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ABSTRACT

This study empirically compares the accuracy of two common methods for estimating time-varying betas in Turkish industry
portfolios: rolling-window OLS regression and the DCC model. Using daily return from 2004 to 2024, the methods are evaluated
based on their alignment with CAPM predictions, specifically the insignificance of Jensen’s alpha and the significance of the
market risk premium. Findings show that despite its complexity, the DCC model does not outperform the rolling-window
approach. The rolling-window approach produces insignificant Jensen’s alpha estimates for more industries and yields slightly
higher mean and t-statistics for the market risk premium. These findings challenge the view that rolling-window estimators
are inefficient due to assuming beta constancy within short windows and suggest that the DCC model’s reliance on multiple
constant parameters imposes a rigid structure that may hinder its adaptability to evolving market conditions. This study
contributes to the literature by directly comparing these two widely used methods and highlighting the importance of carefully
considering model assumptions when estimating time-varying betas.
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INTRODUCTION

Sharpe (1964), Lintner (1965), and Mossin (1966)
independently developed the CAPM, which uses market
beta to quantify an asset’s exposure to market risk and
estimate its expected return. This framework has been a
crucial development in finance, significantly influencing
capital budgeting, asset pricing, performance evaluation
and academic research on market efficiency. However,
Fama and French (1992) showed that market beta alone
cannot explain return differences across size and book-
to-market portfolios. Graham and Harvey (2001) showed
that it continued to be widely used. Hence, empirical
failure of the model lead to a search for improvements to
the model instead of abandoning it.

Fama and French (2004) identified several potential
explanations for the empirical failures of the basic CAPM
and its multifactor extensions. These explanations
include irrational stock pricing, the inadequacy of
the model, and poor proxies for the market portfolio.
Additionally, Lettau and Ludvigson (2001) and Adrian
and Franzoni (2009) argued that the poor empirical
performance could be attributed to neglecting the time-

varying nature of conditional moments of returns as
well as beta. Jagannathan and Wang (1996) were among
the early studies to criticize the basic CAPM’s implicit
presumption of time-invariant beta, which underpinned
the use of straight ordinary least squares (OLS) in earlier
studies. There are concerns that a constant beta may
not accurately reflect real-world conditions in which
investors’ expectations change over time.

Empirical investigations overwhelmingly confirm that
betaistime-varyingandthisconceptiswellacknowledged
in the literature. One of the earlier studies, Fabozzi and
Francis (1977), showed that beta changes with bull and
bear market conditions. Alexander and Chervany (1980)
examined how time-variation of beta is associated with
the portfolio formation approach and the size of the
portfolios. Brooks, Faff and Lee (1992) compared varying-
coefficient models for describing beta. Several other
studies have introduced new methods for modeling
the time-variation in beta, including the rolling-window
OLS regression (Fama & MacBeth, 1973), multivariate
GARCH models (Bollerslev, Engle & Wooldridge, 1988),
state variable approach (Ferson & Harvey, 1991), Kalman
filter (Shah & Moonis, 2003), regime-switching models
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(Korkmaz et al, 2010), and nonparametric models
(Esteban & Orbe-Mandaluniz, 2010).

Among the many alternatives, using the rolling-window
OLS regression is the oldest and simplest, yet a common
method for estimating time-varying betas. This approach
is commonly associated with Fama and MacBeth (1973),
although they neither named nor specifically promoted
it. They calculated betas from five years of monthly
observations to use in the cross-sectional regressions
carried out every month over the subsequent four years.
At the end of each four-year period, they rolled the
estimation window forward. Estimating beta using data
from the latest five-year window has become a standard
procedure, and Groenewold and Fraser (2000) referred to
it as the “five-year rule of thumb”. Agrrawal, Gilbert and
Harkins (2022) questioned this rule and investigated the
optimal return frequency and window length to produce
betas that better forecast subsequent period’s returns.
Nonparametric models, such as the one developed
by Baillie, Calonaci and Kapetanios (2022), are general
versions of the rolling-window OLS regression. These
models don't require determining a fixed window length
but are not as commonly used as the rolling-window OLS
regression approach.

A prominent alternative method for calculating time-
varying betas is using one of the multivariate GARCH
models. These models are formulated to address the time
variation in volatility of return series and the clustering
of that volatility. Multivariate versions of GARCH extend
this capability by modeling co-movements in financial
volatilities, providing conditional variances as well as
covariances that can be used to calculate conditional
betas. Silvennoinen and Terasvirta (2009), as well as the
earlier study by Bauwens, Laurent, and Rombouts (2006),
carried out detailed surveys of multivariate GARCH
models, highlighting the diversity within this family of
models. The BEKK and DCC models are the most widely
used among multivariate GARCH models, leading Caporin
and McAleer (2012) to carefully select them for analytical
comparison. Notably, the DCC model is the more recent
of the two and avoids over-parameterization.

The (DCO)
model, a widely recognized framework in financial
econometrics, was initially developed by Engle and
Sheppard (2001). They designed it to provide strong
estimation performance while allowing for ease of
implementation across many assets by reducing the
number of parameters that need to be estimated. Engle
(2002) subsequently refined the model, enhancing its
applicability and theoretical foundations, and found that

Dynamic  Conditional  Correlations

the DCC model provides the most accurate correlation
estimates among multivariate GARCH models in the two-
asset case. Building on this work, Bali, Engle and Tang
(2016) conducted an analysis and found that dynamic
conditional betas estimated with the DCC model
significantly predict the cross-sectional variation in daily
stock returns. Shortly after, Engle (2016) developed a new
approach based on the DCC model that allows for joint
estimation of multiple covariance matrices, enabling the
estimation of time-varying betas for multifactor CAPM.
They applied it to industry portfolios and found lower
significance for alphas, as predicted by the theoretical
model, compared to traditional models other than the
rolling-window approach.

A group of studies focused on comparing alternative
methods using some in- and out-of-sample forecasting
accuracy criteria on Australian industry portfolios
(Brooks, Faff & McKenzie, 1998), European industry
portfolios (Mergner & Bulla, 2008) and UK company stocks
(Choudhry & Wu, 2008) However, they didn't include the
rolling-window approach or DCC model. Nieto, Orbe
and Zarraga (2014) conducted a more comprehensive
comparison, including both methods, using time series
and cross-section criteria on Mexican stock returns. They
didn’t provide conclusive evidence of better performance
for the DCC model compared to the rolling-window
approach. Recently, Aloy et al. (2021) found that the
DCC model has unsatisfactory out-of-sample predictive
performance on the US and European REITs data. These
studies concluded that Kalman filter models are superior
to other methods but the majority did not compare the
relative performance of the DCC and the rolling-window
approaches, despite their widespread use.

There is no consensus on whether the newer DCC
model or the rolling-window approach is superior for
estimating time-varying betas to be used in financial
applications. The rolling-window approach is simple but
has limitations, such as ignoring the behavior of return
volatility and assuming a constant beta within each
window. As noted by Adrian and Franzoni (2009), Aloy et
al.(2021),and Lettauand Ludvigson (2001),anincomplete
or inadequate treatment of time-variation in conditional
moments can lead to model misspecification, resulting
in both subpar empirical performance of the CAPM and
suboptimal financial decisions. The DCC model attempts
to mitigate these limitations by specifying a dynamic
process for modeling conditional correlations, from which
conditional moments are then calculated. However, the
DCC model is inherently predicated on the assumption
of constant parameters over the entire sample period, an
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overly simplifying assumption which may not hold for
long horizons and may lead to misspecification either.
The solution of Lewellen and Nagel (2006) to avoid the
challenges of specifying conditioning information and
beta instability over longer windows was estimating
CAPM regressions over shorter windows.

Mixed findings on the DCC model’s effectiveness
and the enduring relevance of the rolling-window
approach raise the question of whether increased model
complexity necessarily leads to more accurate beta
estimates. The author’s review of the literature reveals
that no study has directly compared these two specific
methods within the context of industry portfolio beta
estimation. This study aims to fill that gap by evaluating
the estimation accuracy of the DCC model relative to
the rolling-window approach, based on how each aligns
with two key CAPM implications: (1) insignificant Jensen’s
alphas in time-series regressions, and (2) a significant
positive relationship between betas and expected returns
in cross-sectional regressions. Using Turkish industry
portfolio data from 2004 to 2024 with daily returns, the
study assesses which model produces time-varying
betas that more faithfully reflect these CAPM predictions.

This study contributes to the time-varying beta
literature by empirically comparing two widely used
estimation methods and highlighting the importance
of carefully considering the assumptions underlying
these methods. It builds on recent work examining the
time-varying nature of asset pricing model parameters.
For instance, Catik, Huyugiizel Kisla, and Akdeniz (2020)
used OLS recursive regression betas, and Ustaoglu (2022)
employed DCC betas to demonstrate beta variability in
Turkish industry returns. ilbasmis (2024) compared two
versions of the DCC model for forecasting accuracy. In
contrast, this study directly compares the basic DCC
model with the traditional rolling-window approach,
focusing on their consistency with CAPM implications.

The remaining sections are arranged as follows. Section
2 describes the data and outlines the methodology for
obtaining time-varying betas using rolling-window
regressions and DCC model covariance estimates. Section
3 presents the comparison results of the two estimation
methods and examines their robustness to parameter
instability. Finally, Section 4 ends the paper by discussing
the findings.

DATA AND METHODOLOGY

The data is retrieved from the Financial Information
News Network (Finnet) database, which contains sector

and market index values for Turkish stocks listed on
Borsa Istanbul (BIST), as well as index values for Turkish
government bonds. BIST calculates sector and market
indices using the free-float market values of the included
stocks. It systematically identifies and selects the top 100
stocks based on specific criteria and designates their
index as the main equity market index. This index was
thus selected to function as the proxy for the market
portfolio. The risk-free interest rate is proxied by the
yield of the most actively traded Turkish government
bond.The data available for the analysis spans the period
from April 1, 2004 to August 2, 2024 at a daily frequency
and covers 24 industry indices some of which are not
mutually exclusive. The following subsections describe
how the data are transformed into excess returns,
detail the estimation procedures for time-varying betas
using both the rolling-window and DCC approaches,
and interpret summary statistics for excess returns and
conditional betas.

Calculation of Excess Returns

The excess return for each industry index, along with
that of the market, was derived by subtracting the
risk-free rate from each portfolio’s return. Specifically,
the excess returns at day ¢ for industry i and the market
are calculated as 7y = Rit — Rpy and Ty = Ry — Ry,
respectively. In this formulation, Ry represents the daily
risk-free rate expressed in percentage terms, obtained
by dividing the annual bond yield at time by 365. R
and Rm: denote the daily continuously compounded
returns for the industry and market indexes, respectively,
both expressed in percentage. R;; was computed as the
log return using Ri = In(Pit/Pi-1) *100, where Py is the
index value at time ¢, and Rm: was calculated from the
market index analogously. Annualized values reported
throughout the paper are calculated using the standard
compounding formula (1+7)*"—1, assuming 251
trading days per year, where 7 denotes the daily return,
Jensen’s alpha or risk premium.

Table 1 presents summary statistics for the excess
returns of the industry indices and the market index.
The transportation and storage industry recorded the
highest average daily excess return at 0.0773% (21.4%
annually), followed by the wholesale and retail trade
industry at 0.0617% (16.7% annually), and the technology
industry at 0.0591% (16.0% annually). In contrast, the
property trusts industry had the lowest average return
at 0.0125% (3.2% annually). These figures reflect the
influence of government-led investments, sector-specific
incentives and an inflation-related policy mix. Robust
infrastructure projects such as the construction of
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Table 1: Summary statistics of returns

Code Index Mean | Std.Dev. | Skew. | Kurtosis | J-Btest ADF test
XuU100 BIST100 Turkish Market Index 0.0358 | 1.6754 -0.4223 6.9439 3461.54 | -12.0320
XUSIN Industrials 0.0441 1.4822 -0.8169 8.4557 6901.65 -11.8893
XGIDA Food, Beverage & Tobacco 0.0386 1.7343 -0.5695 7.3482 4299.35 -12.8357
XTEKS Textile & Leather 0.0442 | 1.6895 -1.1315 9.5581 10241.59 | -12.5415
XKAGT Wood & Paper Products 0.0248 | 1.8357 -0.6366 6.9137 3604.32 -12.8238
XKMYA Chemicals 0.0492 | 1.7679 -0.4578 6.8945 3405.78 | -11.4833
XMANA Basic Metal 0.0501 | 2.0928 -0.1981 6.5054 2648.07 | -12.3458
XTAST Mineral Products 0.0411 1.5831 -0.6011 8.2806 6241.19 | -13.1292
XMESY Fabricated Metal Products 0.0444 | 1.7408 -0.6234 7.5554 4746.60 -12.6506
XUHIZ Services 0.0467 | 1.4908 -0.4500 7.1977 3921.85 -11.9935
XELKT Electricity Gas & Steam 0.0210 | 2.0126 -0.4562 8.4065 6397.11 -12.4850
XTCRT Wholesale & Retail Trade 0.0617 | 1.7038 -0.2333 9.1823 8179.27 | -10.8475
XULAS Transportation & Storage 0.0773 | 2.3371 -0.0888 5.8565 1742.98 -13.5450
XSPOR Sports Activities 0.0187 | 24117 -0.3744 | 10.7372 | 12857.84 -9.6696
XTRZM Hotels & Restaurants 0.0277 | 2.2413 -0.5200 7.2945 415454 | -13.0898
XILTM Telecommunications 0.0211 2.1163 -0.1347 6.2081 2205.48 -13.1623
XUTEK Technology 0.0591 1.9272 -0.5680 7.5501 4680.17 | -11.8573
XBLSM Information Technology 0.0446 | 1.9435 -0.5330 7.5523 4651.56 | -11.3383
XUMAL Financial Institutions 0.0322 | 1.9319 -0.2629 6.2053 2245.09 | -12.1105
XBANK Banks 0.0338 | 2.2912 -0.0451 5.6902 1541.74 | -12.9480
XSGRT Insurance 0.0585 | 1.8321 -0.3197 7.7411 4870.19 | -11.5079
XFINK Leasing & Factoring 0.0381 | 2.4554 -0.2648 | 10.5740 | 12266.70 | -12.3813
XHOLD Holding & Investment 0.0306 | 1.7917 -0.4401 6.7655 3181.96 | -12.1535
XYORT Brokerage Houses 0.0195 | 1.7189 -0.8905 | 11.6020 | 16420.40 | -11.3147
XGMYO Property Trusts 0.0125 | 1.7474 -0.6899 6.9501 3725.40 -10.3424

Notes: The statistics are based on daily percentage excess returns for 24 Turkish industry indices and the market index, covering

the period from April 1, 2004, to August 2, 2024. Each series includes 5,107 daily observations. All Jarque-Bera and Augmented

Dickey-Fuller test statistics are significant at the 1% level, with ADF tests using MacKinnon p-values.

Istanbul Airport boosted the transportation and storage
industry. The extension of Region 5 incentives to defense
and aerospace investments nationwide bolstered the
technology industry’s returns. Low real interest rates
encouraged short-term consumer spending, contributing
to the strong performance of the wholesale and retail
trade industry. Conversely, high nominal mortgage
rates constrained housing affordability and limited long-
term housing investments. This, coupled with restrictive
measures such as the 25% cap on rental income growth,
contributed to the underperformance of the property
trusts industry.

Table 1 also reports the standard deviations of excess
returns, highlighting substantial variation in return
volatility across industries. For instance, the leasing and
factoring industry shows a high standard deviation of

2.4554% despite a modest average daily excess return
of 0.0381% (10% annually), suggesting that returns in
this sector are highly volatile relative to their mean. In
contrast, the industrials and services industries exhibit
more stable performance, with standard deviations of
1.4822% and 1.4908%, respectively. This variation in the
return volatility aligns with the number of constituent
stocks in each industry index. The industrials and services
indices exhibit lower return volatility due to greater
diversification, each comprising more than a hundred
stocks. In contrast, the leasing and factoring industry
shows significantly higher volatility, reflecting its limited
diversification, with fewer than ten constituent.
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Table 1 further shows that all of the excess return series
exhibit negative skewness, indicating longer left tails
than would be expected under a normal distribution.
Their kurtosis values exceed 3, suggesting a more peaked
distribution compared to a normal distribution. As
expected, the null of normality is rejected for these series
with very high Jarque-Bera test statistics significant at
the 0.01 level. These characteristics are compatible with
the common observation that financial return series
exhibit negative skewness and leptokurtosis. To ensure
the validity of subsequent empirical analyses, testing
for stationarity in the excess return series is essential
to prevent spurious regression results arising from unit
roots. The results of the stationarity check based on
the ADF unit root test with a constant are displayed in
the last column of Table 1. Unit roots are strongly and
consistently rejected based on statistical evidence for
all series at the 0.01 significance level using MacKinnon
p-values. This confirms that the excess return series are
stationary and therefore suitable for use in time-series
modelling.

Estimation of Conditional Betas

Therolling-window approach estimates the conditional
beta at each date by applying OLS regression to a fixed-
size subsample of prior observations, referred to as the
window. For period ¢, the window includes observations
from ¢-1-w to ¢-1, where w is the window size. Within each
window, the following market model is re-estimated to
generate the rolling beta series:

— ROLL
Tir = Ot + /Bit Tmr 1 €ir

where Tir and "mr are the excess returns of industry
portfolio ¢ and the market index, respectively, at each
observation point 7 within the window ending at time ¢-1;
€ir denotes the regression residual; @it is the intercept;

ROLL
it

and corresponds to the market beta estimated for

timet.

Alternatively, the DCC model estimates conditional
variances and covariances, which are subsequently
employed to calculate conditional betas. Engle (2002)
decomposed the conditional covariance matrix in the
following form:

H; = DR, D

D; is a diagonal matrix containing the conditional
standard deviation Tit on its ith diagonal, which is
obtained from a univariate GARCH(1,1) model with
variance equation o = bio +banuf_y +biaoh 1 and

ionTit = Wi + U; u~N(0,0%)
mean equation Tt = Hi it where Wit 103:). The

matrix R; contains the expected conditional correlations
sz,t as its elements, defined as:

Pimt = Qim,t/\/ Qiit ® Amm,t

where %imt denotes the quasi-correlation between
industry 7 and market m. This normalization ensures that
pim,t € [7171],

The quasi-correlations 9im,t are updated recursively
according to:

Qimt = ;im +Are <€i,t—15m,t—1 — Ezm) + Az e (qim,t—l - ;zm)

where €it-1 and €m,t-1 are the standardized residuals
from the GARCH models fitted to the excess returns of
industry portfolio and the market index, respectively. The
term r.» denotes the unconditional sample correlation
between the two returns (or their standardized residuals).
The scalars A1 and X2 govern the responsiveness of the
quasi-correlations to new shocks and their persistence
over time, implying an exponentially decaying weight
on past observations. This updating mechanism gives
greater weight to recent information, enabling the
DCC betas to adapt more rapidly to changes in market
conditions while still incorporating longer-term trends.
Although this greater responsiveness can help capture
sudden market movements, it may also lead to over-
adjustment, causing short-term fluctuations in beta
estimates that diverge from underlying systematic
risk. By contrast, the rolling-window approach assigns
equal weights to all observations within a fixed
window, resulting in smoother beta dynamics that limit
responsiveness to sudden shifts and yield a more stable
relationship between beta and expected returns.

The bivariate DCC model described above involves
a total of 11 parameters. These include two mean
parameters (K for the industry and market returns), six
GARCH parameters (bio, bi1, bi2 for each series), two DCC
parameters (A1, Az), and one unconditional correlation
pm- The number of estimated parameters directly
determines the degrees of freedom used in the likelihood
ratio tests for parameter stability, discussed later in the
Parameter Stability of the DCC Model section. Since the
model is specified in bivariate form, with industry and
market returns as the two variables, the DCC parameters
are estimated separately for each industry. However, this
specification implicitly assumes that GARCH parameters
and the DCC parameters remain constant over the
estimation period. While the DCC model is designed to
capture evolving conditional correlations, this constant-
parameter assumption may limit its flexibility in adapting
to structural changes in financial relationships over
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time. In contrast, the rolling-window approach re-
estimates parameters over shorter intervals, potentially
offering greater responsiveness to such changes. These
considerations motivate the parameter stability tests
presented in a later section.

Estimation of the DCC model involves finding the
maximum of the log-likelihood function:

L=-% =T, (nlog(27) + 2log |D;| + log |R:| + &,R; 'e;)

where €t denotes the vector of standardized residuals
and T represents the number of observations. The
DCC beta series associated with each industry portfolio
is calculated by utilizing the entries of conditional
covariance matrix H¢ using the following formula:

BPCC — Zims
ot U?’n,t

denotes the conditional covariance
between the market and i-th industry portfolio, and
U?n,trepresents the conditional variance of the market
return on day t. ﬂ,{f"" corresponds to the market beta

estimated for day t.

where 0Tim,t

For brevity, market betas estimated by the methods
described above are referred to as rolling betas and DCC
betas. Both are calculated using the information available
from the prior time period to provide one-period-ahead
forecasts. The rolling-window approach uses a window
size of 120 days, following prior literature (Nieto, Orbe &
Zarraga, 2014). Unreported results indicate that among
60-, 120- and 180-day windows, the 60-day window
produces rolling beta means closest to DCC beta means
for the highest number of industries, while the 180-day
window yields rolling beta standard deviations closest
to those of DCC betas for the most industries. The 120-
day window provides a balance between these two
metrics, facilitating comparisons. Since rolling beta
estimates are unavailable for the first 120 days, the first
120 DCC beta estimates are also excluded from further
analysis to ensure consistency across two approaches.
This limits the sample of beta estimates to the timeframe
from September 22, 2004 to August 2, 2024. Note that
although the DCC model provides beta estimates from
the beginning of the sample, the first few estimates may
contain biases due to the initial values assigned to the
lagged factors used in DCC estimation. Excluding these
early estimates also mitigates the issue.

Table 2 provides a summary of the means and standard
deviations of time-varying beta estimates derived from
the rolling-window approach and the DCC model for
Turkish industry portfolios, along with comparisons of

their means and standard deviations. The average beta
values reflect meaningful variation in systematic risk
exposure across industries. For example, based on rolling
betas, the banks industry exhibits the highest average
beta (1.2635), consistent with its high financial leverage
and macroeconomic sensitivity. In contrast, the sports
activities industry has the lowest (0.5157), reflecting an
investor base driven by team loyalty, which dampens
responsiveness to market-wide movements.

The DCC beta means are numerically close to the
rolling beta means. The largest difference between
two approaches appears in the mineral products
industry, where the rolling beta exceeds the DCC beta
by 0.0241, corresponding to approximately 3.5% of
their average beta value. Assuming a daily market risk
premium of 0.0358%, this beta difference translates
into an expected return differential of about 0.00086%
per day (0.0241x0.0358%), or 0.22% annually. This is
economically small, as beta differences across industries
can lead to larger variation in expected returns. However,
t-tests reject the equality of means for most industries,
suggesting statistically significant differences between
the two estimation methods. This result confirms that,
although the long-run averages of beta estimates
appear similar, the two methods capture fundamentally
different dynamics in beta evolution. Specifically, the
rolling-window approach’s equal weighting leads to
smoother but slower adjustments to recent market
shocks. In contrast, the exponential decay in the DCC
model enables its betas to respond more quickly to
new information. This difference in responsiveness likely
explains the divergence in short-term beta estimates,
even when their long-run means remain comparable.

The standard deviations of DCC betas are close to
those of rolling betas, though they are slightly lower
in most cases. The sports activities industry displays
the largest difference in standard deviations between
the two methods with the rolling beta has a standard
deviation that is 0.0484 higher than the DCC beta,
corresponding to approximately 9.6% of their average
beta. This implies that, in this industry, the rolling-
window approach attributes nearly 10 percent more day-
to-day variation in systematic risk exposure than the DCC
model. Assuming the same daily market risk premium
of 0.0358%, this additional beta volatility translates into
a swing of about +0.0017% in daily expected returns.
This amounts to 0.44% annually, which though small
may still impact return forecasting and risk assessments.
These comparisons depend on the chosen window
length in the rolling-window approach. As discussed
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Table 2: Summary statistics of conditional betas

Industry Roll.f | DCCB .Mean Roll.# | DCCp .St. Dev.
Mean Mean | Difference | St. Dev. | St. Dev. | Difference
Industrials 0.7906 | 0.7895 0.0011 0.1090 | 0.0920 0.0170
Food, Beverage & Tobacco | 0.6497 | 0.6582 | -0.0085***| 0.1603 | 0.1407 0.0196
Textile & Leather 0.7083 | 0.6943 0.0140*** | 0.2044 | 0.1729 0.0315
Wood & Paper Products 0.7749 | 0.7567 0.0182***| 0.1738 | 0.1798 -0.0060
Chemicals 0.8073 | 0.8243 | -0.0170***| 0.1246 | 0.1200 0.0046
Basic Metal 0.8940 | 0.9013 | -0.0073** | 0.1449 | 0.1415 0.0034
Mineral Products 0.7000 | 0.6759 0.0241***| 0.1758 | 0.1699 0.0059
Fabricated Metal Products 0.8245 | 0.8190 0.0055** | 0.1258 | 0.1186 0.0072
Services 0.7639 | 0.7681 -0.0042** | 0.0939 | 0.0899 0.0040
Electricity Gas & Steam 0.7951 | 0.7887 0.0064* 0.1687 | 0.1725 -0.0038
Wholesale & Retail Trade 0.6421 | 0.6567 | -0.0146***| 0.1326 | 0.1235 0.0091
Transportation & Storage 0.9950 | 0.9840 0.0110** | 0.2394 | 0.2024 0.0370
Sports Activities 0.5157 | 0.4944 0.0213***| 0.3000 | 0.2516 0.0484
Hotels & Restaurants 0.7770 | 0.7676 0.0094* 0.2565 | 0.2369 0.0196
Telecommunications 0.8268 | 0.8391 -0.0123***| 0.1844 | 0.1649 0.0195
Technology 0.8053 | 0.7917 0.0136***| 0.1985 | 0.1751 0.0234
Information Technology 0.7540 | 0.7440 0.0100***] 0.1917 | 0.2008 -0.0091
Financial Institutions 1.1311 | 1.1355 | -0.0044***| 0.0820 | 0.0790 0.0030
Banks 1.2635 | 1.2627 0.0008 0.1677 | 0.1629 0.0048
Insurance 0.6766 | 0.6784 | -0.0018 0.3125 | 0.2783 0.0342
Leasing & Factoring 0.7564 | 0.7461 0.0103** | 0.2359 | 0.2642 -0.0283
Holding & Investment 0.9661 | 0.9694 | -0.0033* 0.0922 | 0.0819 0.0103
Brokerage Houses 0.5705 | 0.5802 | -0.0097** | 0.2032 | 0.1741 0.0291
Property Trusts 0.8150 | 0.8080 0.0070** | 0.1540 | 0.1447 0.0093

Notes: Mean differences are calculated as rolling beta mean minus DCC beta mean. Standard deviation differences are calculated

as rolling beta standard deviation minus DCC beta standard deviation. Statistical significance of mean differences (based on t-tests)

is indicated by asterisks: * (10%), ** (5%), *** (1%).

earlier, increasing the window size reduces the standard
deviation of rolling betas, making them more comparable
to those of DCC betas. Yet this adjustment comes at the
cost of greater differences in mean estimates, which may
complicate comparisons by obscuring whether observed
performance differences
differences or simply shifts in beta levels.

reflect genuine predictive

COMPARISON OF CONDITIONAL BETAS

This section presents the comparison results of rolling
and DCC betas based on two criteria. The first criterion,
pertaining to time-series analysis, is the insignificance
of Jensen'’s alpha. The second criterion, related to cross-
sectional analysis, is the significance of the market risk
premium.

Evaluation Based on Jensen'’s Alpha

Jensen’s alpha estimated from conditional beta time-
series serves as a metric for comparing beta estimation
methods. In particular, it quantifies how much the
realized return diverges from the expected under a given
asset pricing model. For the CAPM, the model-implied
expected excess return is a risk-adjusted premium
calculated as an asset’s beta multiplied by the market’s
excess return. Hence, Jensen's alpha is computed as
the difference between the realized and model-implied
excess returns, as follows:

Oéth =7t — ByTme

where @, is Jensen’s alpha at day t, it and T'mt denote
the realized excess returns for industry portfolio % and
the market index. 3;; refers to the estimated conditional
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beta at day ¢, estimated in the previous section using
either rolling-window approach or the DCC model. The
term BiTmt represents the model-implied expected
excess return.

Table 3 presents the Jensen’s alpha statistics calculated
using both rolling beta and DCC beta, along with
t-statistics for the mean tests and mean equality tests.
The transportation and storage industry exhibits the

highest mean alphas of 0.0474% and 0.0411%, based
on rolling and DCC betas, respectively. The technology
industry follows, with 0.0355% and 0.0389%. The
property trusts industry has the smallest mean alphas,
at -0.0170% and -0.0110%. In approximately three-
quarters of the industries, mean Jensen's alpha values
remain close to zero and statistically indistinguishable
from zero. This finding reflects the success of the CAPM
in the time-series context, suggesting that market beta
alone, whether estimated via the rolling-window or DCC
approach, adequately captures the variation in industry

Any insignificant deviations from the expected
return can be considered random noise. However, a
significant non-zero alpha can signal either superior
performance, potentially due to skillful management
as in the case of actively managed funds, or significant
model misspecifications. These misspecifications might
arise from unaccounted-for risk factors, such as industry-
specific influences, unobserved risk dimensions, or
market anomalies. When comparing rolling beta and
DCC beta, the model that yields a smaller Jensen’s alpha
is considered more accurate in capturing the portfolio’s

returns.
systematic risk and, consequently, its true performance.
Table 3: Jensen’s Alpha Means and t-tests
Industry Roll. a Roll. a DCCa DCCa Mtean Mean Eq.
Mean t-stat. Mean t-stat. Diff. t-stat.

Industrials 0.0113 1.3200 0.0139 1.6536* -0.0026 -0.2206
Food, Beverage & Tobacco 0.0145 0.7646 0.0128 0.6796 0.0017 0.0631
Textile & Leather 0.0219 1.2899 0.0211 1.2699 0.0008 0.0356
Wood & Paper Products -0.0024 | -0.1275 0.0007 0.0400 -0.0031 -0.1187
Chemicals 0.0154 1.0034 0.0167 1.0927 -0.0013 -0.0587
Basic Metal 0.0084 0.4131 0.0190 0.9392 -0.0106 -0.3712
Mineral Products 0.0139 0.9321 0.0193 1.3044 -0.0054 -0.2581
Fabricated Metal Products 0.0108 0.7465 0.0108 0.7508 0.0000 -0.0004

Services 0.0193 1.8646* | 0.0181 1.7549* 0.0011 0.0780
Electricity Gas & Steam -0.0040 | -0.1863 -0.0083 | -0.3940 0.0044 0.1458
Wholesale & Retail Trade 0.0324 1.7510* | 0.0319 1.7287* 0.0005 0.0189
Transportation & Storage 0.0474 1.9860** | 0.0411 1.7163* 0.0062 0.1848
Sports Activities 0.0011 0.0340 0.0043 0.1349 -0.0032 -0.0710
Hotels & Restaurants 0.0086 0.3386 0.0136 0.5471 -0.0051 -0.1426
Telecommunications -0.0103 | -0.4711 -0.0095 | -0.4349 -0.0008 -0.0245

Technology 0.0355 1.8712* | 0.0389 2.0636** | -0.0034 -0.1286
Information Technology 0.0281 1.3613 0.0297 1.4515 -0.0016 -0.0551

Financial Institutions -0.0047 | -0.6941 -0.0057 | -0.8499 0.0010 0.1065
Banks -0.0062 | -0.4344 -0.0079 | -0.5557 0.0017 0.0819
Insurance 0.0301 1.6923* | 0.0329 1.8537* -0.0027 -0.1085
Leasing & Factoring 0.0013 0.0472 0.0068 0.2401 -0.0055 -0.1360
Holding & Investment -0.0087 | -0.8843 -0.0065 | -0.6610 -0.0022 -0.1560
Brokerage Houses -0.0043 | -0.2196 -0.0041 -0.2091 -0.0002 -0.0077
Property Trusts -0.0170 | -1.1044 -0.0110 | -0.7160 -0.0060 -0.2783

Notes: Jensen’s alphas are calculated using either the rolling beta or the DCC beta, both estimated from daily returns. Roll. a
t-stat. and DCC a t-stat. are the t-statistics testing whether each alpha mean differs from zero. Mean Eq. t-stat. is the t-statistic

testing equality of mean alphas between the two methods. Significance levels are indicated by asterisks: * (10%), ** (5%), *** (1%).
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A rough pattern emerges when comparing alpha
rankings in Table 3 to the mean excess return rankings
presented in Table 1, with industries exhibiting the
highest (or lowest) excess returns also tending to
outperform (or underperform) on a risk-adjusted basis.
For instance, the transportation and storage industry,
which recorded the highest average daily excess return,
also shows the highest Jensen’s alpha (12.6% annually).
In practical terms, an alpha of this scale is attractive
to active managers and can motivate sector rotation
strategies seeking to exploit persistent excess returns.
This elevated alpha likely reflects industry-specific factors,
such as large-scale infrastructure investments during the
sample period (as discussed earlier), that are not fully
captured by market beta alone. It should be viewed as an
exception rather than as evidence of a systematic failure
of the CAPM.

To compare the estimation methods based on their
Jensen’s alphas, Table 3 also reports the differences
in alpha values computed using DCC beta and rolling
beta for each industry. These differences are generally
small, and the mean equality test fails to reject the null
hypothesis of equal means at conventional significance
levels, suggesting no systematic advantage for either
estimation method. However, rolling betas tend
to produce alpha values closer to zero more often,
indicating more accurate estimation of systematic risk
under the CAPM framework. Specifically, in 15 out of 24
industries, the alpha based on rolling beta is lower. One
illustrative case is the industrials portfolio, where the DCC
alphais statistically significant at 10% level (¢ = 1.65), while
the rolling alpha is smaller and insignificant (t = 1.32).
Although the overall differences are modest, this pattern
points to lower beta estimation accuracy for the DCC
model. Based on the Jensen’s alpha criterion, the findings
provide no evidence that the more sophisticated DCC
model outperforms the traditional
approach in estimating time-varying beta.

rolling-window

Evaluation Based on Market Risk Premium

Estimating the market risk premium through cross-
sectional regressions offers another way to compare beta
estimation methods. Since the CAPM posits that an asset’s
model-implied expected excess return equals the market
risk premium scaled by the asset’s beta, a more accurate
beta estimate should yield a market risk premium that is
significantly different from zero and more closely aligned
with the realized average excess return when tested in
cross-sectional regressions.

Conducting a one-time cross-sectional regression
analysis, wherein the average returns of assets are
regressed upon their estimated betas, fails to produce
correct t-ratios. Fama and MacBeth (1973) put forward
a solution which involves performing cross-sectional
regressions for each
conducting hypothesis tests on the average of the
coefficient estimates. Following their methodology, a
cross-sectional analysis is conducted by running the
following regression for each day using the estimated
conditional betas for each industry portfolio:

individual time period and

Tit = Aot + AltBit + e

where Tit is the realized excess return, Bit is the
conditional beta estimated either by the rolling-window
approach or the DCC model and €t refers to the residual
forindustry portfolio 7. The intercept term, Ao, is expected
to have a value close to zero as the market is the sole
factor affecting the returns in the basic market model.
The coefficient, Ay, is the estimated risk premium and is
expected to have a value near the average excess return
of the equity market because, theoretically, portfolios
with a beta equal to one should generate same return as
the market.

Table 4: Fama-MacBeth results

Roll. 8 DCCp

Ao Estimate 0.0275 0.0350
Std. Error 0.0234 0.0219
t-Statistic 1.1753 1.5984
p-Value 0.2399 0.1100
A, Estimate 0.0133 0.0063
Std. Error 0.0306 0.0295
t-Statistic 0.4341 0.2143
p-Value 0.6643 0.8303
Adjusted R? 0.0701 0.0714

Notes: Results are based on daily excess returns expressed in
percentage terms. Ao is the time-series average intercept, A1
is the time-series average slope on conditional betas, and the
adjusted R? is the time-series average from the cross-sectional
regressions. Standard errors (and the resulting t-statistics and
p-values) are based on the Fama-MacBeth procedure.
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Table 4 reports the time-series averages of the intercept
(Aot) and slope (A1z) coefficients from cross-sectional
regressions of the industry portfolios’ returns on their
respective conditional market betas, estimated using
either a rolling-window or a DCC approach. The associated
Fama-MacBeth t-statistics assess the significance of these
coefficients. For the rolling-window beta, the average
intercept is 0.0275% and the average slope is 0.0133%.
For the DCC beta, the intercept is slightly higher at
0.0350%, while the slope is lower at 0.0063%. All estimated
coefficients are positive, but none are statistically
significant at the 10% level. The adjusted values are 0.0701
for the rolling betas and 0.0714 for the DCC betas.

The slope estimates reported in Table 4 can be viewed
as daily market risk premia. A one-unit increase in beta
raises the model-implied expected excess returns by just
0.0133% per day (3.4% annually) for the rolling beta and
0.0063% per day (1.6% annually) for the DCC beta. Both
estimated market risk premia are statistically insignificant
and lie well below the realized average daily excess
return of the BIST 100 Turkish Market Index, 0.0358%
(9.4% annually; see Table 1). Moreover, the adjusted R?
values, both around %7, indicate that the conditional
betas explain only a small fraction of the cross-industry
return variation. Although these betas produce alpha
values close to zero in the time-series context, consistent
with CAPM predictions, they are less informative in
explaining return difference across industries. These
results challenge a central implication of the CAPM
that higher systematic risk reliably commands higher
expected returns. For portfolio managers, they imply that
beta-tilting strategies aimed at earning superior returns
by overweighting high-beta industries may yield limited
benefit for cross-industry allocation in the Turkish market.

When comparing the two estimation methods, the DCC
model offers only marginal gains in explanatory power,
as reflected by its slightly higher adjusted R?. However,
it yields a weaker empirical relationship between beta
and expected return. Its higher average intercept and
lower average slope imply a flatter securities market
line, contrary to the CAPM'’s core prediction that higher
beta should be associated with higher expected return.
In contrast, the rolling-window approach produces
a steeper, though still statistically insignificant, risk-
return relation and a slope coefficient that is closer in
magnitude to the observed market premium. While
neither model generates a significant or economically
meaningful risk premium, the smoother beta dynamics of
the rolling-window approach appear to better preserve
the theoretical pricing relation. The findings provide no

compelling evidence that the DCC model offers a clear
advantage over the simpler rolling-window approach in
capturing cross-sectional return variation either.

Parameter Stability of the DCC Model

Given that the previous analysis is based on a 20-year
sample, itisimportant to assess whether the DCC model’s
relatively weak performance stems from parameter
instability. To investigate this, the stability of the DCC
parameters is formally tested. Subsequently, model
performance is re-evaluated on shorter subsamples
to determine whether estimation over these intervals
improves results according to both the Jensen’s alpha
criterion and the market risk premium criterion.

Because the DCC model is estimated via maximum
likelihood, a likelihood ratio (LR) test is employed to
evaluate parameter stability. In this procedure, the
full sample is first divided into two equal halves. The
DCC model estimated over the full sample is regarded
as the restricted model because it imposes constant
parameters. Estimating the DCC model separately on
each subsample forms a composite model, regarded as
the unrestricted model since it allows parameters to vary
between subsamples. The restricted and unrestricted
models are then compared using the LR test statistic,
computed as

—2InA = —2(InLp — In Ly)

where In Lr denotes the log-likelihood of the restricted
model, and InLy =InL; +InLy is the log-likelihood of
the unrestricted model, obtained by summing the log-
likelihoods from the two subsamples. Under the null
hypothesis that the full-sample DCC parameters apply
to each subsample, implying parameter stability, the test
statistic follows a chi-squared distribution with degrees
of freedom equal to the difference between the total
number of parameters estimated in the composite model
and those in the full-sample model.

Table 5 reports the results of likelihood ratio tests
for parameter stability across three time spans: the
most recent 20-year, 10-year, and 5-year periods of the
dataset. The reported test statistics follow a chi-squared
distribution with 11 degrees of freedom, calculated as
(11 +11) — 11 = 11, Under the null hypothesis, the
test statistic is expected to fall within the typical range
of this distribution. A high test statistic indicates that the
composite model fits the data significantly better than
the full-sample model, suggesting that the parameters
differ between the two halves of the sample and the
null hypothesis should be rejected. For the 20-year
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Table 5: Results of Likelihood Ratio Tests for DCC Parameter Stability

Industry x% (20-Year) | x% (10-Year) | x?(5-Year)
Industrials 67.06%** 77.32%%* 29.53%**
Food, Beverage & Tobacco 20.19%** 43.87*** 11.97
Textile & Leather 111.73%** 48.23%** 28.11%**
Wood & Paper Products 13.12 85.70%** 24.47**
Chemicals 5.53 83.67%** 20.75%*
Basic Metal 42.75%** 71.68%** 34.37%**
Mineral Products 99.81*** 173.61%** 6.47
Fabricated Metal Products 20.62** 64.13%** 25.20%**
Services 53.77%** 44.,61%*** 20.02%*
Electricity Gas & Steam 35.67*** 52.63*** 16.55
Wholesale & Retail Trade 4.76 45.09%** 33.13%**
Transportation & Storage 28.63*** 45.97%** 24 . 74%**
Sports Activities 69.73%** 71.75%%% 8.83
Hotels & Restaurants 14.58 47.60%** 21.81**
Telecommunications 1.04 35.52%** 32.19%**
Technology 31.03%** 35.99%** 38.69%**
Information Technology 40.61%** 54.07%** 7.14
Financial Institutions 27.24%** 87.42%** 24.50%*
Banks 25.39%%* 69.67%** 39.86%**
Insurance 71.07%** 70.19%** 29.00%**
Leasing & Factoring 65.89%** 68.87*** 3.91
Holding & Investment 13.77 89.99%** 28.51%**
Brokerage Houses 47.18*** 93.57%** 20.29%**
Property Trusts 9.46 72.071%** 17.59*%

Notes: Each cell reports the likelihood ratio test statistic, which follows a chi-squared

distribution with 11 degrees of freedom. The test compares a restricted DCC model estimated

on the full sample (either the last 20, 10 or 5 years of the study period) to a composite model

estimated separately on each half of the same sample. Significance levels are indicated by

asterisks: * (10%), ** (5%), *** (1%).

sample, parameter stability is rejected at conventional
significance levels in 17 out of 24 industries. In particular,
industries such as textile & leather, mineral products, and
sports activities exhibit especially large test statistics,
implying substantial shifts in conditional dynamics over
time and a clear violation of the constant-parameter
assumption.

Given the widespread rejections in the 20-year sample,
the test is repeated using more recent and shorter
samples to examine whether parameter stability can
be achieved over reduced time spans. This question
is particularly relevant because instability in longer
samples could undermine the earlier findings regarding
the DCC model’s underperformance in capturing time-
varying betas. If, however, stability cannot be attained
even in shorter periods, this would point to a more broad

practical limitation of the model. In the 10-year sample,
the null hypothesis of parameter stability is rejected
for all industries, indicating that instability remains
pervasive. Even in the 5-year sample, the null is rejected
in 18 industries, suggesting that parameter shifts persist
despite the shorter estimation span. The test is not
applied to smaller samples, such as the last 2.5 years,
because each half of that period contains fewer than 500
observations, a treshold recommended by Hwang and
Valls Pereira (2006) to ensure convergence and reduce
estimation bias in GARCH(1,1) models.

Following the parameter stability tests on the three
samples, the performance of the DCC model is re-
evaluated using the second halves of these samples,
namely the most recent 10-year, 5-year, and 2.5-year
periods, to assess whether shorter estimation spans yield
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improved results based on the Jensen’s alpha criterion
and the market risk premium criterion. In terms of the
Jensen’s alpha criterion, unreported results indicate
that the relative underperformance of the DCC model
persists or even worsens with shorter estimation periods.
Specifically, in the 10-year sample, DCC betas produce
higher alpha estimates than rollling betas in 14 out of 24
industries, slightly fewer than the 15 industries observed
in the full sample. However, this number increases to 16
industriesinthe 5-year sample and furtherto 18industries
in the 2.5-year sample. This pattern suggests that as the
estimation period shortens, the DCC model tends to
generate more positive Jensen’s alphas compared to the
rolling-window approach, implying a weaker alignment
with CAPM predictions.

Table 6: Fama-MacBeth results for DCC Betas over
Shorter Subsamples

10-Year 5-Year 2.5-Year
Ao Estimate 0.0905 0.2217 0.1430
Std. Error 0.0345 0.0579 0.0891
t-Statistic 2.6243 3.8267 1.6045
p-Value 0.0087 0.0001 0.1091
A4 Estimate -0.0197 -0.0953 0.0526
Std. Error 0.0426 0.0695 0.1070
t-Statistic -0.4624 -1.3705 0.4917
p-Value 0.6439 0.1707 0.6231
Adjusted R? 0.0698 0.0697 0.0746

Notes: The results are based on DCC beta estimates for
three shorter subsamples: the most recent 10-year, 5-year, and
2.5-year periods. See Table 4 for the full-sample results and
explanatory notes.

Table 6 presents the Fama-MacBeth regression results
for the DCC model estimated over shorter subsamples
of the dataset. While the adjusted R2? values remain fairly
stable around 0.07 across all subsamples, no meaningful
improvementinexplanatory powerisobserved compared
to the full 20-year sample (adjusted R? = 0.0714; see
Table 4). Notably, the intercept (Ao) increases substantially
in the 5-year sample (0.2217) relative to the full-sample
estimate (0.0350; see Table 4), indicating a larger pricing
error and a greater departure from the CAPM expectation
of a zero intercept. The slope (A1), representing the
market risk premium, remains statistically insignificant
and even turns negative in the 10-year and 5-year
samples, contradicting the CAPM prediction that higher
beta should be associated with higher expected returns.
Although the 2.5-year sample shows a positive slope,
it is not statistically significant. Overall, these results

suggest that shortening the estimation period does not
resolve the DCC model’s limited ability to capture cross-
sectional variation in returns. This limitation highlights
challenges in applying the DCC model for researchers and
practitioners seeking reliable conditional beta estimates.

CONCLUSION

Accurate estimation of time-varying beta is essential
for understanding systematic risk and for informing asset
pricing, portfolio allocation, and performance evaluation.
Two of the most common methods for modelling time-
varying beta are the rolling-window OLS regression and
the DCC model. This study compares them using daily
returns of Turkish industry portfolios to assess how well
each method reflects the core predictions of the CAPM,
specifically whether Jensen’s alpha is insignificant in
time-series tests and whether the market risk premium is
significant in cross-sectional tests.

The time-series analysis of Jensen’s alpha shows
that, in most industries, both estimation methods
yield mean alphas close to zero, consistent with CAPM
predictions. However, rolling betas more frequently
produce smaller, insignificant alphas, suggesting that
they capture systematic risk better than the DCC model.
Cross-sectional Fama-MacBeth regressions further reveal
that neither method produces a statistically significant
market risk premium, with slope estimates well below
the realized average excess return of the Turkish equity
market. While both approaches explain a small fraction
of cross-industry return variation, the rolling-window
method generates a steeper slope coefficient, closer
in magnitude to the observed average market return,
preserving the CAPM’s risk-return relation more faithfully
than the DCC model. Using the 10-year, 5-year, and even
2.5-year subsamples did not improve, and in some cases
worsened, the performance of the DCC model.

The findings suggest that, the rolling-window
approach provides beta estimates more consistent with
the CAPM framework when estimating time-varying
betas for Turkish industry portfolios. Although the DCC
model accounts for time variation in return volatility and
its clustering, its additional complexity does not translate
into improved performance according to the evaluation
criteria used. The DCC model’s reliance on multiple
constant parameters imposes a rigid structure that may
struggle to adapt when market dynamics shift, even in
shorter samples. Furthermore, because the DCC model
is designed to capture evolving conditional correlations
through implied exponential weighting, its heightened
responsiveness to recent return shocks can lead to over-
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adjustment in beta estimates, which may contribute to
its lower performance. In contrast, the rolling-window
method’s periodic re-estimation over short windows,
without rigid parametric constraints, allows it to better
accommodate evolving market conditions, while the
shortestimation window limits the risk of misspecification
when betas vary moderately.

The results highlight the importance of considering
model flexibility and stability when selecting beta
estimation methods, especially in emerging markets
prone to structural changes or heightened volatility.
Practitioners should recognize that rigid methods
performing well in stable markets may yield unreliable
riskassessments and misguided asset allocation decisions
in more volatile or structurally changing markets. Future
research could explore nonparametric models, such as
those of Baillie, Calonaci and Kapetanios (2022), which
generalize the rolling-window OLS regression without
requiring a fixed window length. Additionally, comparing
these generalized rolling-window approaches with the
DCC model in a multifactor setting could be fruitful, for
example using Engle (2016)’s extended DCC framework
that estimates multiple betas simultaneously.
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