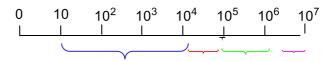


Nermin SIMSEK (E

KUS¹
Mersin University, Department of Chemistry,
Mersin, Turkey, 33343

Usage of Sonochemistry in Medicine, Industry, Environment, and Synthesis

ABSTRACT


Much progress has been made regarding ultrasound in chemical science and the chemical industry in recent years. Ultrasonic waves are defined as inaudible sound waves with frequencies exceeding 20 kHz. This paper focuses on using ultrasonic technologies in some areas such as polymer degradation, polymerization reactions, removal of toxic organic contaminants in water, organic synthesis, ultra-strong transfer processes including the extraction process, adsorption process, membrane process, demulsification, crystallization process, emulsification, heterogeneous chemical reaction processes, and the electrochemical process.

Keywords: Environment, industry, medicine, organic synthesis, sonochemistry, ultrasound

Introduction

Much progress has been made regarding ultrasound in chemical science and the chemical industry in recent years. Ultrasonic waves can be defined as "inaudible sound with a high frequency for humans" the frequency of which approximately exceeds 20 kHz. This paper focuses on using ultrasonic technologies in some areas such as polymer degradation, polymerization reactions, removal of toxic organic contaminants in water, organic synthesis, ultra-strong transfer processes including the extraction process, adsorption process, membrane process, demulsification, crystallization process, emulsification, heterogeneous chemical reaction processes, and the electrochemical process.

Sound is a vibration that propagates as an acoustic wave in a transmission medium such as a gas, liquid, or solid. It represents sound waves with wavelengths between 17 meters and 1.7 centimeters in air at atmospheric pressure. Sound waves with frequencies above 20 kHz are called ultrasounds and are inaudible to humans. In contrast, sound waves below 20 Hz are referred to as infrasound. (Figure 1).

Human hearing 16 Hz-18 kHz
Conventional ultrasound 20-100 kHz
Range for sonochemistry 2 kHz-2MHz
Diagnostic ultrasound 5-10 MHz

Figure 1. Frequency ranges of sound and its application (Mason and Bernal, 2003)

 Received
 11.02.2025

 Accepted
 29.04.2025

 Publication Date
 30.04.2025

Corresponding author: Nermin Şimşek

E-mail: simner@mersin.edu.tr Cite this article: Şimşek Kuş, N. (2025). Usage of Sonochemistry in Medicine, Industry, Environment, and Synthesis. Recent Trends in Pharmacology, 3(1), 36-49.

Content of this journal is licensed under a Creative Commons Attribution-Noncommercial 4.0 International License.

Sonochemistry is chemistry assisted by ultrasound. Ultrasound is any sound wave with frequencies above the normal hearing range of the human ear (i.e., above 16 kHz) (Savun-Hekimoğlu, 2020). Ultrasounds have proven useful in many fields, including medical imaging, also called sonography. In addition, it is used to realize and accelerate chemical reactions. Transducers, mostly made of piezoelectric ceramics are used in sonochemistry (Mason, 1997).

As in all chemical reactions, chemical bonds are broken and re-formed in sonochemical processes (Li et al, 2021). When ultrasonic waves (if their frequency is greater than 20 kHz) propagate through a liquid, chemical bonds are broken and free radicals are formed. Ultrasound is used to accelerate organic reactions, increase yield, reduce reaction time, and provide milder reaction conditions. Ultrasound promotes effective mixing in solid-liquid and liquid-liquid mixtures (Kaur, 2019). This feature is also used in various phase transfer-catalyzed reactions (Davidson et al, 1987). The pharmaceutical and food industries (Mason, 1995; Mason et al., 1996; Fresno et al. 2018; Chen et al., 2020; Rastogi et al., 2011; Wang et al., 2018; Sharma et al., 2020), extraction processes (Mason et al., 1996; Ebringerová & Hromádková, 2010; Alves Filho et al., 2020; Juliano et al., 2017; Kumari et al., 2018; Martínez et al., 2020; Ojha et al., 2020; Paniwnyk et al., 2009; Kulkarni & Rathod, 2014; Chen, 2012; Dey & Rathod, 2013; Shoh, 1988; Mason et al., 1990) waste treatment (Shoh, 1988; Ingole & Khedkar, 2012; Savun-Hekimoğlu & Ince, 2017; Gogate et al., 2003; González-Garcíaet al., 2010; Wang & Zhu, 2005; Nejumal et al., 2014; Yousef Tizhoosh et al., 2020; Naddeo et al., 2010; Monsef et al., 2019; Yadav et al., 2020; Serna-Galvis et al., 2019; Zinatloo-Ajabshir et al., 2020; Kerboua et al., 2021; Adewuyi, 2005; Mason & Lorimer, 1988), materials chemistry (Peters, 1996; Yuan et al., 2020; Cruz-Benítez et al. 2021), analytical chemistry (Robin et al., 2017; Wieland et al., 2019; Bendicho, 2012; Seidi & Yamini, 2012), emulsification (Shoh, 1988; Mason & Lorimer, 1988), material processing (Shoh, 1988; Mason & Lorimer, 1988), food processing (Mason et al., 1990; Mason & Lorimer, 1988) and nanoparticle synthesis (Kumari et al., 2018; Monsef et al., 2019; Chatel, 2019; Hujjatul Islam et al., 2019; Dheyab et al., 2021; Ersan, et al., 2020; Asfaram et al.; 2018, Bayrami et al., 2019) are the application areas of ultrasonic waves (Machado et al., 2021).

Applications of Sonochemistry

Based on the studies in the literature, this article will present the studies in the literature in chronological order.

Chemical effects from ultrasound in aqueous solution were first described in two separate papers in 1927 (Richards & Loomis, 1927; Wood & Loomis, 1927).

In 1953, Busnel et al. published a paper describing the relationship between wavelength and the oxidation of potassium iodide by ultrasound (Busnel et al., 1953). A similar study was published by Renaud in the same year (Renaud, 1953).

In 1955, an article on the examination of the ultrasonic energy sensor was published by d'Acoustique (d'Acoustique, 1955).

Weissler et al. sonolyzed acetonitrile under argon gas and obtained N_2 , CH_4 , and H_2 in 1965. When they performed the same experiment under oxygen gas, they obtained N_2 , CO, CO_2 , and H_2O . The ultrasound pulse-echo method has been used to obtain two-dimensional high-resolution images of the internal structures of the human heart (Åsberg, 1967). Ultrasonic flow detection was used as a useful technique in the evaluation of peripheral vascular disease (Strandness et al., 1967).

Fundamental developments in ultrasound, especially in radiological imaging, began after the 1970s. Leopold and Joel Sokoloff demonstrated that B-scan ultrasonography is useful in cases where radiographic imaging is not available or when hepatobiliary dysfunction is severe enough to preclude oral cholecystography or intravenous cholangiography (1973). Imaging of ventricular septal defects with cardiac ultrasonography has been achieved (King et al. 1973).

Styrene (1) can be cyclopropanated in 96% yield in 1 h when a combination of both sonication and mechanical stirring is used in 1982 (Figure 2) (Regen & Singh, 1982).

Figure 2. Cyclopropanation of styrene (39)

Davidson performed the N-alkylation of amines, synthesis of ethers and esters, and hydrolysis of esters under ultrasonic conditions in 1987. This study contains results supporting the idea that the presence of oxygen in a cavitating liquid produces singlet oxygen in addition to peroxy radicals. In another study, Henglein discussed the chemical effects of ultrasound used in medical diagnosis (. Henglein, 1987).

In 1988, Mason and Lorimer explained the theory of ultrasound and its application areas in chemistry. Suslick published articles on the chemistry, physical, and biological properties of ultrasound (Suslick, 1988) A year later, Lay and Low described the use of ultrasound in synthesis (1989).

In 1990, Mason published two studies on ultrasound chemistry. Lindley explained the usage of sonochemistry in inorganic and organometallic chemistry including catalysis (1990). Rienz et al. (1990) presented a paper on the sonochemistry of volatile and non-volatile solutes in aqueous solutions.

In 1992, the effects of ultrasonic irradiation at different frequencies, i.e. 20, 40, 60, and 80 kHz, on the activation of a model chemical reaction (iodide to iodine oxidation) were investigated (Cum et al, 1992). Mason et al. (1992) reported how ultrasonic energy input to a chemical reaction is affected by ultrasonic power used, the presence of bubbled gas, temperature, solvent composition, and reaction volume. Ultrasonic diagnostic devices can have possible harmful effects. Riesz and Kondo (1992) discussed the roles of free radicals and the mechanical effects of ultrasound in DNA degradation, inactivation of enzymes, lipid peroxidation, and cell killing.

In 1994, Olson and Barbie presented an advanced oxidation process in which ultrasound was studied in terms of its potential to oxidize natural organic matter to refractory electrolytes. Entezari and Kruus (1994) researched the effect of sonochemistry in the oxidation of iodide.

In 1995, Low explained the use of ultrasound in synthesis. Suslick et al. (1996) described the use of sonochemistry in material synthesis in 1996. In 1996, Ophir et al. presented a paper on ultrasonic imaging of tissue tension and elastic modulus under in vivo conditions in the field of breast imaging. Li et al. (1996) synthesized 5,5-disubstituted hydantoins 4 from ketone 3 (NH_4)₂CO₃ and NaCN with ultrasound in 1996 (Figure 3).

$$\begin{array}{c}
O \\
R \\
\end{array} \begin{array}{c}
(NH_4)_2CO_3 \\
NaCN,))))
\end{array} \begin{array}{c}
R' \\
HN \\
O \\
\end{array}$$

Figure 3. The synthesis of 5,5-Disubstituted Hydantoins

The hydrolysis of 4-nitrophenyl ester derivatives 5 (R = Me, Et, Pri, But) was carried out in an ultrasonic bath at 35 °C, and it was observed that the reaction rates increased in 1997 (Mason) (Figure 4).

Figure 4. The hydrolysis of 4-nitrophenyl ester derivatives 5

The alkylation reaction of 5-hydroxy-4-oxo-4H-1-benzopyran-2-carboxylic acid ethyl ester (8) was carried out by Mason using several different haloalkanes under sonication in 1997.

Figure 5. The alkylation reaction of 5-hydroxy-4-oxo-4H-1-benzopyran-2-carboxylic acid ethyl ester (8)

In the same study, he used ultrasound to increase the reactivity of the metal and saw that the reaction rate increased as a result (Figure 5). In another a study Petrier explained the degradation rate of phenol and carbon tetrachloride at different frequencies, 20 kHz, 200 kHz, 500 kHz, and 800 kHz (1997).

Fillion and Luche (1998) described the effect of sonochemistry in cycloaddition reactions in their books. Crum et al. (1999) published a chapter on sonochemistry. Lubinski et al. (1999) described the use of ultrasound in medical ultrasound elasticity imaging.

There are examples of sonochemical [4+2] and [3+2] cycloaddition reactions in the literature. One of these reactions is the addition of o-benzoquinone (10) with furan. The effect of sonochemistry has been investigated in studies (Figure 6) (Cabello et al., 2003; Avalos et al., 2003).

Figure 6. Sonochemical [4+2] and [3+2] cycloaddition

reactions

Li et al. (2003) succeeded in the synthesis a,a-bis(substituted benzylidene) cycloalkanones 14 catalyzed by KF/Al_2O_3 under ultrasound irradiation (Figure 7).

O ArCHO
$$\frac{KF/Al_2O_3}{NaOH, rt}$$
 R $\frac{O}{n}$ 13

Figure 7. The synthesis of substituted benzylidene cycloalkanones

Leveque and Cravotto (2006) explained a method using ultrasound in green chemistry. For example, Hydrazinolysis of methyl salicylate 15 occurred in ultrasound with a yield of 79%. Another example is the Mannich reaction of 17 under ultrasound irradiation (Figure 8).

Figure 8. Reaction examples in ultrasound irradiation

Guzen et al. (2006) explained that the condensation reactions of o-phenylenediamines with a diketone or a series of ketones occurred by ultrasound irradiation in the presence of APTS with good to excellent yields without catalyst (Figure 9).

Figure 9. The synthesis of benzodiazepines 21

Hickenboth et al. succeeded in the synthesis of molecule 24 by sonication (Figure 10) (2007).

Figure 10. Ring-opening reaction of benzocyclobutene mechanophore (22)

Figure 11. Synthesis of Pyrazoline Derivatives

1,3,5-triaryl-2-pyrazolines 27 were synthesized with chalcones 25 and phenylhydrazine hydrochloride 26 under ultrasound irradiation in 83-96% yields (Figure 11) (Li et al., 2007).

Anna et al. (2009) synthesized 2-substituted-2-imidazolines 30 from the substituted aldehydes and ethylenediamine by ultrasound irradiation with NBS in an aqueous medium (Figure 12).

Figure 12. Synthesis of 2-Imidazolines (30)

2,4,5-Triarylimidazoles 32 were synthesized by the onepot three-component condensation of benzil/benzoin 31, aldehydes, and ammonium acetate in the presence of the catalytic amount of ceric (IV) ammonium nitrate under ultrasound (Figure 13) (Shelke, et al., 2009).

Figure 13. Synthesis of 2,4,5-triarylimidazole derivatives (32)

Jin et al. (2009) studied the epoxidation of chalcones 33

with urea-hydrogen peroxide (UHP) in an ultrasonic bath and obtained epoxide 34 with high yields (Figure 14).

$$\begin{array}{c|c}
0 \\
R
\end{array}$$

$$\begin{array}{c|c}
0 \\
R
\end{array}$$

$$\begin{array}{c|c}
0 \\
R
\end{array}$$

$$\begin{array}{c|c}
34
\end{array}$$

Figure 14. The epoxidation of chalcones

Figure 15. Synthesis of 1,5-benzothiazepines 37 from chalcones 36 and o-aminothiophenol 35

Chate et al. (2011) found an easy method for the preparation of 1,5-benzothiazepine derivatives in the presence of 10 mol% catalysts of CAN under ultrasonic irradiation (Figure 15).

Ultrasound is used to destroy toxic organic molecules using advanced oxidation processes (AOPs). Thus, it can control pollution and environmental protection. Bremner et al. (2011) used ultrasound at different frequencies for the oxidation of polycyclic aromatic hydrocarbons and phenol and examined the effect of ultrasound on degradation.

Zou et al. (2011) developed a method for preparing dihydropyrano[2,3-c]pyrazoles via a four-component reaction of aromatic aldehydes, hydrazine, ethyl acetoacetate, and malononitrile under ultrasound irradiation in water.

The Michael addition reaction of some active methylene compounds 39 to cyclohexenone 38 was achieved in high yields under ultrasonic irradiation, without using solvents (Figure 16) (Oge et al., 2012).

Figure 16. The Michael addition reaction to cyclohexenone 38

IKK-b inhibitors, A2A adenosine receptor antagonists and potent HIV-1 integrase inhibitors (Safari et al., 2012) and 2-amino-pyridine derivatives 44 identified as antituberculosis agents (Chunxia 2013), are potential derivatives for the treatment of prion disease (Figure 17) (Guo et al., 2008).

Figure 17. The synthesis of 2-amino-pyridine derivative 44

Eftekhari-Sis and Vahdati-Khajeh (2013) published a three-component, catalyst-free swift, and efficient procedure for the synthesis of pyridazine (26) and pyrrole (29) derivatives using water as a solvent and under ultrasonic irradiation (Figure 18).

Figure 18. The synthesis of pyridazine 45 and pyrrole 48 derivatives

Mady et al. (2013) carried out the synthesis of homoallylic alcohols (50, 51) with ultrasonic support in high yields (Figure 19).

Figure 19. The synthesis of homoallylic alcohols (50, 51)

Cravotto et al. (2015) tried a series of reactions such as oxidation, bromination, aza-Michael, C-C couplings, MCR,

and aldol reactions in water under sonochemical conditions, thus showing that organic synthesis can be successful under sonochemical conditions in green chemistry.

Silva et al. (2016) explained the preparation of isatin derivatives 53 using 5-azido-spiro[1,3-dioxolane-2,3'-indol]-2'(1'H)-one (52) in the presence of various alkynes under acidic conditions and ultrasound irradiation (Figure 20).

$$N_3$$
 N_3
 N_3
 N_3
 N_4
 N_5
 N_5

Figure 20. The synthesis of isatin derivatives 53

Zhang (2016) explained that sonochemistry can be used in the chemical and chemical industries in 2016. Draye et al presented a review of the recent improvements in sonochemical and combined sonochemical oxidation processes.

Crawford succeeded in the synthesis of molecules 54 and 55 in an ultrasound bath with high yields in 2017 (Figure 21).

Figure 21. The synthesisis of diamine 54 and aldol product 55

Sharda et al. (2018) also studied the condensation reactions of o-phenylenediamines 56 and synthesized 2,3-dihydro-1H-1,5-benzodiazepines 58 using a catalyst in 2018 (Figure 22).

Figure 22. The condensation reactions of ophenylenediamines 56

Navjeet explained the synthesis of nitrogen containing five-membered heterocycles under ultrasonic irradiation in 2019.

In 2020, Mallakpour and Azadi presented a sonochemical method for organo-synthesis, organo-modifications, and preparation of hybrids of titanium dioxide (TiO₂), which can be used in a wide variety of fields such as photocatalysis, antibacterial agents, present, self-cleaning.

Gharat et al. (2020) studied the application of sonochemistry in commercial industries such as food, pharmaceuticals, cosmetics, and chemicals and designed the reactor accordingly and stated that the ultrasonic system is more suitable in terms of cost-effectiveness, high efficiency, low waste, and low energy (2020). Sonochemistry is also used successfully in polymer synthesis. Hatami et al. are interested in ultrasoundassisted emulsion polymerization, mass and suspension polymerization, ring-opening polymerization, preparation of hydrogel polymers, synthesis of copolymers, phase transfer catalysis polymerization, reversible additionfragmentation chain transfer (RAFT) procedure. polymerization (ATRP) and preparation of polymer nanocomposites were accomplished under ultrasonic conditions (2020). Metal-supported work can be done with ultrasonication. Since ultrasonic irradiation affects the metal surface, it also changes the mechanism, speed, and duration of the reaction. Bhuyan et al. tried ultrasonic conditions for various coupling reactions and were successful (Figure 23).

Figure 23. The synthesis of pyrazole 63

Tran and Nguyen have worked on alkylation reactions and used sonochemistry reactions, an environmentally friendly method, to improve reaction rates, product yield,

and selectivity and to find new synthetic routes in 2020. Blanco et al. (2020) synthesized 1,3-dibenzyl-1H-4,5,6,7-tetrahydro-1,3-diazepinium and 1,4,5,6,7,8-hexahydro-1,3-diazepinium salts under ultrasonic conditions with high yields (Figure 24).

 $R^{1} = -C_{6}H_{5}, \ 4-NO_{2}C_{6}H_{4}, \ 4-OCH_{3}C_{6}H_{4}, \ 4-CIC_{6}H_{4}, \ 3-NO_{2}C_{6}H_{4}, \ 2-FC_{6}H_{4}, \ 2-furyl, \ 2-thieny, \\ R^{2} = C_{2}H_{5}$ $R^{3} = C_{2}H_{5}$

Figure 24. The synthesis of diazepinium 66

Draye et al. (2020) presented a review on the application of ultrasound in green chemistry in 2020. In 2021, the semisynthetic reaction of enantiopure Milbemycin- β (68) is successful with sonication in the first step but fails without sonication (Figure 25).

Figure 25. The synthesis Milbernycin- β (68)

Machado explained the synthesis of N-heterocyclic compounds 69 and 70 that are pharmacologically important using green solvents and catalysts in the ultrasonic bath in 2021 (Figure 26).

Figure 26. The synthesis of N-heterocyclic compounds

Casey et al. (2022) have written a review on the use of ultrasound to measure skeletal muscle. Shabir et al. (2022) presented the synthesis of 5-7 membered heterocyclic rings in sonochemistry with high yields.

Kamble et al. (2022) developed an environmentally friendly synthesis method for bioactive molecules (71-74) containing nitrogen and sulfur using ultrasonic energy in a short time (Figure 27).

$$R_1$$
 R_2
 O
 CO_2 Et
 R_3
 R_4
 R_5
 R_4
 R_5
 R_5
 R_6
 R_7
 R_7
 R_8
 R_8
 R_9
 R_9

Figure 27. Synthesiszed bioactive molecules 71-74 using ultrasonic energy

In 2023 Sezen et al. studied the addition reaction of dimethyl cyclohexa-1,4-diene-1,2-dicarboxylate (46) and dichloroketene under ultrasonic and non-ultrasonic conditions. They showed that the ultrasonic reaction is faster than the non-ultrasonic reaction (Figure 28).

Figure 28. The ketene addition reaction of dimethyl cyclohexa-1,4-diene-1,2-dicarboxylate 77

Barmin et al. (2023) explained new perspectives on ultrasound-responsive polymeric designs, envisaging their current and future applications in ultrasound imaging and therapy. Abdelmonsef et al. (2023) found that ultrasound-assisted green synthesis of triazole analogs is a promising class of molecular entities for the development of new anticancer therapies, through targeting of some Rab proteins (Figure 29).

Figure 29. The synthesis of triazole analogs

In 2024, Jiao et al. (2024) wrote a review on ultrasound-

assisted sonochemical synthesis and biological applications, to promote the next generation of ultrasound technology-assisted applications.

Figure 29. The synthesis of dichloro ketone 81.

Gökçay Bilici et al. (2024) synthesized dichloro ketone 81 with the addition reaction dichloroketene to indene with high yields under ultrasonic conditions.

Conclusion

The article gives short but detailed information about sonochemistry with various applications in the medicinalpharmaceutical-drug-chemistry industries, and imaging techniques. While information about sonochemistry is given in the article, developments, and syntheses year by year since 1927 are mentioned. Much progress has been made regarding ultrasound in chemical science and the chemical industry in recent years. This paper focuses on using ultrasonic technologies in some areas such as polymer degradation, polymerization reactions, removal of toxic organic contaminants in water, organic synthesis, ultra-strong transfer processes including the extraction process, adsorption process, membrane demulsification, crystallization process, emulsification, heterogeneous chemical reaction process, and electrochemical process.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept-NŞK; Design-NŞK; Supervision-NŞK; Resources-NŞK; Data Collection and/or Processing-NŞK; Analysis and/or Interpretation-NŞK; Literature Search-NŞK; Writing Manuscript-NŞK; Critical Review-NŞK; Other-NŞK

Conflict of Interest: The authors have no conflicts of interest to declare. **Financial Disclosure:** The authors declared that this study has received no financial support.

References

Abdelmonsef, A. H., El-Saghier, A. M., & Kad, A. M. (2023). Ultrasound-assisted green synthesis of triazole-based azomethine/thiazolidin-4-one hybrid inhibitors for cancer therapy through targeting dysregulation signatures of some Rab proteins. *Green Chemistry Letters and Reviews*, 16, 2150394. https://doi.org/10.1080/17518253.2022.2150394

Adewuyi, Y. G. (2005). Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic

oxidation processes for the treatment of pollutants in water. *Environmental Science & Technology*, 39(22), 8557-8570. https://doi.org/10.1021/es0509127

Alves Filho, E. G., Sousa Valéria, M., Rodrigues, S., de Brito, E. S., & Fernandes, F. A. N. (2020). Green ultrasoundassisted extraction of chlorogenic acids from sweet and sonochemical hydrolysis of potato peels **Ultrasonics** caffeoylquinic acids derivatives. Sonochemistry, 104911. 63, https://doi.org/10.1016/j.ultsonch.2019.104911

Anna, G. S. S., Machado, P., Sauzem, P. D., Rosa, F. A., Rubin, M. A., Ferreira, J., Bonacorso, H. G., Zanatta, N., & Martins, M. A. P. (2009). Ultrasound promoted synthesis of 2-imidazolines in water: A greener approach toward monoamine oxidase inhibitors. *Bioorganic & Medicinal Chemistry Letters*, 19(2), 546-549. https://doi.org/10.1016/j.bmcl.2008.03.001

Asberg, A. (1967). Ultrasonic cinematography of the living heart. *Ultrasonics*, 5(2), 113-117. https://doi.org/10.1016/S0041-624X(67)80012-X

Asfaram, A., Ghaedi, M., Abidi, H., Javadian, H., Zoladl, M., & Sadeghfar, F. (2018). Synthesis of Fe3O4@CuS@Ni2P-CNTs magnetic nanocomposite for sonochemical-assisted sorption and pre-concentration of trace Allura Red from aqueous samples prior to HPLC-UV detection: CCD-RSM design. *Ultrasonics Sonochemistry*, 44, 240-250. https://doi.org/10.1016/j.ultsonch.2018.02.011

Avalos, M., Babiano, R., Cabello, N., Cintas, P., Hursthouse, M. B., Jiménez, J. L., Light, M. E., & Palacios, J. C. (2003). Thermal and sonochemical studies on the Diels-Alder cycloadditions of masked o-benzoquinones with furans: new insights into the reaction mechanism. *The Journal of Organic Chemistry*, 68, 7193-7203. https://doi.org/10.1021/jo0348322

Barmin, R. A., Moosavifar, M., Dasgupta, A., Herrmann, A., Kiessling, F., Pallares, R. M., & Lammers, T. (2023). Polymeric materials for ultrasound imaging and therapy†. *Chemical Science*, 43, 11941-11954. https://doi.org/10.1039/D3SC04339H.

Bayrami, A., Alioghli, S., Rahim Pouran, S., Habibi-Yangjeh, A., Khataee, A., & Ramesh, S. (2019). A facile ultrasonic-aided biosynthesis of ZnO nanoparticles using Vaccinium arctostaphylos L. leaf extract and its antidiabetic, antibacterial, and oxidative activity evaluation. *Ultrasonics Sonochemistry*, 55, 57-66. https://doi.org/10.1016/j.ultsonch.2019.03.010

Bendicho, C., De La Calle, I., Pena, F., Costas, M., Cabaleiro, N., & Lavilla, I. (2012). Ultrasound-assisted pretreatment of solid samples in the context of green analytical chemistry. *Trac-Trends in Analytical Chemistry*, 31, 50-60. https://doi.org/10.1016/j.trac.2011.06.018

Bhuyan, P. Bhuyan, A. J., & Saikia, L. (2020). Chapter 7 -

- Sonochemical protocol for coupling reactions, green sustainable process for chemical and environmental engineering and science. *Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis*, 177-201. https://doi.org/10.1016/B978-0-12-819540-6.00007-3
- Blanco, M. M., Reamírez, M. A., Caterina, M. C., Perillo, I. A., Oppezzo, G. A., Shmidt, M. S. Gutkind, G. O., Di Conza, J., & Salerno, A. (2020). Ultrasound promoted synthesis and antimicrobial evaluation of novel seven and eightmembered 1,3-disubstituted cyclic amidinium salts. *The Open Medicinal Chemistry Journal*, 10, 139-152. http://www.scirp.org/journal/Paperabs.aspx?PaperID=1 06129
- Bremner, D. H., Burgess, A. E., & Chand, R. (2011). The chemistry of ultrasonic degradation of organic compounds. *Current Organic Chemistry*, 15(2), 168-177. https://doi.org/10.2174/138527211793979862
- Busnel, R. G., Picard, D., & Bouzigues, H. (1953). Rapports entre la longueur d'onde et l'oxydation de l'iodure de potassium par les ultrasons. *Journal de Chimie Physique*, 50, 97-101. https://doi.org/10.1051/jcp/1953500097
- Cabello, N., Cintas, P., & Luche, J. L. (2003). Sonochemical effects in the addition of furan to masked orthobenzoquinones. *Ultrasonics Sonochemistry*, 10, 25-31. https://doi.org/10.1016/S1350-4177(02)00103-7
- Casey, P., Alasmar, M., McLaughlin, J., Ang, Y., McPhee, J., Heire, P., & Sultan J. (2022). The current use of ultrasound to measure skeletal muscle and its ability to predict clinical outcomes: A systematic review. *The Journal of Cachexia, Sarcopenia and Muscle*, 13(5), 2298-2309. https://doi.org/10.1002/jcsm.13041
- Chate, A. V., Joshi, R. S., Mandhane, P. G., & Gill, C. H. (2011). An Improved Procedure for the Synthesis of 1,5-Benzothiazepines Using Ceric Ammonium Nitrate (CAN). *Korea Oopen Access Journals*, 55(5), 776-780. https://www.kci.go.kr/kciportal/landing/article.kci?arti_id=ART001596633.
- Chatel, G. (2019). Sonochemistry in nanocatalysis: the use of ultrasound from the catalyst synthesis to the catalytic reaction. *In Current Opinion in Green and Sustainable Chemistry*, 15, 1-6. https://doi.org/10.1016/j.cogsc.2018.07.004
- Chen, F., Zhang, M., & Hui Yang, C. (2020). Application of ultrasound technology in processing of ready-to-eat fresh food: a review. *Ultrasonics Sonochemistry*, 63, 104953-104964.
 - https://doi.org/10.1016/j.ultsonch.2019.104953
- Chen, R., Li, Y., Dong, H., Liu, Z., Li, S., Yang S., & Li, X. (2012). Optimization of ultrasonic extraction process of polysaccharides from Ornithogalum Caudatum Ait and evaluation of its biological activities. *Ultrasonics*

- *Sonochemistry*, 19(6), 1160-1168. https://doi.org/10.1016/j.ultsonch.2012.03.008
- Chunxia, C., Minghui, L., Zhihui, L., Junting, W., Zhengchao, T., Tianyu, Z., & Ming, Y. (2013). Synthesis and evaluation of 2-amino-4h-pyran-3-carbonitrile derivatives as antitubercular agents. *Open Journal of Medicinal Chemistry*, 3, 128-135. http://dx.doi.org/10.4236/ojmc.2013.34015.
- Cravotto, G., Borretto, E., Oliverio, M., Procopio, A., & Penoni, A. (2015). Organic reactions in water or biphasic aqueous systems under sonochemical conditions. A review on catalytic effects. *Catalysis Communications*, 63, 2-9. https://doi.org/10.1016/j.catcom.2014.12.014
- Crawford, D. E. (2017). Solvent-free sonochemistry: Sonochemical organic synthesis in the absence of a liquid medium. *The Beilstein Journal of Organic Chemistry*, 13, 1850-1856. https://doi.org/10.3762/bjoc.13.179
- Crum, L. A., Mason, T. J., Reisse, J., & Suslick, K. S., eds. (1999) *Sonochemistry and Sonoluminescence*. Kluwer Publishers: Dordrecht, Netherlands, NATO ASI Series C, 524.
 - https://www.researchgate.net/publication/259147036_ Sonochemistry_and_Sonoluminescence_NATO_ASI_Seri es.
- Cruz-Benítez, M. M., Gónzalez-Morones, P., Hernández-Hernández, E., Villagómez-Ibarra, J. R., Castro-Rosas, J., Rangel-Vargas, E., Fonseca-Florido, H. A., & Gómez-Aldapa, C. A. (2021). Covalent functionalization of graphene oxide with fructose, starch, and microcellulose by sonochemistry. *Polymers (Basel)*, 13, 1-14. https://doi.org/10.3390/polym13040490
- Cum, G., Galli, G., Gallo, R., & Spadaro, A. (1992). Role of frequency in the ultrasonic activation of chemical reactions. *Ultrasonics*, 30(4), 267-270. https://doi.org/10.1016/0041-624X(92)90086-2
- d'Acoustique, C. (1955). Étude d'un palpeur d'énergie ultrasonore. *Annales Des Télécommunications*, 10, 2-7. https://doi.org/10.1007/BF03016368
- Davidson, R. S., Safdar, A., Spencer, J. D., & Robinson, B. (1987). Applications of ultrasound to organic chemistry. *Ultrasonics.*, 25(1), 35. https://doi.org/10.1016/0041-624X(87)90009-6
- del Fresno, J. M., Loira, I., Morata, A., González, C., Suárez-Lepe, J. A., & Cuerda, R. (2018). Application of ultrasound to improve lees ageing processes in red wines. *Food Chemistry*, 261, 157-163. https://doi.org/10.1016/j.foodchem.2018.04.041
- Dey, S., & Rathod, V. K. (2013). Ultrasound assisted extraction of β -carotene from Spirulina platensis. *Sonochemistry*, 20(1), 271-276. https://doi.org/10.1016/j.ultsonch.2012.05.010
- Dheyab, M. A., Aziz, A. A., & Jameel, M. S. (2021). Recent

- advances in inorganic nanomaterials synthesis using sonochemistry: a comprehensive review on iron oxide, gold and iron oxide coated gold nanoparticles. *Molecules*, 26, 2453-2472. https://doi.org/10.3390/molecules26092453
- Draye, M., Chatel, G., & Duwald, R. (2020). Ultrasound for Drug Synthesis: A Green Approach. *Pharmaceuticals*, 13, 23. https://doi.org/10.3390/ph13020023
- Ebringerová, A., & Hromádková, Z. (2010). An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides Central European *Journal of Chemistry*, 8, 243-257. https://doi.org/10.2478/s11532-010-0006-2
- Eftekhari-Sis, B., & Vahdati-Khajeh, S. (2013). Ultrasound-assisted green synthesis of pyrroles and pyridazines in water via three-component condensation reactions of arylglyoxals. *Current Chemistry Letters*, 2, 85-92. https://doi.org/10.5267/j.ccl.2013.02.002
- Entezari, M. H., & Kruus, P. (1994). Effect of frequency on sonochemical reactions. I: Oxidation of iodide. *Ultrasonics Sonochemistry*, 1(2), S75-S79. https://doi.org/10.1016/1350-4177(94)90001-9
- Ersan, A. C., Kipcak, A. S., Ozen, M. Y., & Tugrul N.(2020). An accelerated and effective synthesis of zinc borate from zinc sulfate using sonochemistry. *Main Group Metal Chemistry*, 43, 7-14. https://doi.org/10.1515/mgmc-2020-0002
- Fillion, H., & Luche, J. L. (1998). *Cycloadditions. In Synthetic Organic Sonochemistry*; Luche, J.-L., Ed.; Plenum Press: New York, 91-106. https://www.scirp.org/reference/referencespapers?referenceid=619449.
- Gharat, N. N., & Rathod, V. K. (2020). Ultrasound-assisted organic synthesis. Green sustainable process for chemical and environmental engineering and science. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis 1-41. https://doi.org/10.1016/B978-0-12-819540-6.00001-2.
- Gogate, P. R., Mujumdar, S., & Pandit, A. B. (2003). Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction. *Advances in Environmental Research*, 7(2), 283-299. https://doi.org/10.1016/S1093-0191(01)00133-2
- González-García, J., Sáez, V., Tudela, I., Díez-Garcia, M. I., Esclapez, M. D., & Louisnard, O. (2010). Sonochemical treatment of water polluted by chlorinated organocompounds. *Water*, 2, 28-74. https://doi.org/10.3390/w2010028
- Gökçay Bilici, E., Tıraş, C., & Şimşek Kuş, N. (2024). The synthesis of indane derivatives and antioxidant effects. *Monatshefte für Chemie/Chemical Monthly*, 155, 1243-

- 1248. https://doi.org/10.1007/s00706-024-03267-4
- Guo, K., Mutter, R., Heal, W., Reddy, T. P. K., Cope, H., Pratt, S., Thompson, M. J., & Chen, B. (2008). Synthesis and evaluation of a focused library of pyridine dicarbonitriles against prion disease. *The European Journal of Medicinal Chemistry*, 43, 93-106. https://doi.org/10.1016/j.ejmech.2007.02.018
- Guzen, K. P., Cella, R., & Stefani, H. A. (2006). Ultrasound enhanced synthesis of 1,5-benzodiazepinic heterocyclic rings. *Tetrahedron Letters*, 47(46)-13, 8133-8136. https://doi.org/10.1016/j.tetlet.2006.09.043
- Hatami, M., Mahmoudian, M., Khalili, S., & Asl, M. M. (2020). Chapter 12 Sonochemical protocol of polymer synthesis, green sustainable process for chemical and environmental engineering and science. *Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis*, 325-353. https://doi.org/10.1016/B978-0-12-819540-6.00012-7
- Henglein, A. 1987. Sonochemistry: historical developments and modern aspects. *Ultrasonics*, 25(1), 6-16. https://doi.org/10.1016/0041-624X(87)90003-5
- Hickenboth, C. R., Moore, J. S., White, S. R., Sottos, N. R., Baudry, J., & Wilson, S. R. (2007). Biasing reaction pathways with mechanical force. *Nature*, 446, 423-427. https://doi.org/10.1038/nature05681
- Hujjatul Islam, M., Paul, M. T. Y., Burheim, O. S., & Pollet, B. G. (2019). Recent developments in the sonoelectrochemical synthesis of nanomaterials. *Ultrasonics Sonochemistry*, 59, 104711-104719. https://doi.org/10.1016/j.ultsonch.2019.104711
- Ingole, N. W., & Khedkar, S. V. (2012). The ultrasound reactor technology-A technology for the future. International *Journal of Advance Engineering and Research Development*, 2(1), 72-75. https://www.researchgate.net/publication/234125818_ The_ultrasound_reactor_technology-__A_technology_for_future
- Jiao, H., Mao, Q., Razzaq, N., Ankri, R., & Cui, J. (2024).

 Ultrasound technology assisted colloidal nanocrystal synthesis and biomedical applications. *Ultrasonics Sonochemistry*, 103, 106798. https://doi.org/10.1016/j.ultsonch.2024.106798
- Jin, H., Zhao, H., Zhao, F., Li, Sh., Liu, W., Zhou, G., Tao, K., & Hou, T. (2009). Efficient epoxidation of chalcones with urea-hydrogen peroxide under ultrasound irradiation. *Ultrasonics Sonochemistry*, 16, 304-307. https://doi.org/10.1016/j.ultsonch.2008.10.013
- Juliano, P., Bainczyk, F., Swiergon, P., Supriyatna, M. I. M., Guillaume, C., Ravetti, L., Canamasas, P., Cravotto, G., & Xu X. Q. (2017). Extraction of olive oil assisted by high-frequency ultrasound standing waves. *Ultrasonics*

- *Sonochemistry*, 38, 104-114. https://doi.org/10.1016/j.ultsonch.2017.02.038
- Kamble, O., Chatterjee, R., Dandela, R., & Shinde, S. (2022).

 Ultrasonic energy for construction of bioactive heterocycles. *Tetrahedron*, 120, 132893. https://doi.org/10.1016/j.tet.2022.132893
- Kaur, N. (2019). Synthesis of Five-Membered Heterocycles
 Containing Nitrogen Heteroatom Under Ultrasonic
 Irradiation. *Mini-Reviews in Organic Chemistry*, 16(5), 481-503.
 doi. https://doi.org/10.2174/1570193X15666180709144028
- Kerboua, K., Hamdaoui, O., & Al-Zahrani, S. (2021). Sonochemical production of hydrogen: a numerical model applied to the recovery of aqueous methanol waste under oxygen-argon atmosphere. *Environmental Progress & Sustainable Energy*, 40, 1-15. https://doi.org/10.1002/ep.13511
- King, D. L. Steeg, C. N. & Ellis, K. (1973). Visualization of ventricular septal defects by cardiac ultrasonography. *Circulation.*, 48, 1215-1220. https://doi.org/10.1161/01.CIR.48.6.1215
- Kulkarni, V. M., & Rathod, V. K. (2014). Mapping of an ultrasonic bath for ultrasound assisted extraction of mangiferin from Mangifera indica leaves. *Ultrasonics Sonochemistry*, 21(2), 606-611. https://doi.org/10.1016/j.ultsonch.2013.08.021
- Kumari, B., Tiwari, B. K., Hossain, M. B., Brunton, N., & Rai, D. K. (2018). Recent advances on application of ultrasound and pulsed electric field technologies in the extraction of bioactives from agro-industrial byproducts. *Food and Bioprocess Technology*, 11(2), 223-241. https://doi.org/10.1007/s11947-017-1961-9
- Leopold, G. R., & Sokoloff, J. (1973). Ultrasonic scanning in the diagnosis of biliary disease. *Surgical Clinics of North America*, 53(5), 1043-1052. https://doi.org/10.1016/s0039-6109(16)40133-7
- Lévêquea, J. M., & Cravotto, G. (2006). Microwaves, power ultrasound, and ionic liquids. a new synergy in green. *Microwave Chemistry, Chimia*, 60(6), 313-320. https://doi.org/10.2533/000942906777836255
- Ley, S. V., & Low, C. M. R. (1989). *Ultrasound in synthesis*. Springer-Verlag, London. https://link.springer.com/book/10.1007/978-3-642-74672-7
- Li, J., Li, Li, T., Li, H., & Liu J. (1996). An efficient and convenient procedure for the synthesis of 5,5-disubstituted hydantoins under ultrasound. *Ultrasonics Sonochemistry*, 3, 141-143. https://doi.org/10.1016/1350-1477(96)00011-2
- Li, J. T., Yang, W. Z., Chen, G. F., & Li, T. S. (2003). A facile synthesis??????bis(substituted benzylidene) cycloalkanones catalyzed by KF/Al2O3 under ultrasound

- irradiation. *Synthetic Communications*, 33(15), 2619-2625. https://doi.org/10.1081/SCC-120021982
- Li, J. T., Zhang, X. H., & Lin, Z. P. (2007). An improved synthesis of 1,3,5-triaryl-2pyrazolines in acetic acid aqueous solution under ultrasound irradiation. *The Beilstein Journal of Organic Chemistry*, 3, 13-17. https://doi.org/10.1186/1860-5397-3-13
- Lindley, J., & Mason, T. (1988). ChemInform Abstract: Sonochemistry. Part 2. Synthetic Applications. ChemInform, 198(20) https://doi.org/10.1002/chin.198820354
- Li, Z., Dong, J., Zhang, H., Zhang, Y., Wang, H., Cui, X., & Wang, Z. (2021). Sonochemical catalysis as a unique strategy for the fabrication of nano-/micro-structured inorganics *Nanoscale Advances*, 3(1), 41-72. https://doi.org/10.1039/d0na00753f.
- Low, C. (1995). Ultrasound in synthesis: natural products and supersonic reactions? *Ultrasonics Sonochemistry*, 2, S153-https://doi.org/10.1016/1350-4177(95)00017-Z
- Lubinski, M. A., Emelianov, S. Y., & O'Donnell, M. (1999).

 Adaptive strain estimation using retrospective processing [medical US elasticity imaging. *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control*, 46(1), 97-107. https://doi.org/10.1109/58.741428
- Machado, I. V., dos Santos, J. R., Januario, M. A. P., & Corrêa, A. G. (2021). Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. *Ultrasonics Sonochemistry*, 78, 105704. https://doi.org/10.1016/j.ultsonch.2021.105704
- Mady, M. F., El-Kateb, A. A., Zeid, I. F., & Jørgensen, K. B. (2013). Comparative studies on conventional and ultrasound-assisted synthesis of novel homoallylic alcohol derivatives linked to sulfonyl dibenzene moiety in aqueous media. *Journal of Chemistry*, Article ID 364036. https://doi.org/10.1155/2013/364036
- Mallakpour, S., & Azadi, E. (2020). Chapter 11 Sonochemical protocol for the organo-synthesis of tio2 and its hybrids: Properties and applications, green sustainable process for chemical and environmental engineering and science. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis, 287-323. http://dx.doi.org/10.1016/B978-0-12-819540-6.00011-5
- Martínez, J. M., Delso, C., Aguilar, D. E., Álvarez, I., & Raso, J. (2020). Organic-solvent-free extraction of carotenoids from yeast Rhodotorula glutinis by application of ultrasound under pressure. *Ultrasonics Sonochemistry*, 61, 104833-104842. https://doi.org/10.1016/j.ultsonch.2019.104833
- Martínez, R. F., Cravotto, G., & Cintas, P. (2021). Organic

- Sonochemistry: A Chemist's Timely Perspective on Mechanisms and Reactivity. *The Journal of Organic Chemistry*, 86, 13833-13856. https://doi.org/10.1021/acs.joc.1c00805
- Mason, T. J. (1990). In: chemistry with ultrasound. T.J. Mason (Ed.). Ch. 1:1-26, Elsevier Applied Science, London.
- Mason, T. J. (1990). Sonochemistry: The uses of ultrasound in chemistry. The The Royal Society of Chemistry Cambridge.
- Mason, T. J. (1997). Ultrasound in synthetic organic chemistry. *Chemical Society Reviews*, 26, 443-451. https://doi.org/10.1039/CS9972600443.5
- Mason, T. J., & Bernal, V. S. (2003). Sonochemistry and sonoprocessing: the link, the trends and (probably) the future. *Ultrasonics Sonochemistry*, 10(4-5), 175-179. https://doi.org/10.1016/S1350-4177(03)00086-5
- Mason, T.J., & Lorimer, J. P. (1988). Sonochemistry (Theory, Applications and Uses of Ultrasound in Chemistry). Ellis Horwood Limited, New York.
- Mason, T. J., Lorimer, J. P., & Bates, D. M. (1992). Quantifying sonochemistry: Casting some light on a 'black art'. *Ultrasonics*, 30(1), 40-42. https://doi.org/10.1016/0041-624X(92)90030-P
- Mason, T. J., Lorimer, J. P., & Walton, D. J. (1990). Sonochemistry. *Ultrasonics*, 28(5), 333-337. https://doi.org/10.1016/0041-624X(90)90041-L
- Mason, T. J., Paniwnyk, L., & Lorimer, J. P. (1996). The uses of ultrasound in food technology. *Ultrasonics Sonochemistry*, 3(3), S253-S260. https://doi.org/10.1016/S1350-4177(96)00034-X
- Monsef, R., Ghiyasiyan-Arani, M., Amiri, O., & Salavati-Niasari, M. (2019). Sonochemical synthesis, characterization and application of PrVO4 nanostructures as an effective photocatalyst for discoloration of organic dye contaminants in wastewater. *Ultrasonics Sonochemistry*, 61, 104822-104836.
 - https://doi.org/10.1016/j.ultsonch.2019.104822
- Naddeo, V., Belgiorno, V., Kassinos, D., Mantzavinos, & D., Meric, S. (2010). Ultrasonic degradation, mineralization and detoxification of diclofenac in water: optimization of operating parameters. *Ultrasonics Sonochemistry*, 17(1), 179-185.
 - https://doi.org/10.1016/j.ultsonch.2009.04.003
- Navjeet, K. (2019). Synthesis of Five-Membered Heterocycles Containing Nitrogen Heteroatom Under Ultrasonic Irradiation. *Mini-Reviews in Organic Chemistry*, 16(5), 481-503. http://dx.doi.org/10.2174/1570193X156661807091440 28
- Nejumal, K. K., Manoj, P. R., Aravind, K., & Aravindakumar,

- C. T. (2014). Sonochemical degradation of a pharmaceutical waste, atenolol, in aqueous medium. *Environmental Science and Pollution Research*, 21(6), 4297-4308. https://doi.org/10.1007/s11356-013-2301-x
- Oge, A., Maviş, M. E., Yolçan, C., & Aydoğan, F. (2012). Solvent-free Michael addition of 2-cyclohexenone under ultrasonic irradiation in the presence of long chain dicationic ammonium salts. *Turkish Journal of Chemistry*, 36, 137-146. https://doi.org/10.3906/kim-1104-63.
- Ojha, K. S., Aznar, R., O'Donnell, C., & Tiwari, B. K. (2020). Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC *Trends in Analytical Chemistry*, 122, 115663-115673. https://doi.org/10.1016/j.trac.2019.115663
- Olson, T., & Barbier, P. (1994). Oxidation kinetics of natural organic matter by sonolysis and ozone. *Water Research*, 28, 1383-1391. https://doi.org/10.1016/0043-1354(94)90305-0
- Ophir, J., Cespedes, I., Garra, B., Ponnekanti, H., Huang, Y., & Maklad, N. (1996). Elastography: Ultrasonic imaging of tissue strain and elastic modulus in vivo. *European Journal of Ultrasound*, 3(1), 49-70. https://doi.org/10.1016/0929-8266(95)00134-4
- Paniwnyk, L., Beaufoy, E., Lorimer, J. P., & Mason, T. J. (2001). The extraction of rutin from flower buds of Sophora japonica. *Ultrasonics Sonochemistry*, 8(3), 299-301. https://doi.org/10.1016/S1350-4177(00)00075-4
- Paniwnyk, L., Cai, H., Albu, S., Mason, T. J., & Cole, R. (2009). The enhancement and scale up of the extraction of antioxidants from Rosmarinus officinalis using ultrasound. *Ultrasonics Sonochemistry*, 16(2), 287-292. https://doi.org/10.1016/j.ultsonch.2008.06.007
- Peters, D. (1996). Ultrasound in materials chemistry. *Journal* of Materials Chemistry, 6, 1605-1618. https://doi.org/10.1039/JM9960601605
- Petrier, C., & Francony A. (1997). Incidence of wave-frequency on the reaction rates during ultrasonic wastewater treatment. *Water Science and Technology*, 35(4), 175-180. https://doi.org/10.1016/S0273-1223(97)00023-1
- Rastogi, N. K. (2011). Opportunities and challenges in application of ultrasound in food processing. *Critical Reviews in Food Science and Nutrition*, 51(8), 705-722. https://doi.org/10.1080/10408391003770583.
- Regen, S. L., & Singh, A. (1982). Biphasic sonochemistry. convenient generation of dichlorocarbene1. *Journal of Organic Chemistry*, 47, 1587-1588. https://doi.org/10.1021/jo00347a047.
- Renaud, P. (1953). Lois de l'oxydation de l'iodure de potassium par les ultrasons. *Journal de Chimie Physique*, 50, 136. https://doi.org/10.1051/jcp/1953500136.
- Richards, W., & Loomis, A. J. 1927. The chemical effects of

- high frequency sound waves i. a preliminary survey. *Journal of the American Chemical Society*, 49, 3086. https://doi.org/10.1021/ja01411a015.
- Riesz, P., & Kondo, T. (1992). Free radical formation induced by ultrasound and its biological implications. *Free Radical Biology and Medicine*, 13(3), 247-270. https://doi.org/10.1016/0891-5849(92)90021-8.
- Riesz, P., Kondo, T., & Krishna, C. M. (1990). Sonochemistry of volatile and non-volatile solutes in aqueous solutions: e.p.r. and spin trapping studies. *Ultrasonics*, 28(5), 295-303. https://doi.org/10.1016/0041-624X(90)90035-M.
- Robin, J., Tanter, M., & Pernot, M. (2017). A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications. *Physics in Medicine & Biology*, 62, 7471-7481. https://doi.org/10.1088/1361-6560/aa8211
- Safari, J., Banitaba, S. H., & Khalili S. D. (2012). Ultraosund-promoted an ecient method for one-pot synthesis of 2-amino-4,6-diphenylnicotinonitriles in water: A rapid procedure without catalyst. *Ultrasonics Sonochemistry*, 19, 1061-1069. https://doi.org/10.1016/j.ultsonch.2012.01.005.
- Sathishkumar, P., Mangalaraja, R. V., & Anandan S. (2016). Review on the recent improvements in sonochemical and combined sonochemical oxidation processes-A powerful tool for destruction of environmental contaminants. *Renewable and Sustainable Energy Reviews*, 55(4), 426-454. https://doi.org/10.1016/j.rser.2015.10.139.
- Savun-Hekimoğlu, B. (2020). A review on sonochemistry and its environmental applications. *Acoustics*, 2, 766-775. https://doi.org/10.3390/acoustics2040042.
- Savun-Hekimoğlu, B., & Ince, N. H. (2017). Decomposition of PPCPs by ultrasound-assisted advanced Fenton reaction: a case study with salicylic acid. *Ultrasonics Sonochemistry*, 39, 243-249. https://doi.org/10.1016/j.ultsonch.2017.04.013.
- Seidi, S., & Yamini, Y. (2012). Analytical sonochemistry; developments, applications, and hyphenations of ultrasound in sample preparation and analytical techniques. Central European *Journal of Chemistry*, 10, 938-976. https://doi.org/10.2478/s11532-011-0160-1.
- Serna-Galvis, E. A., Silva-Agredo, J., Botero-Coy, A. M., Moncayo-Lasso, A., Hernández, F., & Torres-Palma, R. A. (2019). Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process. *Science of the Total Environment*, 670, 623-632. https://doi.org/10.1016/j.scitotenv.2019.03.153.
- Sezen, H., Şimşek Kuş, N., Özdemir, S., & Tollu, G. (2023). The addition of ketene to olefins under ultrasonic conditions:

- evaluation of the biological activities of halobicyclic lactone. *ChemistrySelect*, 8(13), e202204042. https://doi.org/10.1002/slct.202204042.
- Shabir, G., Shafique, I., & Saeed, A. (2022). Ultrasound assisted synthesis of 5-7 membered heterocyclic rings in organic molecules. *Journal of Heterocyclic Chemistry*, 59(10), 669-1702. https://doi.org/10.1002/jhet.4527.
- Sharda, S., Prasad, D. N., Kumar, S., & Singh, R. K. (2018). Hexachlorocyclotriphosphazene Catalyzed One-Pot Multicomponent Synthesis of 2,3-Dihydro-1H-1,5-benzodiazepines. *Asian Journal of Organic & Medicinal Chemistry*, 3(4), 176-180. http://dx.doi.org/10.14233/ajomc.2018.AJOMC-P151.
- Sharma, R., & Kumar, A. (2020). Sonochemical protocol for catalyst-free organic synthesis. *Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis*, 43-70. https://doi.org/10.1016/B978-0-12-819540-6.00002-4.
- Shelke, K. F. Sapkal, S. B., & Shingare, M. S. (2009). Ultrasound-assisted one-pot synthesis of 2,4,5-triarylimidazole derivatives catalyzed by ceric (IV) ammonium nitrate in aqueous media. *Chinese Chemical Letters*, 20, 283. https://doi.org/10.1016/j.cclet.2008.11.033.
- Shoh, A. (1988). Industrial Applications of Ultrasound, in Ultrasound: Its Chemical, Physical, and Biological Effects. *VCH Publishers Inc*, New York. 97-122. https://doi.org/10.1121/1.1975495.
- Silva, B. N. M., Pinto, A. C., Silva, F. C., Ferreira, V. F., & Silva, B. V. (2016). Ultrasound-Assisted Synthesis of Isatin-Type 5'-(4-Alkyl/Aryl-1H-1,2,3-triazoles) via 1,3-Dipolar Cycloaddition Reactions. *Journal of the Brazilian Chemical Society*, 27(12), 2378-2382. https://doi.org/10.5935/0103-5053.20160121.
- Strandness, JrMD, D. E., Schultz MD, MD R. D., Sumner MD, D. S., & Rushmer, R. F. 1967. Ultrasonic cinematography of the living heart. *The American Journal of Surgery*, 113(3), 311-320. https://doi.org/10.1016/0002-9610(67)90272-3.
- Suslick, K. S. (1988). *Ultrasound: Its chemical, physical and biological effects.* VCH Publishers, New York, 336.
- Suslick, K. S., Hyeon, T., Fang, M., Ries, J. T., & Cichowlas, A. A. (1996). Sonochemical synthesis of nanophase metals, alloys and carbides. *Materials Science Forum*, 225-227, 903-912.
 - https://doi.org/10.4028/www.scientific.net/msf.225-227.903.
- Tran, P. H., & Nguyen, H. T. (2020). Chapter 4 Sonochemical protocol for alkylation reactions, green sustainable process for chemical and environmental engineering and science. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical

- *Organic Synthesis*, 95-111. https://doi.org/10.1016/B978-0-12-819540-6.00004-8.
- Wang, A., Kang, D., Zhang, W., Zhang, C., Zou, Y., & Zhou, G. (2018). Changes in calpain activity, protein degradation and microstructure of beef M. semitendinosus by the application of ultrasound. *Food Chemistry*, 245, 724-730. https://doi.org/10.1016/j.foodchem.2017.12.003.
- Wang, S., & Zhu, Z. (2005). Sonochemical treatment of fly ash for dye removal from wastewater. *Journal of Hazardous Materials*, 126(1-3), 91-95. https://doi.org/10.1016/j.jhazmat.2005.06.009.
- Weissler, A., Pecht, I., & Anbar, M. (1965). Ultrasound Chemical Effects on Pure Organic Liquids. *Science*, 150(3701), 1288.
- Wieland, K., Tauber, S., Gasser, C., Rettenbacher, L. A., Lux, L., Radel, S., & Lendl, B. (2019). In-Line ultrasound-enhanced raman spectroscopy allows for highly sensitive analysis with improved selectivity in suspensions. *Analytical Chemistry*, 91(22), 14231-4238. https://doi.org/10.1021/acs.analchem.9b01105.
- Wood, R. W., & Loomis, A. L. (1927). The physical and biological effects of high-frequency sound-waves of great intensity. *Philosophical Magazine*, 4(22), 417-436. https://doi.org/10.1080/14786440908564348.
- Yadav, V. K., Ali, D., Khan, S. H., Gnanamoorthy, G., Choudhary, N., Yadav, K. K., Thai, V. N., Hussain, S. A., & Manhrdas, S. (2020). Synthesis and characterization of amorphous iron oxide nanoparticles by the sonochemical method and their application for the remediation of heavy metals from wastewater. *Nanomaterials*, 10, 1-17. https://doi.org/10.3390/nano10081551.
- Yousef Tizhoosh, N., Khataee, A., Hassandoost, R., Darvishi Cheshmeh Soltani, R., & Doustkhah, E. (2020). Ultrasound-engineered synthesis of WS2@CeO2 heterostructure for sonocatalytic degradation of tylosin. *Ultrasonics Sonochemistry*, 67, 105114. https://doi.org/10.1016/j.ultsonch.2020.105114.
- Yuan, Y., Peng, C., Yang, S., Xu, M., Feng, J., Li, X., & Zhang, J. (2020). Rapid and facile method to prepare oxide precursor solution by using sonochemistry technology for WZTO thin film transistors. *Royal Society of Chemistry Advances*, 10(47), 28186-28192. https://pubs.rsc.org/en/content/articlelanding/2020/ra/d0ra05245k.
- Zhang Y. (2016). Advances in social science. education and humanities research. *Atlantic Press* volume 91.
- Zinatloo-Ajabshir, S., Baladi, M., Amiri, O., & Salavati-Niasari, M. (2020). Sonochemical synthesis and characterization of silver tungstate nanostructures as visible-light-driven photocatalyst for waste-water treatment. *Separation and Purification Technology*, 248, 117062-117073. https://doi.org/10.1016/j.seppur.2020.117062

Zou, Y., Wu, H., Hu, Y., Liu, H., Zhao, X., Ji, H., & Shi D. (2011). A novel and environment-friendly method for preparing dihydropyrano[2,3-c]pyrazoles in water under ultrasound irradiation. *Ultrasonics Sonochemistry*, 18, 708-712.

https://doi.org/10.1016/j.ultsonch.2010.11.012