.41**   
  Chemicals 5.53       83.67*** 20.75**   
  Basic Metal 42.75*** 71.68*** 34.37*** 
  Mineral Products 99.81*** 173.61*** 6.47       
  Fabrıcated Metal Products 20.62**   64.13*** 25.29*** 
Services 53.77*** 44.61*** 20.02**   
  Electricity Gas & Steam 35.67*** 52.63*** 16.55       
  Wholesale & Retail Trade 4.76       45.09*** 33.13*** 
  Transportation & Storage 28.63*** 45.97*** 24.74*** 
  Sports Activities 69.73*** 71.75*** 8.83       
  Hotels & Restaurants 14.58       47.60*** 21.81**   
  Telecommunications 1.04       35.52*** 32.19*** 
Technology 31.03*** 35.99*** 38.69*** 
  Information Technology 40.61*** 54.01*** 7.14       
Financial Institutions 27.24*** 87.42*** 24.50**   
  Banks 25.39*** 69.67*** 39.86*** 
  Insurance 71.07*** 70.19*** 29.00*** 
  Leasing & Factoring  65.89*** 68.87*** 3.91       
  Holding & Investment 13.77       89.99*** 28.51*** 
  Brokerage Houses 47.18*** 93.57*** 29.29*** 
  Property Trusts 9.46       72.01*** 17.59*     

Notes: Each cell reports the likelihood ratio test statistic, which follows a chi-squared distribution with 

11 degrees of freedom. The test compares a restricted DCC model estimated on the full sample (either 

the last 20, 10 or 5 years of the study period) to a composite model estimated separately on each half 

of the same sample. Significance levels are indicated by asterisks: * (10%), ** (5%), *** (1%). 

Table 5: Results of Likelihood Ratio Tests for DCC Parameter Stability

Notes: Each cell reports the likelihood ratio test statistic, which follows a chi-squared 

distribution with 11 degrees of freedom. The test compares a restricted DCC model estimated 

on the full sample (either the last 20, 10 or 5 years of the study period) to a composite model 

estimated separately on each half of the same sample. Significance levels are indicated by 

asterisks: * (10%), ** (5%), *** (1%).
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improved results based on the Jensen’s alpha criterion 
and the market risk premium criterion. In terms of the 
Jensen’s alpha criterion, unreported results indicate 
that the relative underperformance of the DCC model 
persists or even worsens with shorter estimation periods. 
Specifically, in the 10-year sample, DCC betas produce 
higher alpha estimates than rollling betas in 14 out of 24 
industries, slightly fewer than the 15  industries observed 
in the full sample. However, this number increases to 16 
industries in the 5-year sample and further to 18 industries 
in the 2.5-year sample. This pattern suggests that as the 
estimation period shortens, the DCC model tends to 
generate more positive Jensen’s alphas compared to the 
rolling-window approach, implying a weaker alignment 
with CAPM predictions.

Table 6 presents the Fama-MacBeth regression results 
for the DCC model estimated over shorter subsamples 
of the dataset. While the adjusted R² values remain fairly 
stable around 0.07 across all subsamples, no meaningful 
improvement in explanatory power is observed compared 
to the full 20-year sample (adjusted  0.0714; see 
Table 4). Notably, the intercept ( ) increases substantially 
in the 5-year sample (0.2217) relative to the full-sample 
estimate (0.0350; see Table 4), indicating a larger pricing 
error and a greater departure from the CAPM expectation 
of a zero intercept. The slope ( ), representing the 
market risk premium, remains statistically insignificant 
and even turns negative in the 10-year and 5-year 
samples, contradicting the CAPM prediction that higher 
beta should be associated with higher expected returns. 
Although the 2.5-year sample shows a positive slope, 
it is not statistically significant. Overall, these results 

suggest that shortening the estimation period does not 
resolve the DCC model’s limited ability to capture cross-
sectional variation in returns. This limitation highlights 
challenges in applying the DCC model for researchers and 
practitioners seeking reliable conditional beta estimates.

CONCLUSION

Accurate estimation of time-varying beta is essential 
for understanding systematic risk and for informing asset 
pricing, portfolio allocation, and performance evaluation. 
Two of the most common methods for modelling time-
varying beta are the rolling-window OLS regression and 
the DCC model. This study compares them using daily 
returns of Turkish industry portfolios to assess how well 
each method reflects the core predictions of the CAPM, 
specifically whether Jensen’s alpha is insignificant in 
time-series tests and whether the market risk premium is 
significant in cross-sectional tests.

The time-series analysis of Jensen’s alpha shows 
that, in most industries, both estimation methods 
yield mean alphas close to zero, consistent with CAPM 
predictions. However, rolling betas more frequently 
produce smaller, insignificant alphas, suggesting that 
they capture systematic risk better than the DCC model. 
Cross-sectional Fama-MacBeth regressions further reveal 
that neither method produces a statistically significant 
market risk premium, with slope estimates well below 
the realized average excess return of the Turkish equity 
market. While both approaches explain a small fraction 
of cross-industry return variation, the rolling-window 
method generates a steeper slope coefficient, closer 
in magnitude to the observed average market return, 
preserving the CAPM’s risk-return relation more faithfully 
than the DCC model. Using the 10-year, 5-year, and even 
2.5-year subsamples did not improve, and in some cases 
worsened, the performance of the DCC model.

The findings suggest that, the rolling-window 
approach provides beta estimates more consistent with 
the CAPM framework when estimating time-varying 
betas for Turkish industry portfolios. Although the DCC 
model accounts for time variation in return volatility and 
its clustering, its additional complexity does not translate 
into improved performance according to the evaluation 
criteria used. The DCC model’s reliance on multiple 
constant parameters imposes a rigid structure that may 
struggle to adapt when market dynamics shift, even in 
shorter samples. Furthermore, because the DCC model 
is designed to capture evolving conditional correlations 
through implied exponential weighting, its heightened 
responsiveness to recent return shocks can lead to over-

Table 6: Fama-MacBeth results for DCC Betas over Shorter Subsamples 

 10-Year 5-Year 2.5-Year 

𝜆𝜆$ Estimate 0.0905 0.2217 0.1430 

  Std. Error 0.0345 0.0579 0.0891 

  t-Statistic 2.6243 3.8267 1.6045 

  p-Value 0.0087 0.0001 0.1091 

𝜆𝜆% Estimate -0.0197 -0.0953 0.0526 

  Std. Error 0.0426 0.0695 0.1070 

  t-Statistic -0.4624 -1.3705 0.4917 

  p-Value 0.6439 0.1707 0.6231 

Adjusted 𝑅𝑅' 0.0698 0.0697 0.0746 

 

Table 6: Fama-MacBeth results for DCC Betas over 
Shorter Subsamples

Notes: The results are based on DCC beta estimates for 

three shorter subsamples: the most recent 10-year, 5-year, and 

2.5-year periods. See Table 4 for the full-sample results and 

explanatory notes.
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adjustment in beta estimates, which may contribute to 
its lower performance. In contrast, the rolling-window 
method’s periodic re-estimation over short windows, 
without rigid parametric constraints, allows it to better 
accommodate evolving market conditions, while the 
short estimation window limits the risk of misspecification 
when betas vary moderately.

The results highlight the importance of considering 
model flexibility and stability when selecting beta 
estimation methods, especially in emerging markets 
prone to structural changes or heightened volatility. 
Practitioners should recognize that rigid methods 
performing well in stable markets may yield unreliable 
risk assessments and misguided asset allocation decisions 
in more volatile or structurally changing markets. Future 
research could explore nonparametric models, such as 
those of Baillie, Calonaci and Kapetanios (2022), which 
generalize the rolling-window OLS regression without 
requiring a fixed window length. Additionally, comparing 
these generalized rolling-window approaches with the 
DCC model in a multifactor setting could be fruitful, for 
example using Engle (2016)’s extended DCC framework 
that estimates multiple betas simultaneously.
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